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Abstract. Deformation and time-dependent behavior of rocks are closely related to the stability and safety of underground 
structures and mines. In this paper, a numerical-analytical model is presented to investigate time-dependent damage and 
deformation of rocks under creep. The proposed model is obtained by combining the elastic-visco-plastic model based on 
the theory of over-stress and stress hardening law with the sub-critical crack growth model. The advantage of this model is 
that it is in incremental form and therefore can be implemented numerically. First, the governing equations of the model 
and its numerical computational algorithm are described. The proposed constitutive model is then implemented in the 
FLAC code using the FISH function. Determination of model parameters and calibration is done by various laboratory 
tests performed on a type of gypsum. The creep test was performed on gypsum under a stress of 13 MPa, which is equal to 
70% of its compressive strength. After determining the parameters, by fitting the creep curve of the presented analytical-
numerical model, a good agreement is observed with the creep curve obtained from the laboratory data. It is also observed 
that during creep, the damage parameter and wing crack length increase.

Keywords: elastic-visco-plastic model, over-stress theory, sub-critical crack growth, creep test, stress hardening, wing crack.

Introduction

The study of time-dependent behaviour of rocks, com-
monly known as creep, is of particular importance in 
rock mechanics and the design of underground structures, 
because the time-dependent behavior of rocks is closely 
related to the stability and safety of underground struc-
tures and tunnels. Rock specimens subject to a constant 
stress, creep conditions, deform at a variable strain rate 
over time. The strain-versus-time curve usually has three 
steps in the creep test: primary creep, secondary creep, 
and tertiary creep, provided the stress on the sample is 
high enough. Various constitutive models have been pro-
posed to investigate the time-dependent behavior of soils 
and rocks. The proposed models are divided into three 
categories: empirical models, rheological models, and 

general stress-strain theories. Empirical models are based 
on the results of laboratory data and field experiments 
(Lomnitz, 1956; Griggs & Coles, 1954; Aydan et al., 2014; 
Robertson, 1955; Afrouz & Harvey, 1974). Rheological 
models are obtained by combining simple models such as 
the Hook model (spring), Saint-Venant’s model (slider), 
and the Newtonian model (viscous dashpot) in series or 
in parallel (Goodman, 1989). Rheological models have the 
ability to predict the visco-elastic or elastic-visco-plastic 
behavior of materials (Gioda & Civdini; 1996; Sterpi & 
Gioda, 2009). Simple visco-elastic models include the 
Maxwell model, Kelvin model, Burger model, the gen-
eralized Maxwell model, the generalized Kelvin model, 
and the Zener model (Aydan, 2016). General stress-strain 
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models are often incremental and are commonly used in 
analysis based on numerical methods, and are therefore 
recommended in engineering applications.

Perzyna’s over-stress theory is a general theory for the 
elastic-visco-plastic behavior model of materials, which 
predicts not only time-dependent behavior but also time-
independent behavior of the materials (Perzyna, 1966). 
This model, which is based on the concept of moving 
yield surface is applicable to all boundary conditions and 
all stress paths. In moving yield surface theory, the yield 
function is directly dependent on time and is continuously 
changing. The most important models based on Perzyna’s 
over-stress theory are Lemaitre’s (Lemaitre & Chaboche, 
1990) and SHELVIP (Debernardi & Barla, 2009) models. 
One of the advantages of the SHELVIP (Debernardi & 
Barla, 2009) model is that the hardening function depends 
on the stress level. In almost all models, hardening is con-
trolled using a scalar value such as visco-plastic deviatoric 
strain, the exact amount of which cannot be determined 
in the laboratory (Debernardi & Barla, 2009).

But, based on laboratory studies, it has been observed 
that creep in the rock is associated with the damage (Shao 
et al., 2006; Ma et al., 2017). Damage models are classified 
into phenomenological and micro-mechanical models. In 
phenomenological models, the damage variable is deter-
mined using the mechanical properties of the rock at the 
macro-scale (Hou et al., 2019). Phenomenological models 
include Lemaitre’s model (Lemaitre & Chaboche, 1990) 
and Pellet’s model (Pellet et al., 2005), which are based on 
the definition of surface damage variable. It is also possible 
to evaluate the behavior of the rock by combining phe-
nomenological damage models and visco-plastic models 
(Hou et al., 2019; Zhang et al., 2019; Huang et al., 2020; 
Feng et al., 2020).

In micro-mechanical models, the effect of micro-
structure on rock behavior is considered. One of the 
micro-mechanical damage models, which is highly con-
sistent with the creep behavior of rock, is the sub-critical 
crack growth model (Lockner, 1993; Lockner & Madden, 
1991; Kemeny, 1991). This model is well adapted to the 
creep of rock materials because according to this theory, 
the growth of micro-cracks is a time-dependent phenome-
na and its onset occurs at a stress intensity factor less than 
the fracture toughness of the rock (Ko & Kemeny, 2013).

The purpose of this paper is to integrate the stress 
hardening elastic-visco-plastic constitutive model with 
the sub-critical crack growth damage criterion. The elas-
tic-visco-plastic model is based on the general theory of 
over-stress. By adding the sub-critical crack growth dam-
age model to it, it becomes a comprehensive model that 
simulates the creep behavior of the rock in the primary 
and secondary stages. In most practical cases, the stress 
level is rarely so high that the rock enters the tertiary stage 
of creep. In other words, before the rock enters the tertiary 
stage of creep, the displacements increase so much that the 
structure falls in terms of profitability.

Thus, first, in Section 1, the equations governing the 
elastic-visco-plastic model with stress hardening are given, 

then the sub-critical crack growth model is explained. In 
the Section 2, the numerical solution algorithm is pre-
sented in the form of a flowchart. Section 3 deals with the 
determination of model parameters and calibration. Cali-
bration is done using various tests performed on a type of 
gypsum. In the Section 4, a comparison is made between 
the creep curve obtained from the analytical-numerical 
model and the creep curve obtained from the creep test 
of gypsum rock samples.

1. Elastic-visco-plastic constitutive model

The rock medium is assumed to be dry, continuous, ho-
mogeneous and isotropic. The model presented in this 
article is a combination of elastic model, plastic model 
and visco-plastic model base on over-stress theory of Per-
zyna (1966). According to the over-stress theory, during 
loading, a stress state can exceed the yield surface, which 
is contrary to the classical elasto-plastic theory. Figure 1 
shows the general form of yield surfaces and the stress 
spaces between them in the principal stress space. In this 
model, two yield surfaces with time-dependent behavior 
are considered: visco-plastic yield surface and the perfect 
plastic yield surface. Yield surfaces based on the Drucker-
Prager failure criterion divide the stress space into three 
stress fields as shown in Figure 1. It is assumed that the 
plastic yield surface is always fixed and does not harden 
during increasing plastic strain and visco-plastic strain, 
but the visco-plastic yield surface hardens. The stress fields 
between the yield surfaces are described below.

1) Elastic stress field: inside the visco-plastic yield 
surface, the deformations follow an elastic consti-
tutive model. The elastic stress field is important 
for modeling under small stress conditions as well 
as unloading. In this field the strain is simply ob-
tained based on the equation governing the theory 
of elasticity:

   
e

ij ijε = ε , (1)

   where e
ijε  

is the elastic strain.
2) Visco-plastic stress field: it is located between the 

visco-plastic yield surface and the plastic yield 
surface. This stress field also includes its previous 
stress field, which is omitted due to its brevity. In 
this space, the total strain is the sum of the elas-
tic strain and the visco-plastic strain (Hasanzad-
ehshooiili et al., 2012):

   
vpe

ij ij ijε = ε + ε , (2)

where visco-plastic strain vp
ijε  is calculated using the 

visco-plastic flow rule.
3) Plastic stress field: this field is located on the plas-

tic yield surface, every point in this stress field has 
a stress path that has passed through the previous 
fields, which due to brevity their names are omitted. 
Therefore, the total strain in the plastic stress field 
is given by:

    
vp pe

ij ij ij ijε = ε + ε + ε , (3)
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where plastic strain p
ijε  is calculated using the plastic flow 

rule. Figure 2 shows these yield surfaces and the spaces 
between them in the q-p coordinates, where

1 ( )
3 iip = s , 3

2 ij ijq S S= ; (4)

( ), 1 3ii is = −  are the principal stresses, and ( ), , 1 3ijS i j = −  
are the components of the deviatoric stress tensor.

1.1. Yield surfaces definition

The yield surfaces are based on the Drucker-Prager linear 
failure criterion, the equation of plastic yield surface ( )pf  
in the q-p plane is as follows (Lakirouhani & Hasanzad-
ehshooiili, 2011):

.p p pf q p k= −a −
 
for tp ≥ s , (5)

where ,p pka  as shown in Figure 2, are the slope and q-
intercept of the Drucker-Prager linear failure criterion.

The relationship between the Drucker-Prager param-
eters and the Mohr-Coulomb parameters in the circum-

scribed Drucker–Prager failure criterion and the inscribed 
Drucker–Prager failure criterion are as follows, respec-
tively:

6 sin ,
3 sinpa = φ
− φ

  
6

cos
3 sinp

c
k = φ

− φ
; (6)

6 sin ,
3 sinpa = φ
+ φ

  
6

cos
3 sinp

c
k = φ

+ φ
, (7)

where ,c φ  are cohesion and internal friction angle of the 
rock material. The visco-plastic yield surface ( )vpf  is de-
fined as Eqn (8), assuming that this yield surface intersects 
the plastic yield surface at point O, as shown in Figure 2:

( )
 p

p

p
v vp

k
f q p−a +

a
=  for tp ≥ s , (8)

avp is the slope of visco-plastic yield surface in the q-p 
plane. In Figure 2, st represents the tensile strength of the 
rock.

1.2. Calculation of strain rates

The elastic strain rate component e
ijε  is obtained using 

the Hooke’s law:
e
ij ijkl klCε = s  , (9)

where kls  is the stress rate tensor and Cijkl is a fourth-
order elasticity tensor (material elasticity tensor) whose 
components depends on Young’s modulus E and Poisson’s 
ratio u as follows:

( )1 1ijkl ik jl ij klC
E
 = + u d d − u d d , (10)

where dij is the Kronecker delta defined by:

1 if
0 ifij

i j
i j
=

d =  ≠
. (11)

To calculate the visco-plastic strain rate ve
ijε , the flow 

rule is derived from the Perzyna’s over-stress theory (Per-
zyna, 1966), as follows:

( ) vpvp
ij

ij

g
F

∂
ε = g Φ

∂s
 ,  (12)

where g is fluidity parameter which controls the amplitude 
of visco-plastic strain rate, ( )FΦ  is the viscous kernel and 
F is the over-stress function. In the model presented in this 
paper, it is assumed that the over-stress function is equal 
to the visco-plastic yield function presented in Eqn (8),  
i.e., F = fvp. Also gvp is visco-plastic potential function. The 
visco-plastic kernel ( )FΦ  determines the magnitude of 
the visco-plastic strain rate and is considered as a power 
function of the over-stress function F as follows:

( ) { }
0 if 0

,
 if 0

n
n

F
F F

F F
<Φ = =  >

 (13)

where n > 0 is a characteristic parameter, and { } is the 
Macaulay brackets. The visco-plastic potential function gvp 
expresses the direction of the visco-plastic strain rate ten-
sor, which is defined as:

Figure 1. Visco-plastic and plastic yield surfaces in the 
principal stress space (Debernardi & Barla, 2009)

Figure 2. Yield surfaces and the spaces between them in the 
q-p coordinates (Debernardi & Barla, 2009)
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vp vpg q p= −w . (14)

In other words, gvp it is a linear function of deviatoric 
stresses and volumetric stresses. wvp is the visco-plastic 
dilatancy, which is equal to the ratio of the volumetric 
visco-plastic strain changes to the deviatoric visco-plastic 
strain increment. By substituting Eqn (13) and Eqn (14) 
in relation (12) and assuming that F = fvp, relation (12) 
becomes as:

{ } 3 1
2 3

n ijvp
vp vp ijij

S
f

q

 
ε = g − w d  

 
 , (15) 

where Sij are the components of the deviatoric stress ten-
sor and dij is the Kronecker delta according to Eqn (11). 
Finally, the plastic strain rate is calculated using the elasto-
plastic flow rule as:

pp
ij

ij

g∂
ε = l

∂s
 ,  (16)

where l is the plastic coefficient, and gp is the plastic po-
tential function, which is defined as follows, assuming 
non-associated flow rule:

p pg q p= −w , (17)

where wp is the plastic dilatancy, which is equal to the 
ratio of the volumetric plastic strain changes to the devia-
toric plastic strain increment.

1.3. Hardening rule for visco-plastic yield surface

In the SHELVIP model, Debernardi and Barla (2009) pro-
posed a stress-based hardening rule in which the time de-
rivative of avp relates to the stress state ( )vp ijf s as:

mn
vp vp

vp
p

p

f f
kmn q

p

 
a =   

 +
a



 , (18) 

where m is the shape factor that define the shape of creep 
curves and  is the time stretching factor, both are char-
acteristic and positive parameters.

1.4. Sub-critical crack growth

In the model developed in this paper, the pre-critical dam-
age model is used to predict rock damage in creep. In this 
mechanism, before the stress intensity factor reaches its 
critical value, i.e., fracture toughness, the cracks in the 
sample start to grow and develop as the stress intensity 
factor increases (Lockner & Madden, 1991). Sub-critical 
crack growth can occur under static or dynamic load-
ing conditions. For example, under static loading, crack 
growth velocity is a power law function of the stress in-
tensity factor (Lockner & Madden, 1991; Ko et al., 2006). 
Figure 3 shows the crack velocity versus the normalized 
stress intensity factor, for sub-critical crack growth. In re-
gion 1, the crack velocity is sensitive to stress (Lockner, 
1993). The stress intensity factor in region 1 is approxi-
mately between 0.2Kc and 0.8Kc (Ko & Kemeny, 2013), 
where Kc is fracture toughness. If the crack is subjected to 

stress intensity factor less than 0.2Kc, then it will not be 
able to develop. This model is suitable for simulating rocks 
in creep experiments, since the time-dependent strain in 
creep tests are mainly due to the micro-cracks growth 
(Kranz, 1979, 1980).

According to the theory of sub-critical crack growth, 
the crack growth function is presented as:

0.2I
d

Ic

K
f

K
= − , (19)

as long as 0df > , cracks growth. In Eqn (19), KI is the 
stress intensity factor in mode I and KIc is the fracture 
toughness corresponding to this mode.

A power law function is then used for the crack veloc-
ity v (Lockner & Madden, 1991; Olson, 1993; Ko et  al., 
2006; Ko & Kemeny, 2013):

r
I

Ic

K
a A

K
 

ν = =   
 

 , (20) 

where a  is the crack growth rate, and A and r are the sub-
critical crack growth parameter and the sub-critical crack 
growth index, respectively.

1.5. Micro-mechanical damage model  
and stress intensity factor

We used the micro-mechanical damage model to calculate 
the stress intensity factor. In this method, a dilute uni-
formly distribution of pre-existing flaws (closed cracks) 
within the material is assumed which have no interaction 
on each other. Due to the application of compression load-
ing on the sample, there is a tendency for frictional slip 
on the flaw surfaces, which causes wing cracks to grow in 
the flaw tips (Figure 4). It has been proved that the nuclea-
tion of wing cracks occurs at q = 70.5° (Paliwal & Ramesh, 
2008; Ashby & Hallam, 1986; Horii & Nemat-Nasser, 
1986). The principle of superposition is used to calculate 
the stress intensity factor at the tip of the wing cracks. To 
calculate the first term of the stress intensity factor, two 
wing cracks of length a are replaced by a straight crack of 

Figure 3. Experimental typical relationship between  
crack velocity and normalized stress intensity factor  

(Lockner & Madden, 1991)

Stress intensity

Lo
g 

cr
ac

k 
ve

lo
ci

ty

K0 KIC

1

2

3



Journal of Civil Engineering and Management, 2022, 28(3): 223–231 227

length 2a, which is affected by the same external stresses. 
The second term of the stress intensity factor is caused 
by stresses induced by the flaw under the same external 
loads. Finally, the stress intensity factor is given by Horii 
and Nemat-Nasser (1986):

( )
( ) ( ) ( )1 3 1 3

2 sin 1 cos2
20.27

eff
I

s
K a

a s

t q
 = − + π s + s + s −s q+β π +

( )
( ) ( ) ( )1 3 1 3

2 sin 1 cos2
20.27

eff
I

s
K a

a s

t q
 = − + π s + s + s −s q+β π +

. (21)

In this equation, s is half the flaw length (Figure 4), 
and teff is the effective shear stress on the flaw surface, 
which is obtained as:

( ) ( ) ( )1 3 1 3 1 3
1 1sin2 cos2
2 2eff c

 t = s −s β−m s + s + s −s β − t 
 

( ) ( ) ( )1 3 1 3 1 3
1 1sin2 cos2
2 2eff c

 t = s −s β−m s + s + s −s β − t 
 

, (22)

where m and tc are the coefficient of friction and cohesion 
on the flaw surface, respectively, it is often assumed tc = 0.

1.6. Damage parameter

Evolution of damage occurs during increasing wing crack 
length, to evaluate it, it is necessary to define the damage 
parameter, so that its changes can be examined in propor-
tion to the increase in the strain and creep progression. 
The damage parameter is defined from a phenomenologi-
cal point of view as the ratio of micro-cracks area to total 
area, but in this paper, it is discussed based on micro-me-
chanics. The damage parameter ( )Ω  in two-dimensional 
condition, is given by Paliwal and Ramesh (2008):

2aΩ = h ,  (23)

where h is the flaw density i.e., the number of flaw per 
unit area (in unit of 1/m2), and a is the wing crack length, 
which is related to the stress intensity factor by Eqn (21). 
Therefore, the evolution of the damage parameter with 
time is equal to

2 aaΩ = h

 . (24)

1.7. Homogenization

What remains of the micro-mechanical damage model is 
homogenization. Using the damage parameter defined in 
the previous section, and assuming a dilute (non-inter-
acting) flaw distribution, the effective elastic constants are 
defined as (Gross & Seelig, 2018):

( )
( )

2
hom

1161
9 1 2

K K
 − u
 = − Ω
 − u
 

; (25) 

( )( )
( )

hom 1 5321
45 2

G G
 − u − u

= − Ω 
− u  

. (26) 

2. Numerical implementation and algorithm

The computational algorithm of the mathematical model 
presented in Section 1 is shown in Figure 5. Using the 
internal programming language in the FLAC code called 
FISH (FlacISH) (Itasca Consulting Group, Inc., 2019), this 
algorithm is written in the form of a FISH and implement-
ed in the FLAC code.

According to the selected stress level, the values of fvp, 
fp, and fd are calculated based on the relationships pre-
sented in section 1. In the algorithm shown in Figure 5, 
the relations of strain and stress for each step are given. As 
can be seen, the algorithm has four computational steps 
as follows:

1. Evaluation of elastic-visco-plastic stresses;
2. Plastic surface corrections and new stresses;
3. Update the avp;
4. Obtain new wing crack length and update damage 

parameter ( )Ω .

3. Determining model parameters

In this section, the calibration of the proposed constitutive 
model with the experimental results obtained from labo-
ratory tests performed on gypsum samples is presented. 
Samples of gypsum are taken from Damavand region in 
the northeast Tehran in Iran. Table 1 presents the results 
of the XRF test on this type of gypsum. Also, according to 
laboratory tests performed on gypsum samples, the aver-
age uniaxial compressive strength was 18.6 MPa and the 
Brazilian tensile strength was 3.97 MPa.

Figure 4. A flaw with the wing cracks at its tips
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Table 1. XRF test result

Mineral Oxides Weight (%)
Na2o 0.03
CaO 32.2
MgO 0.01
Fe2O3 0.05
Al2O3 0.02
SrO 0.06
SO3 46.06

Loss on Ignition 21.53
Cl 0.04
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The parameters of the proposed constitutive mod-
el are divided into four groups: (1) elastic parameters 
( ),E u ; (2) plastic parameters ( ), , ,p p t pka s w ; (3) vis-
co-plastic parameters ( ), , , , vpm ng w ; and (4) fracture 
toughness and sub-critical crack growth parameters 
( ), , , , 2 , , , ,IcK A r s ah β m q :

1) Elastic parameters ( ),E u : the elastic modulus and 
Poisson’s ratio of material are obtained using the 
results of uniaxial compression test performed on 
gypsum rock samples in accordance with the values 
presented in Table 2.

2) Plastic parameters ( ), , ,p p t pka s w : ( ),p pka are 
obtained according to Eqn (6) and using Mohr-
Coulomb failure criterion mechanical parameters 
( ),c φ . Mohr-Coulomb criterion parameters are also 

Figure 5. Computational algorithm of the mathematical model

obtained using triaxial tests performed on gypsum 
specimens. Tensile strength ( )ts  is also obtained 
using the result of the Brazilian tensile test. The 
plastic dilatancy parameter ( )pw  is considered zero 
due to the impossibility of measuring the ratio of 
the volumetric plastic strain increment to the de-
viatoric plastic strain increment.

3) Visco-plastic parameters ( ), , , , vpm ng w : to obtain 
the visco-plastic dilatancy parameter ( )vpw , the lat-
eral strain versus axial strain diagram is plotted in 
the creep test. This curve is then interpolated by a 
straight line. Using the slope of this line, the visco-
plastic dilatancy parameter can be obtained. By 
drawing the axial strain rate against time, the shape 
factor ( )m  is obtained. Other visco-plastic param-
eters ( ), ,ng   are obtained by fitting the results of 
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the uniaxial creep test performed on gypsum and 
the results of numerical analysis by means of a nu-
merical optimization procedure.

4) Fracture toughness and sub-critical crack growth 
parameters ( ), , , , 2 , , ,IcK A r sh β m q : fracture tough-
ness ( )IcK  of gypsum measured via the semi-cir-
cular bend (SCB) test. The sub-critical crack growth 
parameter ( )A  and sub-critical crack growth index 
( )r  have been selected based on the suggestions 
made by Ko and Kemeny (2013) and Ko and Lee 
(2020). Flaw density ( )h  and Flaw length ( )2s  val-
ues were obtained based on the analysis of images 
obtained by scanning electron microscope (SEM). 
Flaw orientation ( )β , coefficient of friction on the 
flaw surface ( )m , and wing crack angle ( )q  are 
selected based on the values presented in the lit-
erature (Paliwal & Ramesh, 2008; Ashby & Hallam, 
1986; Horii & Nemat-Nasser, 1986). Table 2 lists the 
model parameters.

4. Validation and results

The proposed constitutive model with the sub-critical 
crack growth model, is used in a uniaxial creep test. Ac-
cording to the symmetry conditions of the specimen in 

this test, only a quarter of the specimen is modeled (Fig-
ure 6). Numerical modeling and analysis have been done 
by FLAC2D code. 

Because the uniaxial compressive strength of gypsum 
specimens is 18.6 MPa, the sample is loaded to an axial 
stress of 13 MPa, which is equivalent to 70% of the uni-
axial compressive strength of the gypsum specimen. Then 
the stress states are kept constant and the strains are mea-
sured over time.

Figure 7 shows the evolution of the damage parameter 
versus the loading time. Figure 8 shows the increase in 
wing crack length over time. The increase in wing crack 
length occurs simultaneously with the growth of the dam-
age parameter. Also, Figure 9 shows the changes in the ra-

tio of I

Ic

K
K

 versus time, as can be seen, this ratio decreases 

slightly during the loading period, which is accompanied 
by a steady and gradual increase in wing crack length. 
Figure 10 shows the creep curve obtained from labora-
tory data with the fitted curve of the theoretical-numerical 
model. As can be seen the adaptation is very good.

Table 2. Parameters of the model

ValueUnitIndexParameter

33274MPaEElastic modulus 
0.271–uPoisson’s ratio

0.788–pa
Slope of the Drucker-Pragers 
plastic yield surface in the q-p 
plane

18.628MPapkq-intercept of the Drucker-
Pragers plastic yield surface

3.97MPatsBrazilian tensile strength

0–pwPlastic dilatancy

2.197e-8–gFluidity parameter
1.002–mShape factor
1.426–nLoad factor

79.295–


Time stretching factor

0.012–vpwVisco-plastic dilatancy 

0.612MPa mIcKFracture toughness (mode I)

0.5m/sA
Sub-critical crack growth 
parameter

25–rSub-critical crack growth 
index

4.26E9m–2hFlaw density

150.6µm2sFlaw size

45( )0
 βFlaw orientation

0.2–mcoefficient of friction on the 
flaw surface

Figure 6. Loading and boundary conditions  
for a quarter of the model

Figure 7. Evolution of damage parameter with time
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Conclusions

In this paper a mathematical model for predicting rock 
time-dependent behavior is presented. The proposed 
model is a combination of elastic-visco-plastic model 
based on Perzyna’s over-stress theory (Perzyna, 1966) and 

Figure 8. Evolution of wing crack length with time

Figure 9. Evolution of normalized stress intensity  
factor versus time

Figure 10. Creep curves, comparison between the results 
obtained from the laboratory data with the fitted curve  

of the proposed model
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stress hardening law. Damage during creep is investigated 
using a micro-mechanical damage model. In the micro-
mechanical damage model, the growth of wing cracks oc-
curs at the tips of flaws that are uniformly distributed in 
the material. The growth of wing cracks occurs before the 
stress intensity factor reaches its critical value. The growth 
of wing cracks during creep increases the strain and dam-
age parameter. After determining the model parameters 
and calibration using experiments performed on gypsum 
samples, it was observed that the creep curve obtained 
from the laboratory results is in good agreement with the 
fitted creep curve of the theoretical-numerical model. Ac-
cording to the results, it was observed that the length of the 
wing crack and the failure parameter increase during the 
primary and secondary stages of creep, the rate of increase 
of wing crack length in both stages of creep test is con-
stant but the rate of increase of damage parameter in the 
secondary stage of creep is higher than the primary stage.
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