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Abstract. Space frame structures that are made up of a huge number of members are often used on a large scale, hence 
their accurate evaluation is important to achieve the optimal design. On the other hand, the use of space Frames and 3D 
truss structures has become more popular due to its time efficiency. Also, these types of structures can carry loads in long-
span buildings and are used in large-scale structures such as halls, hangars, passenger stations, etc. In this study, a novel 
evolutionary algorithm, named ETLBO, has been proposed for the optimization of space frame design in real-size struc-
tures. Despite the existing methods in the literature, the ETLBO method can be used for large-scale space frame structures 
due to its high speed with sufficient accuracy. At first, four optimization algorithms Particle swarm optimization (PSO), 
Genetic Algorithm (GA), Differential Evolution (DE), and Teaching–learning-based optimization (TLBO) under struc-
tural problems have been evaluated. The results show that the TLBO algorithm performs better in solving problems and 
has been better in most problems than other algorithms. So, we have tried to improve this algorithm based on a machine 
learning approach and combination operators. Algorithm improvement is created by adding a crossover operation between 
the new solution and the best solution in the teacher phase. This change causes a sudden movement and escapes from the 
local minima for the algorithm. Enhanced algorithm results show that convergence speed and optimal response quality 
have improved. Finally, using this algorithm, several new practical examples have been optimized.

Keywords: large-scale structure, space frame structures, optimization, hybrid method.

Introduction

Optimization is a mathematical method to achieve op-
timal solutions in one or many objective functions. The 
other words, optimization algorithms are the process of 
searching for a vector in a given domain to make the best 
solution among a large number of possible feasible solu-
tions. Optimization is used in many kinds of science and 
engineering fields.

The most important issue is selecting the right algo-
rithm to find the best solution for optimization problems. 
The type of problem, the availability of algorithms, com-
putational resources, and type of constraints are the main 
parameters to select the appropriate algorithms.

Metaheuristic algorithms are the common types of 
random search algorithms. Metaheuristic algorithms are 
often inspired by nature. Based on the source of inspira-
tion, metaheuristic algorithms can be classified into dif-

ferent categories which the biology-inspired algorithms 
are one of them that generally use the biological behavior 
of animals as their models. Another source of inspiration 
for metaheuristic algorithms is science which is usually 
inspired by physics and chemistry. Moreover, art-inspired 
algorithms which are generally inspired by the creative 
behavior of artists such as architects and musicians have 
been successful for global optimization. Another source of 
inspiration is a social behavior that inspired algorithms to 
simulate social behavior to solve optimization.

During the 1960s, a novel kind of optimization meth-
od called genetic algorithms (GAs) (Holland, 1998) was 
put forward. These methods have been developed by ide-
alizing the evolution theory. Since then, many other meta-
algorithms have been introduced, such as particle swarm 
optimization (PSO) (Kennedy & Eberhart, 1995), differen-
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tial evolution (DE) (Price & Storn, 1997), Harmony search 
(HS) (Lee & Geem, 2005), Colliding bodies optimization 
(CBO) (Kaveh & Mahdavi, 2014), Imperialist competi-
tive (IC) (Atashpaz-Gargari & Lucas, 2007), Teaching–
learning-based optimization (TLBO) (Rao et  al., 2011), 
Interior search algorithm (ISA) (Gandomi, 2014), Bat al-
gorithm (BA) (Yang, 2010), Animal migration optimiza-
tion (AMO) (Li et al., 2014), Krill herd (KH) (Gandomi & 
Alavi, 2012), Improved cat swarm optimization algorithm 
(Kumar & Singh, 2019), EMoSOA: a new evolutionary 
multi-objective seagull optimization algorithm (Dhiman 
et  al., 2021), Sine-cosine optimization algorithm (Yıldız 
et  al., 2020a), Seagull optimization algorithm (Panagant 
et  al., 2020), Enhanced grasshopper optimization algo-
rithm (Yildiz et  al., 2021a), Political optimization algo-
rithm (Yıldız et  al., 2021c), Conceptual comparison of 
the ecogeography-based algorithm (Yıldız et al., 2021d), 
new Hybrid Taguchi-salp swarm optimization algorithm 
(Yıldız & Erdaş, 2021), Self-adaptive many-objective meta-
heuristic (Champasak et  al., 2020), Biogeography-based 
optimization (BBO) (Simon, 2008), and Symbiotic Organ-
isms Search (SOS) (Cheng & Prayogo, 2014).

In recent years some metaheuristic algorithms have 
been proposed to solve optimization problems, which 
have achieved better results in terms of computational and 
time complexity. One of the effective methods for gen-
erating new algorithms is hybrid algorithms. In general, 
the combination of algorithms is performed by combining 
their operators, and this combination can increase the ef-
ficiency of the new algorithms (Kaveh & Talatahari, 2009a; 
Mahi et al., 2015; Wang et al., 2016; Shahrouzi et al., 2017; 
Strauss et al., 2006, 2017, 2018; Zambon et al., 2017). In 
addition, Yildiz et  al. (2021b), recently, proposed a new 
optimization approach based on a grasshopper optimiza-
tion algorithm, and Nelder–Mead algorithm for demand-
ing a high-speed and reliable answer.

Moreover, recently, metaheuristic algorithms have 
found various applications. Meng et  al. (2021) have in-
vestigated the application of metaheuristic algorithms in 
reliability-based design optimization. Also, for reliability-
based design optimization, Demirci and Yıldız (2019) pro-
posed a new hybrid algorithm. In addition, these methods 
have been used in solving constrained mechanical design 
optimization problems (Gupta et  al., 2021). These algo-
rithms have also found much more specific applications 
such as optimum structural design of automobile brake 
components (Yıldız et  al., 2020a), optimum shape de-
sign of automobile suspension components (Yıldız et al., 
2020b), optimal structural design of vehicle components 
(Yıldız et al., 2020c, 2020d), optimal spur gear design (Ab-
derazek et al., 2021), crashworthiness optimization (Aye 
et al., 2019; Karaduman et al., 2019) and automated design 
of aircraft fuselage stiffeners (Sarangkum et al., 2019). The 
other application of metaheuristic algorithms is popula-
tion clustering. Many research focused on improving op-
timization algorithm to achieve better clustering (Kumar 
& Singh, 2018, 2019).

One of the important applications of optimization in 
civil engineering is the optimization of the skeleton weight 

of structures. In recent years, this issue has attracted the 
attention of many researchers. In some studies, the focus 
is on the optimization of frame structures (Talatahari 
et al., 2012b; Kaveh et al., 2019; Talaslioglu, 2019; Es-haghi 
et  al., 2020), and in others, the focus is on space frame 
(3D truss) structures (Li et al., 2009; Eskandar et al., 2011; 
Talatahari et al., 2012a; Kaveh & Hosseini, 2014; Panagant 
et al., 2021).

Swarm intelligence (SI) is a type of artificial intelli-
gence which introduce based on the collective behavior 
of decentralized, self-organized systems. Many optimiza-
tion methods use this type of artificial intelligence, which 
is often inspired by the biological sciences. In optimization 
problems such as the machine learning (ML) approach, 
some data should be organized to a goal. ML helps sys-
tems reach a suitable response by using data, specific op-
erators, and computer calculations. The explorer popula-
tion in meta-heuristic optimization methods makes a data 
bank in each step. This data bank by using some operators 
reaches the best solution (Es-haghi et al., 2020).

Since space frame structures are commonly used in 
large-scale structures, their optimal evaluation usually 
takes a long time. Therefore, optimization algorithms of 
space frame structures must have high speed and accuracy 
to meet the design needs more effectively. In this paper, 
by examining the performance of TLBO, we have tried to 
improve its accuracy and efficiency. Therefore, some op-
erators were added to the TLBO algorithm to achieve a 
more robust method for solving large-scale structures. The 
main objectives of the present study are:

 – Provide a way to reduce the weight and cost of mate-
rials in the actual project;

 – Weight optimization of real-size space frame struc-
tures;

 – Using evolutionary algorithms in real-size structures’ 
optimization;

 – Upgrading existing optimization methods for use in 
large-scale space frame structures;

 – Comparing existing optimization methods in terms 
of speed and accuracy in space-frames.

The structure of this paper is organized as follows. Sec-
tion 1 describes the TLBO and enhanced TLBO (ETLBO) 
approach. The Structural optimization problems are pre-
sented in Section 2. Finally, the conclusion of our present 
work is given.

1. Preliminary

Many engineering phenomena can be expressed by gov-
erning equations and boundary conditions. The governing 
equations are often in the form of partial differential equa-
tions (PDE). A numerical technique for solving problems 
that are described by partial differential equations is the 
finite element method (FEM). By using the FEM meth-
od, the PDE of truss structures analysis will be solved in 
closed form and these equations can be shown in matrix 
form (Öchsner, 2020). In this paper, all examples are ana-
lyzed by matrix form.
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This section describes the basics of two algorithms 
TLBO and enhanced TLBO and presents the performance 
of each algorithm to solve optimization problems.

1.1. Teaching-learning based optimization (TLBO)

TLBO algorithm is one of the most recently developed 
metaheuristics which has many similarities to evolution-
ary algorithms (EAs): randomly selected initial popula-
tion, moving toward the best position (teacher and class-
mates), comparable to mutation operator in EA, and selec-
tion is regarding the comparison of two solutions in which 
the better one always survives (Rao et al., 2011).

TLBO is a population-based algorithm inspired by the 
learning process in a classroom which is similar to most 
other evolutionary optimization methods. The search-
ing process consists of teacher and learner Phases. In the 
teacher phase, learners get knowledge from a teacher. Af-
ter that, they will be learned by classmates in the learner 
phase. The best solution is considered as the teacher in the 
entire population. 

1.2. Enhanced TLBO

In this section, an attempt has been made to provide an 
improved algorithm from TLBO by using the previous 
experiences and combining some effective operators in 
optimization problems, which provides higher conver-
gence speed and higher accuracy. According to the previ-
ous section, the TLBO algorithm has two phases. In the 
first phase, the population is directed to the teacher who 
is the best member of the set, and in the second phase, 
each member moves to the member with higher fitness by 
randomly selecting two members of the set and evaluat-
ing their suitability. The combination of these two phases 
has led to extensive research and detailed exploration of 
this algorithm. Based on the experiences of the initial as-
sessments, it is clear that algorithms that converge their 
population rapidly may be exposed to local minima, and 
ultimately the algorithm may not achieve the best possible 
response. To prevent this, new algorithms should be cre-
ated to overcome local minimums. According to various 
experiments that have been performed on base algorithm 
operators in this study. The best operator to exit local min-
imums is the link operator, which is found in both the GA 
algorithm and the DE algorithm. Therefore, to improve 
the behavior of the algorithm, a combination of crossover 
operators has been created in the TLBO algorithm.

Introducing the steps created in the improved algo-
rithm is as follows:

1) Select the primary population;
2) Performing the teacher phase and moving the pop-

ulation in the direction of the best solution;
3) The crossover between the new solution and the 

corresponding solution with the teacher (best solu-
tion);

4) Investigate the improvement of the result and re-
place it; 

5) Do the learning phase and randomly select two 
members and move towards a better solution;

6) Population adjustment at the end of the step;
7) Repeat step 2 onwards until the end of the run.
As can be seen, the algorithm improvement is created 

by adding a crossover operator between the new solution 
and the best solution in the teacher phase. This makes it 
possible to always move suddenly and escape from the lo-
cal minimum for the algorithm. The steps of the crossover 
operator in this study are as follows:

1) Select a random number between 1 and the size of 
the design variables;

2) Produce a new position from 1 to a random num-
ber based on the best solution; 

3) Generate a new position from the random number 
to the last member of the variable vector based on 
the new solution in the teacher phase;

4) Evaluate fitness of the new solution.
The flowchart for enhanced TLBO is presented in Fig-

ure 1.

Figure 1. The flowchart for ETLBO
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2. Structural optimization problems

In this section, four optimization examples are used, 
which include a new practical example. The four basic 
algorithms PSO, GA, DE, TLBO, and the proposed al-
gorithm have been evaluated under these examples. The 
basic algorithms have been used in their original form. In 
all optimization solutions, the control parameters of PSO 
are considered equal to 1, 2, and 2, respectively, and the 
mutation probability of GA is considered equal to 0.1, and 
the other algorithms aren’t control parameters.

The results have been compared with other research 
results of other well-known optimizers. 

A Diversity Index, DI is also utilized via the following 
relation (Shahrouzi & Kaveh, 2015). It is further used to 
compare the convergence behavior of the algorithms:

=
−

( )j

j j j

SD
DI mean

U L
,  (1)

where: Lj and Uj are the lower and upper bounds on every 
jth design variable, respectively; meanwhile, SDj stands for 
the Standard Deviation of the corresponding design vari-
able among the population. DI is evaluated for the entire 
population at each iteration. It is desired that the diver-
sity index be high at early iterations and decreases by the 
search progress as the population agents converge to the 
optimum. The DI trace vs. iterations varies for various al-
gorithms and so can be employed for understanding the 
behavioral differences. 

In all algorithm runs in this section, the number of 
populations equal to 50 have been used and the NFEs have 
continued until the best result has been reached.

2.1. 10-bar truss design

The 10-bar truss, shown in Figure 2, has been widely 
addressed by many researchers. The material density is  
0.1 lb/in3 (0.0272 N/cm³) and the modulus of elastic-
ity equals E  = 104 ksi (68947.57 MPa). Stress limitation 
in compression and tension for each member is taken 
±25 ksi (±172.37 MPa). Maximum nodal displacement in 
each direction is limited to ±2 in (±0.0508 m). A vertical 
load of 105 lb is exerted at nodes 2 and 4.

Table 1 compares the results of different algorithms 
in solving the 10-member example. As can be seen, the 
TLBO provides better results than other basic algorithms. 
Also, the proposed algorithm shows a better result than its 
basic algorithm (TLBO). As shown in Figure 3, the con-
vergence rate in ETLBO has been faster in achieving the 
optimal solution.

According to Figure 4, the DI index is reduced rapidly 
in the ETLBO after a few iterations and its value in the 
ETLBO has always been less than the TLBO.

To closely evaluate the performance of the proposed 
algorithm, the results of other algorithms presented in 
the literature have been compared under the 10-bar truss 
example (see Table 2). The comparison results show that 
the ETLBO has better performance in convergence quality 
and convergence speed than other methods.

2.2. 15-bar truss design 

The 15-bar truss of Figure 5, has been studied by Li et al. 
(2009) and Sadollah et  al. (2013), material density and 
elasticity modulus are 7800 kg/m3 and E = 200 MPa, re-
spectively. The allowable stress for each member of this 
structure equals ±120 MPa. Nodal displacements are con-
fined within ±10 mm in any direction.

Discrete design variables are selected from the set 
{113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 
308.6, 334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7} 
(mm2). Concentrated loads of 35 kN are applied at the 
nodes 4, 6 and 8.

According to Table 3, the results obtained from the 
ETLBO and TLBO have been better than the other meth-
ods, but as can be seen in Figures 6 and 7, the convergence 

Figure 2. 10-bar truss

Table 1. Result of optimization algorithms 10-bar truss example

Variables (in2) PSO GA DE TLBO ETLBO
A1 30 30 30 30 33.5
A2 1.62 1.62 1.8 1.62 1.62
A3 30 30 26.5 22.9 22.9
A4 13.5 18.8 15.5 13.5 14.2
A5 1.62 1.62 1.62 1.62 1.62
A6 1.8 1.62 1.62 1.62 1.62
A7 11.5 13.9 11.5 7.97 7.97
A8 18.8 16 18.8 26.5 22.9
A9 22 19.9 22 22 22
A10 1.8 3.13 3.09 1.8 1.62
Weight (lb) 5581.8 5706.52 5593.4 5531.9 5490.74
SD 664.1 257 12.8 3.8 69.7

Figure 3. Convergence comparison of ETLBO vs. TLBO for the 
10-bar truss example



296 M. S. Es-Haghi et al. Enhanced teacher-learning based algorithm in real size structural optimization

speed of ETLBO is more than TLBO. Also, ETLBO ac-
curacy is better than TLBO and the best result of ETLBO 
obtain in 4700 NFE.

 Table 4 shows that the MBA and ETLBO have been 
converged in 2000 NFE and 4700 NFE respectively, while 
the other methods solved this example in a larger number 
of NFE. Therefore, ETLBO has shown good behavior in 
this example as well.

2.3. 582-bar tower truss design 

As an example of a large-scale problem, a 582-bar truss 
of Figure 8 (80 m tower) is considered. This optimization 
problem has already been solved with discrete variables 
by Hasançebi et al. (2009), Kaveh and Talatahari (2009a, 
2009b, 2010), Kaveh and Mahdavi (2014) and Shahrouzi 
et al. (2017). To keep the symmetry of the tower around 
x-and y-axes its members are considered in 32 groups for 
sizing. A single load case consisting of 5 kN in both x- and 
y- directions and a vertical force of 30 kN in the down-
ward z-direction, is applied at every node of the tower.  

Figure 4. DI traces of ETLBO vs. TLBO for the 10-bar truss

Table 2. Comparison of results algorithm in literature for the 10-bar truss example

Variables (in2) GA  
(Rajeev & Krishnamoorthy, 1992)

PSO  
(Li et al., 2009)

PSOPC 
(Li et al., 2009)

HPSO 
(Li et al., 2009)

MBA (Sadollah 
et al., 2012) ETLBO

Best weight (lb) 5613.8 5581.8 5593.4 5531.9 5507.7 5490.74
Mean (lb) – – – – – 6239.3
SD – 664.1 12.8 3.8 – 69.7
NFE 
(NFE-best)

– 50000 
(15000)

50000 
(15000)

50000 
(12500)

20000
(3600)

20000
(1000)

Figure 5. 15-bar truss

Table 3. Result of optimization algorithms 15-bar truss example

Variables 
(mm2) PSO GA DE TLBO ETLBO

A1 185.9 113.2 113.2 113.2 113.2
A2 113.2 113.2 113.2 113.2 113.2
A3 143.2 113.2 113.2 113.2 113.2
A4 113.2 113.2 113.2 113.2 113.2
A5 736.7 736.7 736.7 185.9 185.9
A6 143.2 113.2 113.2 113.2 113.2
A7 113.2 113.2 113.2 113.2 113.2
A8 736.7 736.7 73 6.7 185.9 185.9
A9 113.2 113.2 113.2 113.2 113.2

A10 113.2 113.2 113.2 113.2 113.2
A11 113.2 113.2 113.2 113.2 113.2
A12 113.2 113.2 113.2 113.2 113.2
A13 113.2 185.9 113.2 113.2 113.2
A14 334.3 334.3 334.3 334.3 334.3
A15 334.3 334.3 334.3 334.3 334.3

Weight (kg) 125.84 175.96 115.255 105.735 105.735
SD 20.36 25.78 11.39 10.79 0.5316

Figure 6. Convergence comparison of ETLBO vs. TLBO for the 
15-bar truss example
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The tower is optimized for minimum volume while 
member cross-sections are selected from a list of AISC 
W-sections based on area and radius of gyration. The cor-
responding lower and upper bounds of section area are 
39.74 cm2 and 1387.09 cm2, respectively. Nodal displace-

Table 4. Comparison of results algorithm in literature for the 15-bar truss example

Variables (mm2) PSO (Li et al., 2009) PSOPC (Li et al., 2009) HPSO (Li et al., 2009) MBA (Sadollah et al., 2012) ETLBO
Best weight (kg) 108.84 108.96 105.735 105.735 105.735
Mean – – – – 106.115
SD – – – – 0.5316
NFE 
(NFE-best)

25000
(18700)

25000
(16000)

25000
(7500)

25000
(2000)

6000
(4700)

Figure 7. DI traces of ETLBO vs. TLBO for the 15-bar truss

Figure 8. 582-bar tower truss

ments are limited to 8.0 cm in each direction. The allow-
able tensile and compressive stresses are calculated due 
to the AISC_ASD provisions (American Institute of Steel 
Construction [AISC], 1989) as:

+σ = σ ≥0.6 for 0i y iF ;                                            (2)

−

 λ λ λ
− + − λ <

σ =
π λ ≥ λ

2 3

2 3

2

2

35[(1 ) ]/ ( ) for
32 8 8 ,

12 for
23

i i i
y i c

c c c
i

i c
i

F C
C C C

E C
 (3)

whereas E (the modulus of elasticity) is 203893.6 MPa 
and Fy (the yield stress of steel) is taken 253.1 MPa. λi 
is the slenderness ratio (λi = k Li /ri) where Li stands for 
the length of the ith member and ri is the corresponding 
minimal radius of gyration. = π22 /c yC E F  denotes the 
slenderness measure by which the elastic and inelastic 
buckling regions are distinguished from each other. Fur-
thermore, the maximum slenderness ratio λm for tension 
and compression members is limited to 300 and 200, re-
spectively.

The 582-bar truss is a large-scale example, so it needs 
more iteration to achieve the optimal solution. Also, the 
large number of design variables and various analytical 
constraints make this example more complex.

Comparison of the results of the basic algorithms and 
the proposed method shows that the ETLBO algorithm 
has been efficient in this example as well. As shown in 
Table 5, The proposed algorithm has a better result than 
other algorithms and the optimal solution in this algo-
rithm is 20.2382. In this example, the TLBO algorithm is 
the second algorithm with the optimal solution 20.9218.
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Given that the initial population and the number of 
programs run for all algorithms have been the same, so 
we can see the better performance of ETLBO compared 
to other methods.

Figures 9 and 10 show the trend of fitness and DI in-
dex for the two algorithms ETLBO and TLBO, respective-
ly. Examination of the two figures shows that the proposed 
algorithm focuses on the population after several itera-
tions and performs a more accurate search. So, in the end, 
a more accurate solution has been reached.

A comparison of the results obtained from other stud-
ies with the results of the proposed algorithm is shown 
in Table 6. The accuracy of the optimal solution obtained 
from the ETLBO was higher than other algorithms. Other 
algorithms performed the best fitness in the lower NFE, 
but their results are less accurate than the ETLBO optimal 
solution.

2.4. 112-bar bridge truss design 

The 112-bar bridge truss is a new practical example in this 
paper. The member groups, the geometric dimensions of the 
structure and supported nodes have been shown in Figure 11.

The material density of elements is 7850 kg/m3 and the 
modulus of elasticity equals E = 203893.6 kPa. According 
to Figure 12, the structure is subject to a vertical load of 
200 kN and a horizontal load of 30 kN. The bridge is opti-
mized for minimum weight while member cross-sections 
are selected from a list of AISC W-sections based on area 

Figure 9. Convergence comparison of ETLBO vs. TLBO for the 
582-bar truss example

Table 5. Result of optimization algorithms 582-bar truss 
example

Variables  
(cm2) PSO GA DE TLBO ETLBO

A1 39.74 45.68 39.74 39.74 39.74
A2 149.68 136.13 149.68 136.13 149.68
A3 45.68 53.16 53.23 53.23 56.71
A4 113.55 109.68 90.96 118.06 113.55
A5 45.68 45.68 45.68 45.68 39.74
A6 39.74 45.68 39.74 39.74 39.74
A7 90.97 92.90 128.38 92.90 92.90
A8 45.68 45.68 45.68 45.68 39.74
A9 39.74 92.90 39.74 39.74 47.35

A10 85.81 45.68 90.96 90.97 39.74
A11 45.68 45.68 49.35 39.74 39.74
A12 129.03 75.48 118.06 136.13 149.68
A13 140.65 56.71 143.87 144.52 165.16
A14 90.97 136.13 100.64 92.90 109.68
A15 143.87 143.87 115.48 149.68 155.48
A16 55.90 92.90 75.48 58.90 49.61
A17 39.74 155.48 101.93 118.06 123.23
A18 127.10 45.68 49.35 45.68 39.74
A19 45.68 39.74 39.74 39.74 39.74
A20 39.74 75.48 81.29 87.10 83.87
A21 75.48 45.68 45.68 39.74 39.74
A22 45.68 41.87 39.74 39.74 39.74
A23 39.74 58.84 41.89 47.35 39.74
A24 41.87 53.23 45.68 39.74 39.74
A25 45.68 39.74 39.74 39.74 39.74
A26 39.74 39.74 39.74 39.74 39.74
A27 39.74 45.68 45.68 39.74 39.74
A28 45.68 53.23 39.74 39.74 39.74
A29 39.74 68.39 39.74 39.74 39.74
A30 39.74 45.68 47.35 39.74 39.74
A31 45.68 39.74 62.64 39.74 39.74
A32 45.68 45.68 53.22 39.74 39.74

Volume (m3) 32.3958 35.0607 28.8376 20.9218 20.2382
SD 7.450 12.32 5.345 2.553 1.6599

Figure 10. DI traces of ETLBO vs. TLBO for the 582-bar truss
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and radius of gyration. The corresponding lower and up-
per bounds of section area are 22.84 cm2 and 303.23 cm2, 
respectively.

The allowable tensile and compressive stresses are cal-
culated due to the AISC_ASD provisions (AISC, 1989). 
Maximum nodal displacement in each direction is limited 
to 0.05 m.

In this example, the population size of the algorithms 
is assumed to be 50 and the initial population is the same 
in both algorithms. The implementation of the algorithms 
is continued up to 30,000 NFE and its results are shown in 
Table 7. As can be seen, the ETLBO has reached the opti-
mal solution of 35997.6 after 14800 NFE, while the TLBO 
has obtained its best solution in 22500 NFE, and it’s equal 

to 41188. The mean and standard deviation of the results 
obtained from both algorithms show that the ETLBO has 
higher reliability than its basic algorithm.

The convergence trend of the two algorithms is com-
pared in Figure 13. As can be seen, the convergence speed 
of the ETLBO is much higher than that of the TLBO and 
it has reached close to its optimal solution about 5000 
NFE, while the TLBO has continued its initial conver-
gence trend up to 20,000 NFE.

The DI index trend shows that the proposed algorithm 
has directed the population to the optimal solution in the 
initial iterations and has increased the accuracy of the 
result. While in the TLBO, due to higher population di-
versity, the convergence speed has been slow (Figure 14).

Table 6. Comparison of results algorithm in literature for the 582-bar truss example

Variables (cm2)
PSO  

(Hasançebi et al.,  
2009)

DHPSACO  
(Kaveh and Talatahari, 

2009a, 2009b)

CBO  
(Kaveh & Mahdavi, 

2014)

OTLBO  
(Shahrouzi et al.,  

2017)
ETLBO

Best volume (m3) 22.3958 22.0607 21.8376 20.9835 20.9218
Mean 24.28
SD – – – – 1.6599
NFE
(NFE-best)

50000
(17500)

17500
(8500)

20000
(17700)

50000
(15500(

30000
(22500)

Figure 11. 112-bar bridge truss

Figure 12. 112-bar bridge truss loading
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2.5. 1152-bar double layer space frame roof 

The sports complex roof is one of the most applications, 
of space frame structures. So, as a new optimization ex-
ample, we designed a double-layer space frame that using 
in sports complexes’ roofs. The structural geometry and 
support nodes have been shown in Figure 15. As can be 
seen, this structure has 314 nodes and 1152 bars. 

In this example two load cases are applied to all nodes, 
the first one is dead load (DL) equal to 50 kgf/m2 at the 
top layer and 15 kgf/m2 at the bottom layer and the 
second one is snow load (S) equal to 150 kgf/m2 at the 
top layer. The loading surface of each node is (3×3 m) 9 
square meters, so the concentrated load of each node is 
obtained by multiplying the load by the loading surface. In 
optimization analysis, two load combinations 1.4DL and 
1.2DL+1.6S have been considered.

The material density of elements is 7850 kg/m3 and the 
modulus of elasticity equals E = 235359 kPa. The structure 
is optimized for minimum weight while members are se-
lected from pipe-shaped members in Table 8.

Figure 13. Convergence comparison of ETLBO vs. TLBO  
for the 112-bar truss example

Figure 14. DI traces of ETLBO vs. TLBO for the 112-bar truss

Figure 15. 1152-bar double-layer space frame roof

Table 7. Result of optimization algorithms 112-bar  
bridge truss example

Variables (cm2) TLBO ETLBO
A1 49.35 47.3
A2 37.87 33.94
A3 22.84 22.84
A4 201.29 170.97
A5 22.84 22.84
A6 74.19 58.9
A7 22.84 22.84
A8 56.71 53.23

Best Weight (kg) 41188 35974.6
Mean Weight (kg) 44184 39241

SD 1649 2328
NFE

(NFE-best)
30000

(22500)
30000

(14800)
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The design constraints are imposed by LRFD–AISC 
(Load and Resistance Factor Design, American Institute 
of Steel Construction), and the maximum nodal displace-
ment in each direction is limited to 0.1 m. Also, all mem-
bers have been used as design variables. In this example, 
the implementation of the algorithms is continued up to 
5,000 NFE.

In Figure 16, the Convergence trend of the two algo-
rithms is shown. The Convergence trend in ETLBO shows 
that its fitness at often NFEs is more than the best fitness 
of TLBO.

According to Table 9, the best fitness of ETLBO and 
TLBO is equal to 38887.08 kg and 45764.88 kg, respec-
tively, also the mean fitness of ETLBO is better than TLBO 
that indicates more reliability in ETLBO. For brevity in the 
context, the design variables value in ETLBO is provided 
in Appendix (Table A1).

As can be seen in Figure 17, the DI value does not 
significantly decrease along with runs, and the DI trend 
for the two algorithms has the same behavior because the 
number of design variables is high in this problem, as a 
result, the problem is more complicated. 

Conclusions

The space frame structures are commonly used in large-
scale structures and their optimal evaluation usually takes 
a long time. Therefore, optimization algorithms must 
have high speed and accuracy to meet the design needs 
more effectively in these problems. Thus, improving the 
behavior of optimization algorithms can help structural 
designers to achieve an optimal design. In this paper, by 
comparison of four basic algorithms have been tried to 
introduce the practical optimization algorithm to solve 
structural optimization. Based on the evaluation of these 
algorithms’ results, a new algorithm was developed called 
ETLBO, in the proposed method, the crossover operator 
helps the TLBO process to efficiently perform the global 
exploration for rapidly attaining the feasible solution space 
and also helps to reach an optimal or near-optimal solu-
tion. 

To compare the results of the algorithms, the values 
of the best fitness, mean fitness, and standard deviation 
of results along with convergence trend and DI index 
trend have been considered under the five examples con-
sist of two new practical examples and three benchmark 
structural problems. Also, the results show, the proposed 
algorithm has a better solution and less standard devia-
tion than the TLBO algorithm in most problems, and it 
achieves the best solution at fewer NFEs. Therefore, the 
proposed algorithm has performed better than other basic 
algorithms, and in terms of speed and accuracy of con-
vergence compared to the results obtained from other 

Table 8. List of members in 1152-bar example

Pipe name A (m2) The radius of gyration (m)
PIPE1.5 in 0.00042 0.01595
PIPE2 in 0.00054 0.02018

PIPE2.5 in 0.00073 0.02539
PIPE3 in 0.00087 0.02999
PIPE4 in 0.00125 0.03868
PIPE5 in 0.00206 0.04781

PIPE6 in-1 0.00244 0.05660
PIPE6 in-2 0.00299 0.05630

Table 9. Result of optimization algorithms in 1152-bar double 
layer space frame roof example

TLBO ETLBO
Best Weight (kg) 45764.88 38887.08
Mean Weight (kg) 51443.33 47322.45
SD 8136.79 4453.56
NFE
(NFE-best)

5000
(2560)

5000
(3600)

Figure 16. Convergence comparison of ETLBO vs. TLBO  
for the 1152-bar double layer space frame roof

Figure 17. DI traces of ETLBO vs. TLBO for the 1152-bar double layer space frame roof
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algorithms shows a significant improvement. Finally, due 
to the speed and accuracy of ETLBO algorithm, it can be 
used for the optimization of real-size space frame struc-
tures. For future works, it is suggested that the perfor-
mance of ETLBO algorithm be examined for other prob-
lems that contain a huge number of variables, such as the 
optimization of real steel and concrete buildings.

References

Abderazek,  H., Hamza,  F., Yildiz,  A. R., & Sait,  S. M. (2021). 
Comparative investigation of the moth-flame algorithm 
and whale optimization algorithm for optimal spur gear de-
sign. Materials Testing, 63(3), 266–271. 
https://doi.org/10.1515/mt-2020-0039

American Institute of Steel Construction. (1989). Manual of steel 
construction. Allowable stress design (9th ed.). Chicago, Illi-
nois.

Atashpaz-Gargari, E., & Lucas, C. (2007). Imperialist competitive 
algorithm: An algorithm for optimization inspired by impe-
rialistic competition. In 2007 IEEE Congress on Evolutionary 
Computation (pp. 4661–4667). IEEE. 
https://doi.org/10.1109/CEC.2007.4425083

Aye, C. M., Pholdee, N., Yildiz, A. R., Bureerat, S., & Sait, S. M. 
(2019). Multi-surrogate-assisted metaheuristics for crash-
worthiness optimisation. International Journal of Vehicle De-
sign, 80(2–4), 223–240. 
https://doi.org/10.1504/IJVD.2019.109866

Champasak,  P., Panagant,  N., Pholdee,  N., Bureerat,  S., & 
Yildiz, A. R. (2020). Self-adaptive many-objective meta-heu-
ristic based on decomposition for many-objective conceptual 
design of a fixed wing unmanned aerial vehicle.  Aerospace 
Science and Technology, 100, 105783. 
https://doi.org/10.1016/j.ast.2020.105783

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: 
A new metaheuristic optimization algorithm. Computers & 
Structures, 139, 98–112. 
https://doi.org/10.1016/j.compstruc.2014.03.007

Dhiman, G., Singh, K. K., Slowik, A., Chang, V., Yildiz, A. R., 
Kaur,  A., & Garg,  M. (2021). EMoSOA: A new evolution-
ary multi-objective seagull optimization algorithm for global 
optimization. International Journal of Machine Learning and 
Cybernetics, 12(2), 571–596. 
https://doi.org/10.1007/s13042-020-01189-1

Demirci, E., & Yıldız, A. R. (2019). A new hybrid approach for 
reliability-based design optimization of structural compo-
nents. Materials Testing, 61(2), 111–119. 
https://doi.org/10.3139/120.111291

Es-Haghi, M. S., Shishegaran, A., & Rabczuk, T. (2020). Evalu-
ation of a novel Asymmetric Genetic Algorithm to optimize 
the structural design of 3D regular and irregular steel frames. 
Frontiers of Structural and Civil Engineering, 14(5), 1110–
1130. https://doi.org/10.1007/s11709-020-0643-2

Eskandar, H., Salehi, P., & Sabour, M. H. (2011). Imperialist com-
petitive ant colony algorithm for truss structures. Applied Sci-
ences, 12(33), 94–105.

Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel 
approach for global optimization. ISA Transactions, 53(4), 
1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

Gandomi, A. H., & Alavi, A. H. (2012). Krill herd: A new bio-in-
spired optimization algorithm. Communications in Nonlinear 
Science and Numerical Simulation, 17(12), 4831–4845. 
https://doi.org/10.1016/j.cnsns.2012.05.010

Gupta, S., Abderazek, H., Yıldız, B. S., Yildiz, A. R., Mirjalili, S., 
& Sait,  S. M. (2021). Comparison of metaheuristic optimi-
zation algorithms for solving constrained mechanical design 
optimization problems. Expert Systems with Applications, 183, 
115351. https://doi.org/10.1016/j.eswa.2021.115351

Hasançebi,  O., Çarbaş,  S., Doğan,  E., Erdal,  F., & Saka,  M. P. 
(2009). Performance evaluation of metaheuristic search tech-
niques in the optimum design of real size pin jointed struc-
tures. Computers & Structures, 87(5–6), 284–302. 
https://doi.org/10.1016/j.compstruc.2009.01.002

Holland, J. H. (1998). Adaptation in natural and artificial systems. 
University of Michigan Press.

Karaduman, A., Yıldız, B. S., & Yıldız, A. R. (2019). Experimen-
tal and numerical fatigue-based design optimisation of clutch 
diaphragm spring in the automotive industry.  International 
Journal of Vehicle Design, 80(2–4), 330–345. 
https://doi.org/10.1504/IJVD.2019.109875

Kaveh, A., & Hosseini, P. (2014). A simplified dolphin echolo-
cation optimization method for optimum design of trusses. 
International Journal of Optimization in Civil Engineering, 
4(3), 381–397.

Kaveh, A., & Mahdavi, V. R. (2014). Colliding bodies optimiza-
tion: A novel meta-heuristic method. Computers and Struc-
tures, 139, 18–27. 
https://doi.org/10.1016/j.compstruc.2014.04.005

Kaveh, A., Moghanni, R. M., & Javadi, S. M. (2019). Optimum 
design of large steel skeletal structures using chaotic firefly 
optimization algorithm based on the Gaussian map. Struc-
tural and Multidisciplinary Optimization, 60, 879–894. 
https://doi.org/10.1007/s00158-019-02263-1

Kaveh, A., & Talatahari, S. (2009a). A particle swarm ant colo-
ny optimization for truss structures with discrete variables. 
Journal of Constructional Steel Research, 65(8–9), 1558–1568. 
https://doi.org/10.1016/j.jcsr.2009.04.021

Kaveh, A., & Talatahari,  S. (2009b). Particle swarm optimizer, 
ant colony strategy and harmony search scheme hybridized 
for optimization of truss structures. Computers & Structures, 
87(5–6), 267–283. 
https://doi.org/10.1016/j.compstruc.2009.01.003

Kaveh,  A., & Talatahari,  S. (2010). Imperialist competitive al-
goritjm foer engineering design problems. Asian Journal of 
Civil Engineering, 11(6), 675–697.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. 
In Proceedings of ICNN’95 – International Conference on Neu-
ral Networks (pp. 1942–1948). IEEE. 
https://doi.org/10.1109/ICNN.1995.488968

Kumar, Y., & Singh, P. K. (2018). Improved cat swarm optimi-
zation algorithm for solving global optimization problems 
and its application to clustering. Applied Intelligence, 48(9), 
2681–2697. https://doi.org/10.1007/s10489-017-1096-8

Kumar,  Y., & Singh,  P. K. (2019). A chaotic teaching learning 
based optimization algorithm for clustering problems. Ap-
plied Intelligence, 49(3), 1036–1062. 
https://doi.org/10.1007/s10489-018-1301-4

Lee, K. S., & Geem, Z. W. (2005). A new meta-heuristic algo-
rithm for continuous engineering optimization: Harmony 
search theory and practice. Computer Methods in Applied 
Mechanics and Engineering, 194(36–38), 3902–3933. 
https://doi.org/10.1016/j.cma.2004.09.007

Li, L. J., Huang, Z. B., & Liu, F. (2009). A heuristic particle swarm 
optimization method for truss structures with discrete vari-
ables. Computers & Structures, 87(7–8), 435–443. 
https://doi.org/10.1016/j.compstruc.2009.01.004

https://doi.org/10.1515/mt-2020-0039


Journal of Civil Engineering and Management, 2022, 28(4): 292–304 303

Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimiza-
tion: An optimization algorithm inspired by animal migra-
tion behavior. Neural Computing and Applications, 24(7–8), 
1867–1877. https://doi.org/10.1007/s00521-013-1433-8

Mahi,  M., Baykan,  Ö. K., & Kodaz,  H. (2015). A new hybrid 
method based on particle swarm optimization, ant colony 
optimization and 3-opt algorithms for traveling salesman 
problem. Applied Soft Computing, 30, 484–490. 
https://doi.org/10.1016/j.asoc.2015.01.068

Meng, Z., Li, G., Wang, X., Sait, S. M., & Yıldız, A. R. (2021). A 
comparative study of metaheuristic algorithms for reliability-
based design optimization problems.  Archives of Computa-
tional Methods in Engineering, 28, 1853–1869. 
https://doi.org/10.1007/s11831-020-09443-z

Öchsner, A. (2020). Partial differential equations of classical struc-
tural members. Springer. 
https://doi.org/10.1007/978-3-030-35311-7

Panagant, N., Pholdee, N., Bureerat, S., Kaen, K., Yıldız, A. R., 
& Sait, S. M. (2020). Seagull optimization algorithm for solv-
ing real-world design optimization problems. Materials Test-
ing, 62(6), 640–644. https://doi.org/10.3139/120.111529

Panagant, N., Pholdee, N., Bureerat, S., Yildiz, A. R., & Mirjal-
ili, S. (2021). A comparative study of recent multi-objective 
metaheuristics for solving constrained truss optimisation 
problems. Archives of Computational Methods in Engineering. 
https://doi.org/10.1007/s11831-021-09531-8

Price, K. V., & Storn, R. (1997). Differential evolution – a simple 
and efficient heuristic for global optimization over continu-
ous spaces. Journal of Global Optimization, 11, 341–359. 
https://doi.org/10.1023/A:1008202821328

Rajeev, S., & Krishnamoorthy, C. S. (1992). Discrete optimization 
of structures using genetic algorithms. Journal of Structural 
Engineering, 118(5), 1233–1250. 
https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)

Rao,  R. V., Savsani,  V. J., & Vakharia,  D. P. (2011). Teaching–
learning-based optimization: A novel method for constrained 
mechanical design optimization problems. Computer-Aided 
Design, 43(3), 303–315. 
https://doi.org/10.1016/j.cad.2010.12.015

Sadollah,  A., Bahreininejad,  A., Eskandar,  H., & Hamdi,  M. 
(2012). Mine blast algorithm for optimization of truss struc-
tures with discrete variables. Computers & Structures, 102–
103, 49–63. https://doi.org/10.1016/j.compstruc.2012.03.013

Sadollah,  A., Bahreininejad,  A., Eskandar,  H., & Hamdi,  M. 
(2013). Mine blast algorithm: A new population based algo-
rithm for solving constrained engineering optimization prob-
lems. Applied Soft Computing, 13(5), 2592–2612. 
https://doi.org/10.1016/j.asoc.2012.11.026

Sarangkum, R., Wansasueb, K., Panagant, N., Pholdee, N., Bu-
reerat, S., Yildiz, A. R., & Sait, S. M. (2019). Automated design 
of aircraft fuselage stiffeners using multiobjective evolutionary 
optimisation. International Journal of Vehicle Design, 80(2–4), 
162–175. https://doi.org/10.1504/IJVD.2019.109864

Shahrouzi, M., & Kaveh, A. (2015). Dynamic fuzzy-membership 
optimization: an enhanced meta-heuristic search. Asian Jour-
nal of Civil Engineering, 16(2), 249–268.

Shahrouzi, M., Aghabagloua, M., & Rafiee, F. (2017). Observer-
teacher-learner-based optimization: An enhanced meta-heu-
ristic for structural sizing design. Structural Engineering and 
Mechanics, 62(5), 537–550. 

Simon,  D. (2008). Biogeography-based optimization. IEEE 
Transactions on Evolutionary Computation, 12(6), 702–713. 
https://doi.org/10.1109/TEVC.2008.919004

Strauss, A., Wan-Wendner, R., Vidovic, A., Zambon, I., Yu, Q., 
Frangopol, D. M., & Bergmeister, K. (2017). Gamma predic-
tion models for long-term creep deformations of prestressed 
concrete bridges. Journal of Civil Engineering and Manage-
ment, 23(6), 681–698. 
https://doi.org/10.3846/13923730.2017.1335652

Strauss, A., Krug, B., Slowik, O., & Novak, D. (2018). Combined 
shear and flexure performance of prestressing concrete T-
shaped beams: Experiment and deterministic modeling. 
Structural Concrete, 19(1), 16–35. 
https://doi.org/10.1002/suco.201700079

Strauss,  A., Mordini,  A., & Bergmeister,  K. (2006). Nonlinear 
finite element analysis of reinforced concrete corbels at both 
deterministic and probabilistic levels. Computers and Con-
crete, 3(2–3), 123–144. 
https://doi.org/10.1016/0045-7949(93)90199-N

Talaslioglu, T. (2019). Optimal design of steel skeletal structures 
using the enhanced genetic algorithm methodology. Frontiers 
of Structural and Civil Engineering, 13(4), 863–889. 
https://doi.org/10.1007/s11709-019-0523-9

Talatahari, S., Kaveh, A., & Sheikholeslami, R. (2012a). Chaotic 
imperialist competitive algorithm for optimum design of 
truss structures. Structural and Multidisciplinary Optimiza-
tion, 46(3), 355–367. 
https://doi.org/10.1007/s00158-011-0754-4

Talatahari, S., Nouri, M., & Tadbiri, F. (2012b). Optimization of 
skeletal structural using artificial bee colony algorithm. In-
ternational Journal of Optimization in Civil Engineering, 2(4), 
557–571.

Wang, G.-G., Gandomi, A. H., Zhao, X., & Chu, H. C. (2016). 
Hybridizing harmony search algorithm with cuckoo search 
for global numerical optimization. Soft Computing, 20(1), 
273–285. https://doi.org/10.1007/s00500-014-1502-7

Yang,  X.-S. (2010). A new metaheuristic bat-inspired algo-
rithm. In J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, &  
N. Krasnogor (Eds.), Nature inspired cooperative strategies for 
optimization (NICSO 2010). Studies in computational intelli-
gence: Vol. 284 (pp. 65–74). Springer. 
https://doi.org/10.1007/978-3-642-12538-6_6

Yıldız,  A. R., & Erdaş,  M. U. (2021). A new Hybrid Taguchi-
salp swarm optimization algorithm for the robust design of 
real-world engineering problems.  Materials Testing,  63(2), 
157–162. https://doi.org/10.1515/mt-2020-0022

Yıldız, B. S., Yıldız, A. R., Pholdee, N., Bureerat, S., Sait, S. M., 
& Patel, V. (2020a). The Henry gas solubility optimization al-
gorithm for optimum structural design of automobile brake 
components. Materials Testing, 62(3), 261–264. 
https://doi.org/10.3139/120.111479

Yıldız, B. S., Yıldız, A. R., Albak, E. İ., Abderazek, H., Sait, S. M.,  
& Bureerat, S. (2020b). Butterfly optimization algorithm for 
optimum shape design of automobile suspension compo-
nents. Materials Testing, 62(4), 365–370. 
https://doi.org/10.3139/120.111492

Yıldız, A. R., Özkaya, H., Yıldız, M., Bureerat, S., Yıldız, B. S., & 
Sait, S. M. (2020c). The equilibrium optimization algorithm 
and the response surface-based metamodel for optimal struc-
tural design of vehicle components. Materials Testing, 62(5), 
492–496. https://doi.org/10.3139/120.111509

Yıldız, A. B. S., Pholdee, N., Bureerat, S., Yıldız, A. R., & Sait, S. M.  
(2020d). Sine-cosine optimization algorithm for the con-
ceptual design of automobile components.  Materials Test-
ing, 62(7), 744–748. https://doi.org/10.3139/120.111541

https://doi.org/10.1007/s11709-019-0523-9
https://doi.org/10.1007/s00158-011-0754-4
https://doi.org/10.1007/s00500-014-1502-7
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1515/mt-2020-0022
https://doi.org/10.3139/120.111479
https://doi.org/10.3139/120.111492
https://doi.org/10.3139/120.111541


304 M. S. Es-Haghi et al. Enhanced teacher-learning based algorithm in real size structural optimization

Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R., & Sait, S. M. 
(2021a). Robust design of a robot gripper mechanism using 
new hybrid grasshopper optimization algorithm. Expert Sys-
tems, 38(3), e12666. https://doi.org/10.1111/exsy.12666

Yildiz, B. S., Pholdee, N., Bureerat, S., Yildiz, A. R., & Sait, S. M.  
(2021b). Enhanced grasshopper optimization algorithm using 
elite opposition-based learning for solving real-world engi-
neering problems. Engineering with Computers. 
https://doi.org/10.1007/s00366-021-01368-w

Yıldız, B. S., Pholdee, N., Bureerat, S., Erdaş, M. U., Yıldız, A. R., 
& Sait, S. M. (2021c). Comparison of the political optimiza-
tion algorithm, the Archimedes optimization algorithm and 
the Levy flight algorithm for design optimization in indus-
try. Materials Testing, 63(4), 356–359. 
https://doi.org/10.1515/mt-2020-0053

APPENDIX

Table A1. The design variables value in ETLBO

Numbers Section Frequency
(1119–1152) PIPE1.5 in 34
(1–43), (212–357), 714, (771–937), (944–1070), (1099–1107), (1109–1112) PIPE5.0 in 497
(44–77), (117–192), (382–399), (520–556), (564–596), (684–713), (1071–1098), 1108 PIPE4.0 in 257
(78–116), (358–381), (400–442), (462–519), (715–770), (938–943), (1113–1118) PIPE3.0 in 232
(205–211), (443–461), (557–563), (597–683) PIPE2.5 in 120
(193–204) PIPE2.0 in 12

Yıldız,  B. S., Patel,  V., Pholdee,  N., Sait,  S. M., Bureerat,  S., & 
Yıldız, A. R. (2021d). Conceptual comparison of the ecogeog-
raphy-based algorithm, equilibrium algorithm, marine preda-
tors algorithm and slime mold algorithm for optimal product 
design. Materials Testing, 63(4), 336–340. 
https://doi.org/10.1515/mt-2020-0049

Zambon,  I., Vidovic,  A., Strauss,  A., Matos,  J., & Amado,  J. 
(2017). Comparison of stochastic prediction models based on 
visual inspections of bridge decks. Journal of Civil Engineering 
and Management, 23(5), 553–561. 
https://doi.org/10.3846/13923730.2017.1323795

https://doi.org/10.1111/exsy.12666
https://doi.org/10.1007/s00366-021-01368-w
https://doi.org/10.1515/mt-2020-0053
https://doi.org/10.1515/mt-2020-0049
https://doi.org/10.3846/13923730.2017.1323795

