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Abstract. Integrated Project Delivery (IPD) is regarded as an effective project delivery method that can deal with the chal-
lenge of the rapid development of the architecture, engineering, and construction (AEC) industry. In the IPD team, the 
alliance profit is not distributed fairly and effectively due to uncertainty, preventing the achievement of the IPD project 
goals. This study focuses on optimizing the profit distribution among stakeholders in IPD projects and uses quadratic 
programming models to solve fuzzy cooperative games in the IPD. A payoff function is used in the fuzzy alliance to de-
termine the characteristics of the interval-valued fuzzy numbers, and different weights of the alliance and the efficiency 
of the player’s participation in the IPD are considered in the profit distribution. A case study is conducted, and the results 
of the proposed method are compared with those of crisp cooperative games. The results show that the fuzzy cooperative 
game increases the profit of participants in IPD projects. It is more practical to use weight fuzzy cooperative games than 
crisp games to express imputation. Moreover, the quadratic programming models and methods result in a fair and efficient 
profit distribution scheme in IPD projects.

Keywords: profit distribution, integrated project delivery, fuzzy cooperative game, weight of alliance, interval-valued fuzzy 
numbers, quadratic programming.

Introduction

As the AEC industry has grown, the more complex and 
expensive, traditional project organization has caused 
cause waste, increased cost and time, and led to more ad-
versarial relationships, resulting in projects often failing to 
deliver the results that owners expect. Traditional project 
design and construction delivery methods are segmental. 
Tradition projects involve “siloed” structures with rigid 
hierarchies. Construction Management Association of 
America [CMAA] (2010), Ernst and Young (2014) sur-
veyed 365 industrial projects and found that about 64% 
of them were faced with the cost overrun and 73% were 
delayed. Sixty-five per cent of project failures are due to 
soft aspects, such as personnel, organization, and govern-
ance. Complex and large-scale projects are characterized 
by substantial uncertainty, complexity, multiple work pro-
cesses, and the interaction of project participants.

In recent years, the emergence of relational project de-
livery arrangements (IPD and alliance contracts) has rep-
resented a paradigm shift because risk-sharing rather than 
risk transfer occurs, which changes the traditional roles 

and relationships of the key stakeholders in the projects. 
This occurrence has increased project team cooperation 
and integration, optimized the use of various resources 
of the project, and changed the fragmented state of each 
stage in the traditional delivery mode. Thus, the project 
delivery concept has emerged, creating a high level of trust 
and open communication between participants essential 
for the success of the project. Participants in IPD projects 
(i.e., owners, architects, and builders) have estimated the 
value provided by IPD, including efficiency, cost manage-
ment, superior results, and flexibility (Boodai, 2014). IPD 
encourages all participants to maximize project perfor-
mance through positive behaviors. By eliminating behav-
iors that hinder creativity and collaboration, the goals of 
each participant are aligned with the project goals, and 
actions that add value to the project are encouraged (Ash-
craft, 2012). Conceptually, both the alliance and IPD are 
committed to uniting all participants based on the com-
mon goals, sharing risks and profits.
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Research by the American Management Association 
has shown that collaboration can increase the profits for 
all supply chain partners by up to 3% (Khalfan & Mc-
Dermott, 2006). Long et al. (2009) stated that the depen-
dence of participants on the alliance is an essential factor 
affecting the profit distribution. Meade and Lilesa (1997) 
proposed that scientific and fair profit distribution is the 
prerequisite for the normal operation and efficient devel-
opment of the dynamic alliance, as well as a critical guar-
antee for the alliance members to achieve complementary 
resources and obtain profits. Profit distribution is a con-
cern of all participants in the cooperative alliance and IPD 
and affects the satisfaction, enthusiasm of all parties and 
the success of the alliance and the IPD implementation. 
However, there is a lack of research on the profit distribu-
tion methods of the IPD mode in the AEC industry.

The objective of this study is to maximize the profit of 
an IPD team and to distribute the profits with efficiency 
and fairness. The main challenge is to determine the profit-
sharing model, which should be fully consistent with the 
agreement. A weight fuzzy cooperative game approach is 
used, and a quadratic programming model is established 
combining the feathers of the IPD. A case study is used to 
demonstrate the validity of the proposed approach. The 
results are expected to provide a reference for the profit 
distribution in IPD projects.

The remainder of this paper is arranged as follows. The 
first section is the literature review. Section 2 is devoted to 
preliminaries on cooperative games, fuzzy sets, a-cut sets 
of triangular fuzzy numbers (TFNs), and interval-valued 
fuzzy numbers. The fuzzy profit distribution model based 
on alliance weights and its solution are introduced in Sec-
tion 3. The model is used to ensure fair profit distribution 
to the IPD team. Furthermore, the quadratic program-
ming model is modified after considering the efficiency 
of the fuzzy cooperative games. In Section 4, the proposed 
method is illustrated with a case study and is compared 
with other methods to demonstrate its validity, applica-
bility, and superiority. The discussion is in Section 5 and 
conclusions at the end of the paper.

1. Literature review 

In recent years, profit distribution has become a research 
hotspot in IPD related fields, such as supply chain and 
enterprise cooperation alliance. The same research con-
cepts and methods have been used in these different 
fields. Quantitative research method of profit distribution 
is mainly to study the cooperative game situation of all 
parties by establishing mathematical model and analyzing 
the factors affecting profit distribution. Researchers have 
focused primarily on two perspectives: cooperative game 
theory and fuzzy mathematical theory.

Game theory provides a rigorous mathematical ap-
proach to evaluate and predict stakeholders’ interactions. 
Cooperative game theory is used to analyze the situations 
in which a set of participants bargain to distribute the 
profit obtained from their collaboration. The resulting al-

location is expressed as a payoff vector whose coordinates 
are the payoffs allocated to the participants. A game with a 
set of participants is modeled by a characteristic function 
that distributes the profit to each subset of participants’ al-
liance so that the alliance members can obtain profit in the 
cooperate game. The cooperative game is a positive-sum 
game. During the game, the profit of one-party increases, 
whereas the profit of the other party is not threatened. 
Therefore, the overall profit will increase in the coopera-
tive project. When multiple parties cooperate, the result-
ing profit exceeds the profits of each individual party. The 
solution of the cooperative game or the payoff vector is 
the distribution method of the cooperative alliance’s profit. 
The solutions of cooperative games include the stable set, 
core, and distribution method. The most common solu-
tion of a cooperative game is the distribution method rep-
resented by the Shapley value.

Myerson (1997) analyzed the structure of cooperative 
games with the graph theory and used the Shapley value 
to assess the fair distribution and characteristic function of 
the profit of alliance distribution. Jia and Yokoyama (2003) 
discussed the profit distribution of an energy manufac-
turer alliance using the core and the nucleolus solution of 
the cooperative game. Teng et al. (2017) used the coopera-
tive game method to analyze the profit distribution in the 
IPD project. They regarded the alliance in the IPD as a 
crisp alliance and adopted risk-sharing of the four stake-
holders to modify the Shapley value for profit distribution. 
Pishdad-Bozorgi and Srivastava (2018) analyzed the rela-
tive effectiveness of risk and reward sharing arrangements 
in different IPD standard contracts on team cooperation 
motivation. Wang and Yuan (2019) solved the optimal so-
lution set of a project’s net income and improved overall 
satisfaction by combining a multi-objective profit distribu-
tion model with particle swarm optimization algorithm. 
Lin and Wang (2019) established a dynamic incentive 
model framework and applied the Hamilton-Jacobi-Bell-
man equation to solve Nash non-cooperative game using 
stochastic differential game theory. Liu and Cheng (2020) 
constructed that the asymmetric the Nash negotiation 
model to modify the measurement method of the factors 
affecting the income distribution to make it more con-
sistent with the characteristics of dynamic alliances. Eissa 
et al. (2021) developed a conceptual framework using the 
Shapley value to address the marginal contribution of the 
participating parties not only for investment parties.

In addition to game theory, fuzzy mathematical theory 
is also commonly used to investigate profit distribution. 
After the fuzzy set theory was successfully applied to a 
controller system, it has been applied to other fields such 
as economics and management. Most of these applications 
use fuzzy numbers to describe the ambiguity and impre-
cision of data, which can be seen as an extension of real 
numbers. It is impossible to estimate the cost paid by the 
partners and the profits that should be obtained in the 
cooperation accurately due to non-determinacy factors, 
such as the level of effort and the degree of participation 
of the participants, the supervision mechanism, and the 
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reward and punishment mechanism. This problem is an 
uncertainty problem and can be solved using fuzzy math-
ematics. The object of the fuzzy cooperative game is the 
maximization of profits of the limited rational players in 
a cooperative alliance and the method of efficient and fair 
profit distribution.

Alparslan-Gök et al. (2009) expanded the classical two-
person cooperative game theory and put forward the solu-
tion concepts and methods of the interval-valued two-per-
son cooperative game theory. Li (2012) considered fuzzy 
matrix games in which the players’ payoffs were expressed 
TFNs and players’ pure and mixed strategies themselves 
were crisp. Han and Li (2016) used a continuous ordered 
weighted average operator and fuzzy cut-set method to 
convert an intuitionistic fuzzy alliance cooperative game 
with TFNs into a cooperative strategy of the intuitionistic 
fuzzy alliance at a confidence level and obtained the solu-
tions of the cooperative games. Su and Yang (2018) intro-
duced the confidence level of the λ-cut set and proposed 
a fuzzy average tree solution allocation model for payoff 
fuzzy graph cooperative games with interval characteris-
tics. Ye et al. (2019) proposed a method for calculating the 
proportional residual distribution of TFNs in cooperative 
games according to the defined class alliance monotonici-
ty condition. Su (2020) proposed a method of solving par-
ticipants profit distribution cooperation countermeasures 
based on the TFNs in satisfying degree in entrepreneurial 
team. Abraham and Punniyamoorthy (2021) used three 
methods proposed to reduce the interval, i.e., the support 
of the fuzzy numbers, a-cut sets, and the expected interval 
method to the precise interval.

These aforementioned studies proposed different 
methods of profit distribution and investigated the impact 
of profit distribution on the performance of a task or proj-
ect, showing the importance of profit distribution to all 
participants in the project to achieve good results. These 
research results can be used in subsequent research on the 
profit distribution in the IPD projects. However, several 
limitations of the literature require consideration. First, 
some researchers directly implanted the profit distribution 
methods in the supply chains and enterprise cooperation 
alliances in the AEC industry. They did not fully consider 
the characteristics of the AEC industry, weakening the 
impact of the heterogeneity of the construction enterprise 
on the profit distribution in a project. The completion of 
a project, the owner, the architect, the builder, and the 
supplier, and so on are indispensable. They form a grand 
alliance to participate in profit distribution. At the same 
time, studies on project profit distribution in IPD projects 
typically considered only the fairness of profit distribution 
but not its efficiency. Thus, the profit distribution did not 
reach the Pareto optimal. In addition, most researchers 
analyzed crisp cooperative games and rarely used fuzzy 
values to evaluation profit distribution in the IPD proj-
ects. In practice, the level of effort, the degree of participa-
tion, and the supervision mechanism of each participant 
result in uncertainty in profit distribution. Moreover, few 
researchers used interval-valued fuzzy numbers to analyze 
profit distribution in IPD.

Although the practical effect of the profit distribu-
tion in IPD is highly significant, there are relatively few 
theoretical and empirical research studies on this topic. 
In particular, few studies used fuzzy value considering the 
efficiency of each player on the profit distribution in IPD 
projects. The success of the IPD model is inseparable from 
a fair profit distribution mechanism. IPD emphasizes the 
efficient cooperation of the alliance members, where each 
participant is independent with their own interests. The 
consideration of the alliance weights and fair profit distri-
bution is part of the smooth implementation of IPD. This 
approach can provide a new perspective, enrich the theo-
retical research of profit distribution in IPD projects, and 
promote IPD and efficient, fair, and healthy development 
of the AEC industry. IPD has the advantages of resource 
aggregation and cooperation among construction project 
participants. Thus, it is bound to be more widely used in 
the future.

This paper aims to provide a framework to analyze 
profit distribution in IPD projects. Interval-valued fuzzy 
numbers are introduced to investigate the profit distribu-
tion in IPD project using a cooperative game. We propose 
a method based on a quadratic programming model of 
interval-valued fuzzy numbers. The method considers the 
importance of the alliance and the efficiency of partici-
pants to distribute profits in IPD projects. The results of 
the proposed method are compared with those of crisp co-
operative games using a case study. This research provides 
a new effective fuzzy cooperative game method and can be 
extended to provide a solution for IPD profit distribution.

2. Preliminaries

A cooperative game is devoted to solve the problem of the 
cooperation among multiple players and achieve a reason-
able distribution of jointly obtained profits. It establishes 
a mechanism of mutual trust and commitment through 
agreements, negotiations, and information exchanges to 
achieve the Pareto optimum of the union. The coopera-
tive game has the following four key features: 1) Common 
interests. These are the prerequisite for cooperation and 
alliance; 2) Information exchange. The cooperative game 
emphasizes the smooth exchange of information between 
participants; 3) Voluntariness, equality, and mutual profit; 
4) A mandatory contract. The contract resulting from ne-
gotiation in the cooperative game is legally binding.

In IPD projects, all participants voluntarily and equally 
ally with a common goal and share common interests in 
the cooperative game. They can use the information-shar-
ing platform provided by BIM and other technologies to 
communicate smoothly and share risks/rewards. The core 
players are exempted from responsibility and share profits. 
There is a highly trusted cooperative relationship. At the 
start of an IPD project, the owner and the core team must 
agree on a legal structure for the core team, such as mul-
tiple independent contracts, a single multi-party contract, 
a joint venture, or a limited liability company (CMAA, 
2010). In this mode, a reasonable profit distribution is not 
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only the key condition of the smooth implementation but 
also an important condition to measure the success of the 
project. The profit distribution strategy among enterprises 
in IPD projects is the result of rational choice in the coop-
eration and competition among players. In summary, the 
alliance of project participants in IPD projects is a typical 
cooperative game problem.

The profit distribution is manifested in the continu-
ation of the production or exchange in practical activi-
ties. It is an economic operation in which social products 
are divided among different stakeholders. During project 
implementation, several independent economic entities 
form a joint entity. Therefore, all participants in the alli-
ance are the subject of profit distribution. A Cooperative 
game can be regarded as a complete set of cooperative 
behaviors, which not only achieve the basic income goals 
of all parties, but also produce some cooperative “surplus”. 
As a consequence, the concept of a cooperative game is 
the reasonable distribution of this “surplus” and the ap-
portioning of the cost of cooperation.

The profit distribution system consists of a cost com-
pensation and an incentive bonus. Cost compensation is 
the remuneration for the services or labor provided by the 
IPD stakeholders through negotiation, including direct 
and indirect costs. The incentive bonus distribution is as-
sociated with the IPD goals, including target achievement 
awards and incentive awards, which are the core content 
of the profit distribution system. The focus of profit distri-
bution in this study is the incentive bonus.

It first introduces some preliminaries of cooperative 
games, such as TFNs, A-cut sets, and interval-valued fuzzy 
numbers, and then establishes a cooperative game pre-al-
location model that considers fairness and alliance weight, 
which is solved by the least-squares method in quadratic 
programming to get the preliminary profit distribution. 
On this basis, a modified quadratic programming model 
is established by considering the validity constraints. The 
Lagrange multiplier method is used to solve the model to 
obtain the revised profit distribution.

2.1. Crisp cooperative game 

In the cooperation of the members of the enterprise alli-
ance, the set of all participating enterprises is N = {1, 2, 
..., n}. A crisp alliance X is a subset of N, and the class of 
all crisp alliances of X is denoted by P(X) (Shapley, 1953). 
X and Y are disjoint crisp alliances. The X’s payoff value

: ( )v P X +→ satisfies:

( ) 0v ∅ = ;  (1)

( ) ( )( )v X Y v X v Y≥ + , ∀X, Y ∈ P(X), X Y =∅ ,  (2)

where + is the set of positive real numbers. G0(N) de-
notes the crisp superadditive cooperative games. If a crisp 
cooperative game (N, v) satisfies the above two conditions, 
we define it as a convex cooperative game. Condition (2) 
indicates that the expected return (the payoff function) 
v of the cooperative game alliance formed by the enter-

prise is a monotonous convex function with superaddi-
tivity. The profit distribution of the enterprise alliance is 
obtained by solving the cooperative game (N, v).

An imputation for a crisp cooperative game v ∈ G0 

(N) is a vector X = (x1, ..., xn) satisfying: (i) 
1

( )
n

i
i

x v N
=

=∑ ,  

(ii) xi ≥ v ({i}), i = 1, 2, …, n. The condition (i) is termed 
the efficiency property, and (ii) is called the individual 
rationality property (Yu & Zhang, 2019). Thus, the impu-
tation is a vector describing the efficiency property and 
individual rationality. Let I(N, v) represent the sets of all 
the imputation of the crisp game v ∈ G0 (N), and X(N, v) 
denote the set of solutions verifying the efficiency prop-
erty, i. e.,

( , ) { | ( ), ({ }), }i i
i N

I N v x x v N x v i i N+

=

= ∈ = ≥ ∀ ∈∑ ,

 ( , ) { | ( )}i
i N

X N v x x v N+

=

= ∈ =∑ .  (3)

2.2. Triangular fuzzy numbers and α-cut sets

In this section, the basic definitions of fuzzy set theory are 
reviewed. In most applications fuzzy numbers describe the 
fuzziness and imprecision of data. They can be regarded as 
a generalization of real numbers.

Let X denote a universal set. The fuzzy subset M  of 
X is defined by its membership function Mµ 

: [0,1]X →  
which assigns a real number Mµ 

(X) in the interval [0, 
l] to each element x X∈ , where the value of Mµ  (X) at x 
shows the degree of membership of x in M  (Dubois & 
Prade, 1980).

For any [0,1]a∈ , we define the a cut-set of M  as 
{ ( ) , }MM x x x Xa = µ a ∈



  �, where a is the confidence level 
or confidence. If M  is a normal fuzzy set, there exists x ∈ X 
so that ( )M xµ



= l. In the theory and application of fuzzy 
sets, it is often assumed that all fuzzy sets meet the require-
ments of regularity. Otherwise, they can be simply trans-
formed. Therefore, the fuzzy sets discussed in this study 
are assumed to be regular fuzzy sets. For any [0,1]a∈  , the 
a cut-set of Ma

  is a bounded closed interval on the real 
number + , which is denoted as [ ( ), ( )]l rM a x a xa a a= .

We denote ( )MΓ  as the entire fuzzy set on the real 
number + [0,1]→ . Let M  be a TFN, and its member-
ship function is denoted as ( )M xµ



. The triangular fuzzy 
membership function of  M can be expressed as: 

     

if
if
if

( ) / ( )
1( )
( ) / ( )
0 else

l m l l m

m

M r r m m r

x a a a a x a
x ax

a x a a a x a

 − − ≤ <
 =µ =  − − < ≤




, 

 

(4)

where al ≤ am ≤ ar. The membership function is triangu-
lar, and the TFN is often abbreviated as  a = (al, am, ar). al 
and ar represent the lower and upper limits of the fuzzy 
number  M respectively. am is the mean of  M , which is 
the most probable value. When al = am = ar, the TFN  a = 
(al, am, ar) degenerates into a real number. A real number 
is a special form of a TFN.
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Arithmetical operations and the a-cuts of the TFNs 
are used. Let a  = (al, am, ar) and  b = (bl, bm, br) be two 
arbitrary non-negative TFNs; then

               ( , , )l l m m r ra b a b a b a b⊕ = + + +

                    (5)

and        ( , , ) if 0
( , , ) if 0

l m r

r m l
a a aa
a a a

 λ λ λ λ ≥λ =  λ λ λ λ <
 .

 
                           (6)

Equations (5) and (6) indicate that the sum of the ar-
bitrary non-negative TFNs and the product of an arbitrary 
real number and an arbitrary non-negative TFN are TFNs.

It can be derived from Eqn (4) that ( ) (1 )L m la a aa = a + − a 
( ) (1 )L m la a aa = a + − a  and  ( ) (1 )R m Ra a aa = a + − a . In particu-

lar, (1) { ( ) 1}Ma x x= µ


  �= [a L(1), aR (1)] = [am, am] = am 

and (0) { ( ) 0}Ma x x= µ


  �=[aL(0), aR(0)] = [al, ar].
According to the operations over intervals (Zhao & 

Liu, 2018), it follows that:

[aL(a), aR(a)] = a[am, am] + [1 – a] [al, ar] = 
a a (1) + [1 – a] a (0),                                (7)

which means that any a-cut set of a TFN can be directly 
obtained from its 1-cut and 0-cut, as depicted in Figure 1.

2.3. Interval-valued fuzzy numbers

The fuzzy cooperative game is represented by an ordered 
binary group (N, v), where {N = 1, 2, ..., n} represents the 
set of all participants, and v is the characteristic value (or 
characteristic function) of the fuzzy alliance denoted by 
TFNs. v(S) is a TFN for any alliance S ⊆ N. Consequently, 
v(S) = ( , , )l m r

S S Sa a a , where l
Sa ≤ m

Sa ≤ r
Sa  and l

Sa > 0. Moreo-
ver, we use a quadratic programming model and solve the 
cooperative games with characteristic values expressed by 
the TFNs based on the concept of the a-cut sets.

As stated before, for any a∈[0,1], the a-cut sets of the 
payoffs v(S) = ( , , )l m r

S S Sa a a  can be expressed as v(S)(a) =  
[ a m

Sa + (1 – a) l
Sa , a m

Sa + (1 – a) r
Sa ] (Babbar et al., 2013). 

For simplicity, a m
Sa + (1  – a) l

Sa  and a m
Sa + (1  – a) r

Sa  
are abbreviated as ( )Lv S and ( )Rv S  respectively, i.e., v(S) 
(a) = [ ( )Lv S , ( )Rv S ]. For the TFN-type alliance values in 
the fuzzy cooperative games, each player has a TFN-type 
distribution xi (a) = ( , , )l m r

i i ix x x , i ∈ N, in the grant alli-
ance. xi(a) use a TFN-typed a-cut sets to express xi(a) =  
[ ( )L

ix a , ( )R
ix a ]  = [a m

ix + (1  – a) l
ix , a m

ix + (1  – a) r
ix ].  

Let x(S) (a)  = ( )i
i S

x
∈

a∑ , which denotes the TFN-type 

a-cut set of all players in the alliance. We use an interval 
value representation, x(S)(a) = [ ( )L

i
i S

x
∈

a∑ , ( )R
i

i S

x
∈

a∑ ].

3. Profit distribution in the fuzzy  
cooperative game alliance

3.1. Cooperative game pre distribution  
model considering alliance weight

Methods for solving the fuzzy cooperative games, whose 
payoff value is represented as interval-valued fuzzy num-
bers, do not consider the alliance weights. This study con-
siders the alliance weights to reflect the influence of the 
importance of different alliances on the allocation scheme. 
We employ interval-valued fuzzy numbers to represent the 
alliance and solve the model. This approach is called the 
weight fuzzy distribution model, which is defined in Eqn 
(8). It is solved by determining the distribution of the in-
terval-valued fuzzy numbers for each player participating 
in the alliance. 

We denote |S| as the number of players in the alli-
ance. w(s) is the weight of the alliance S ⊆ N, which w(s) 
is a real number. In practical situations, the more play-
ers an alliance has, the more influence the alliance has. 
Thus, we assume that w(s) is determined by the number 
of players in the alliance. Specifically, if |S| = n, then the 
weight of this alliance is n times the weight of the alli-
ance of |S|  = 1. Thus, in a cooperative game composed 
of n players, the weight of |S|  = i, (i  = 1, 2, ..., n) is 

1 2 3
( )=

2 3 n
n n n n

is
C C C nC

w
+ + + +

, and ( ) 1
S N

s
⊆

w =∑ .

We use the least squares method to solve the convex 
function optimization problem because the Euclidean 
distance is easy to calculate, and the characteristic prop-
erties remain unchanged after the transformation of dif-
ferent representation domains. The similarity between the 
two fuzzy numbers v (S) (a) and x(S)(a) considering the 
weight of the alliance is measured by the Euclidean dis-
tance.

( ( )( ), ( )( )) ( ( )( ( ( )L
i

S N i S

D x S v S S x
⊆ ∈

a a = w a −∑ ∑

2 2 1/2( )( )) ( ( ( ) ( )( )) ) .L R R
i

i S

v S x v S
∈

a − a − a∑
               

(8)

The squared loss function is:
2( ( )) ( ( ( )( ), ( )( )))

S N

L x D x S v S
⊆

a = a a =∑ 

2 2( )( ( ( ) ( )( )) ( ( ( ) ( )( )) ,L L R R
i i

S N i S i S

S x v S x v S
⊆ ∈ ∈

w a − a − a − a∑ ∑ ∑
2 2( )( ( ( ) ( )( )) ( ( ( ) ( )( )) ,L L R R

i i
S N i S i S

S x v S x v S
⊆ ∈ ∈

w a − a − a − a∑ ∑ ∑
where x (a) = (x1(a), x2(a), …, xn(a))T is the vector of 
the a-cut set of the TFN-typed imputations for all players 
in the grand alliance N. L(x(a)) is a type of squared loss 

Figure 1. Any a-cut set of a TFN  a = (al, am, ar)

m
(x
)

M~

0 La (a)La ma Ra (a) ra x

a

1
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functions. The squared loss is the sum of the squares of 
the difference between the prediction and the label, i.e., 
the sum of the squared residuals. Our goal is to minimize 
this objective function. The profit distribution of all par-
ticipants in the optimized a-cut set can be expressed as 
follows:

min{ ( ( )) ( )[( ( )L
i

S N i S

L x S x
⊆ ∈

a = w a −∑ ∑
2 2( )( )) ( ( ) ( )( )) ].L R R

i
i S

v S x v S
∈

a + a − a∑
 

(9)

We take the partial derivative of Eqn (9) and set it to 
0 to obtain the regular equation:

: :

: :

( ) ( ) ( ) ( )( ) ( 1,2, , )

.
( ) ( ) ( ) ( )( ) ( 1,2, , )

L L
i

S N j S i S S N j S
R R
i

S N j S i S S N j S

S x S v S j n

S x S v S j n
⊆ ∈ ∈ ⊆ ∈

⊆ ∈ ∈ ⊆ ∈

 w a = w a =

 w a = w a =


∑ ∑ ∑
∑ ∑ ∑





 (10)

We expand the above Eqn (10) respectively to obtain 
the following two equations:

11 1 12 2 13 3 1
:1

21 1 22 2 23 3 2
:2

1 1 2 2 3 3
:

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
;

( ) ( ) ( ) ( ) ( ) ( )( )

L L L L L
n n

S N S
L L L L L

n n
S N S

L L L L L
n n n nn n

S N n S

a x a x a x a x S v S

a x a x a x a x S v S

a x a x a x a x S v S

⊆ ∈

⊆ ∈

⊆ ∈

 a + a + a + + a = w a



a + a + a + + a = w a


 a + a + a + + a = w a


∑
∑

∑









11 1 12 2 13 3 1
:1

21 1 22 2 23 3 2
:2

1 1 2 2 3 3
:

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )
.

( ) ( ) ( ) ( ) ( ) ( )( )

R R R R R
n n

S N S
R R R R R

n n
S N S

R R R R R
n n n nn n

S N n S

a x a x a x a x S v S

a x a x a x a x S v S

a x a x a x a x S v S

⊆ ∈

⊆ ∈

⊆ ∈

 a + a + a + + a = w a



a + a + a + + a = w a


 a + a + a + + a = w a


∑
∑

∑









According to the permutation and combination theo-
ry, we can calculate the following formula:

(1) When i = j( , {1,2,... }i j n∈ ), 
0 1 2 2 1

1 1 1 1 1(1) (2) (3) ( 1) ( )n n
ij n n n n na C C C n C n C− −

− − − − −= w +w +w + +w − +w

 0 1 2 2 1
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

ij n n n n na C C C n C n C− −
− − − − −= w +w +w + +w − +w ; 

(2) When i ≠ j( , {1,2,... }i j n∈ ),
0 1 2 3 2

1 1 1 1 1(1) (2) (3) ( 1) ( )n n
ij n n n n na C C C n C n C− −

− − − − −= w +w +w + +w − +w

 0 1 2 3 2
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

ij n n n n na C C C n C n C− −
− − − − −= w +w +w + +w − +w .

Denote 0 1 2 2 1
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

n n n n na C C C n C n C− −
− − − − −= w +w +w + +w − +w

0 1 2 2 1
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

n n n n na C C C n C n C− −
− − − − −= w +w +w + +w − +w ,                                                                                                                                                    

     0 1 2 3 2
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

n n n n nb C C C n C n C− −
− − − − −= w +w +w + +w − +w

0 1 2 3 2
1 1 1 1 1(1) (2) (3) ( 1) ( )n n

n n n n nb C C C n C n C− −
− − − − −= w +w +w + +w − +w .

Then, , ( ; , {1,2, , })
, ( ; , {1,2, , })ij

a i j i j na b i j i j n
= ∈=  = ∈





.

Denote 1 2( ) ( ( ), ( ) ( ))L L L L T
nx x x xa = a a a ,

1 2( ) ( ( ), ( ) ( ))R R R R T
nx x x xa = a a a ,

:1 :2 :

( )( ), ( )( ), , ( )( )( ) ,
TL L LL

S N S S N S S N n S

v S v S v SB
⊆ ∈ ⊆ ∈ ⊆ ∈

 a a aa =  
 
∑ ∑ ∑

:1 :2 :

( )( ), ( )( ), , ( )( )( ) ,
TL L LL

S N S S N S S N n S

v S v S v SB
⊆ ∈ ⊆ ∈ ⊆ ∈

 a a aa =  
 
∑ ∑ ∑

:1 :2 :

( )( ), ( )( ), , ( )( )( )
TR R RR

S N S S N S S N n S

v S v S v SB
⊆ ∈ ⊆ ∈ ⊆ ∈

 a a aa =  
 
∑ ∑ ∑

:1 :2 :

( )( ), ( )( ), , ( )( )( )
TR R RR

S N S S N S S N n S

v S v S v SB
⊆ ∈ ⊆ ∈ ⊆ ∈

 a a aa =  
 
∑ ∑ ∑

and ( )ij n n

n n

a b b
b a bA a

b b a
×

×

 
 

= =  
  
 





   



.

Thus, Eqn (10) can be expressed in the following ma-
trix format:

( ) ( )
( ) ( )

L L

R R
Ax B
Ax B

 a = a


a = a
. (11)

According to the matrix multiplication algorithm, the 
lower limit of the optimal distribution vector of the play-
ers in the alliance can be solved using Eqn (11). The upper 
limit is determined using Eqn (12):

1

1
( ) ( )
( ) ( )

L L

R R
x A B
x A B

−

−

 a = a


a = a
. (12)

Therefore, we can obtain the profit distribution of 
all players in the interval-valued fuzzy numbers, which 
can be expressed as ( ) [ ( ), ( )]L R

i i ix x xa = a a  ( 1,2, , )i n=   . 
Then, we can calculate xi(0) and xi(1). According to the 
fuzzy sets’ representation theorem (Li, 2012). The inter-
val-valued fuzzy numbers imputation of player i ∈ N can 
be denoted by ( , , )l m r

i i i ix x x x=   = ( (0), (1), (0)) ( (0), (1), (0))L L R L R R
i i i i i ix x x x x x= 

( (0), (1), (0)) ( (0), (1), (0))L L R L R R
i i i i i ix x x x x x= , where (1) (1)L R

i ix x= .

3.2. Redistribution considering alliance  
weights and effectiveness

In Section 3.1, a fuzzy profit distribution model was estab-
lished, and the quadratic programming model was solved 
to obtain the profit distribution of the cooperative game, 
where the payoff value is expressed as an interval-valued 
fuzzy number. This approach ensures that the profit dis-
tribution is fair. 

The concept of solving distribution problems needs 
to secure the fairness of its solution, because the solution 
concept can only be successfully applied in practice if all 
participants accept the solution as fair. The profits of a 
cooperation must be distributed completely. This entails 
that the profits cannot be preserved and distributed in the 
future, nor can there be more distributed than the coop-
eration has collectively obtained. Consequently, the sum 
of all payoffs must equal the collectively earned profits. 
This is called efficiency (Jene & Zelewski, 2014). 

In the following, we modify the above model by con-
sidering the efficiency of the cooperative game so that the 
sum of the profits obtained by the players participating in 
the cooperative alliance is equal to the profit of the grand 
alliance (Zhao & Liu, 2018). We combine Eqns (3) and (9) 
to obtain the modified equation:

2 2min{ ( ( )) ( )[( ( ) ( )( )) ( ( ) ( )( )) ]}L L R R
i i

S N i S i S

L x S x v S x v S
⊆ ∈ ∈

a = w a − a + a − a∑ ∑ ∑
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2 2min{ ( ( )) ( )[( ( ) ( )( )) ( ( ) ( )( )) ]}L L R R
i i

S N i S i S

L x S x v S x v S
⊆ ∈ ∈

a = w a − a + a − a∑ ∑ ∑

1

1

( ) ( )( )
s.t. .

( ) ( )( )

n
L L
i

i
n

R R
i

i

x v N

x v N

=

=


 a = a


 a = a


∑

∑
                                  

(13)

We create the Lagrange function by using the Lagrange 
multiplier method as follows:

( ( ), ( ), ( ))L x a λ a µ a =
2( )[( ( ) ( ))L L

i
S N i S

S x v
⊆ ∈

w a − a +∑ ∑
2( ( ) ( )) )R R

i
i S

x v
∈

a − a +∑
( )( ( ) ( ))L L

i
i S

x v
∈

λ a a − a +∑
( )( ( ) ( ));R R

i
i S

x v
∈

µ a a − a∑
( ( ), ( ), ( ))L x a λ a µ a =

2( )[( ( ) ( ))L L
i

S N i S

S x v
⊆ ∈

w a − a +∑ ∑
2( ( ) ( )) ]R R

i
i S

x v
∈

a − a +∑
( )( ( ) ( ))L L

i
i S

x v
∈

λ a a − a +∑
( )( ( ) ( )).R R

i
i S

x v
∈

µ a a − a∑
Then, the a-cut sets of the allocations of all partici-

pants, which represents the solution of the fuzzy coopera-
tive game v with TFN-typed alliance values are the solu-
tion of the quadratic programming model as follows:

min{ ( ( ), ( ), ( ))L x a λ a µ a =

2( )[( ( ) ( ))L L
i

S N i S

S x v
⊆ ∈

w a − a +∑ ∑
2( ( ) ( )) ]R R

i
i S

x v
∈

a − a +∑
( )( ( ) ( ))L L

i
i S

x v
∈

λ a a − a +∑
( )( ( ) ( ))}.R R

i
i S

x v
∈

µ a a − a∑
                                    

(14)

Solving Eqn (14) is similar to solving Eqn (9). We take 
the partial derivatives of ( ( ), ( ), ( ))L x a λ a µ a  in Eq. (14) 
with regard to variables ( )L

ix a , ( )R
ix a , ( )λ a , and ( )µ a , 

respectively and set them as 0. Subsequently, the equa-
tions are transformed into a block matrix to obtain the 
coefficient matrix of the equations. Further, we obtain the 
solution of Eqn (14) as follows:

*

1

*

1

1( ) ( ) ( ( )( ) ( ))
,

1( ) ( ) ( ( )( ) ( ))

n
L L L L

i
i
n

R R R R
i

i

x x v N x e
n

x x v N x e
n

=

=


 a = a + a − a


 a = a + a − a


∑

∑
 

(15)

where * * * *
1 2( ) ( ( ), ( ),... ( ))L L L L T

nx x x xa = a a a , 
* * * *

1 2( ) ( ( ), ( ),... ( ))R R R R T
nx x x xa = a a a .

This analysis indicates that if the effectiveness of the 
fuzzy alliance is considered, the payoff distribution of 
all players expressed by the a-cut sets can be rewrit-
ten as * * *( ) [ ( ), ( )]L R

i i ix x xa = a a  (i  = 1, 2, …, n), which 
*( )L

ix a and *( )R
ix a  can be solved by Eqn (15), respec-

tively. As described in Section 3.2, we use the represen-
tation theorem of the fuzzy sets (Moore, 1979) so that 
the TFN-type imputation of the player i ∈ N can be ex-
pressed as * * * *( , , )l m r

i i i ix x x x=  = * * *( (0), (1), (0))L L R
i i ix x x =

* * *( (0), (1), (0))L R R
i i ix x x .

3.3. Criteria for a successful practical application

The purpose of this section is to examine the criteria con-
ditions for the successful practice of the method presented 
above in IPD project. The following criteria are conditions 
for successful practical application of the cooperative 
game profit distribution:

(1) Efficiency. The sum of all payoffs must equal the 
collectively obtained profits. This has been ex-
plained in Section 3.2 above.

(2) Individual rationality. The payment obtained by 
each player in the cooperative game should not be 
lower than the payoff he gets if he works alone.

(3) Transparency. The profit distribution scheme in 
IPD projects must be easily communicable and 
intelligible to implement for application smoothly. 
Therefore, the method must be sufficiently trans-
parent.

(4) Information sharing. Each collaborative solution 
has different information requirements. If some 
information is not disclosed by some participants, 
it is difficult to ensure the fairness and accuracy of 
the distribution scheme. 

The above four points are consistent with the char-
acteristics of IPD projects. Therefore, the model in this 
paper has strong applicability.

4. Results

4.1. An example case

The case data were obtained from the case sets in IPD pro-
jects summarized by the American Institute of Architects 
[AIA] (2010). As a successful application of IPD, the St. 
Clare Health Centre is a 430,000 ft2 replacement hospi-
tal located in Fenton, Missouri, USA. The health center 
has a tower composed of six floors and 154 beds, with 
an 85000 ft2 medical office building and a 75000 ft2 out-
patient nursing center. The owner (SSM Healthcare), the 
architect (HGA Architects and Engineers), and the builder 
(Alberici Constructors) entered into a tripartite IPD con-
tract using the integrated form of agreement (IFOA) based 
on collaboration and lean methodologies. The architect 
and builder combined their contingencies and are jointly 
responsible for construction errors and design omissions. 
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“Lean partners”, i.e., subcontractors within the shared risk/
reward circle, included mechanical, electrical, and plumb-
ing (MEP), wall and ceiling framing and finish, and fire 
protection. Smaller pieces of the work were bid out tra-
ditionally. According to this agreement, each party must 
treat the other partners equally. We use this case to verify 
the proposed profit distribution model.

4.2. Calculation of distributable  
profits of the alliance

In this case, the core players composed of the owner, the 
architect, and the builder are respectively denoted as play-
er 1, player 2, and player 3. They form a cooperative alli-
ance with three players, and the cooperative game model 
is {N, v}. v(s) is the total payoff of the alliance. In the ex-
ante allocation scheme, it is assumed that the future profit 
is an uncertain random variable and the future costs are 
also the expected cost.

In the traditional delivery mode, such as DBB, DB, 
all participants fulfill their contractual obligations and 
perform the project operation using normal procedures 
when participating in the project, and obtain the average 
profit in the industry. Therefore, in the traditional delivery 
mode, the additional profit allocated to each player is 0, 
that is v ({1}) = v ({2}) = v ({3}) = 0.

In the AIA case, we calculate the real number of the 
expected cost of each project player in this IPD project. 
Since the average profit rate of each industry is a statistical 
value, and the profits of the three participants are uncer-
tain due to the level of effort and the degree of participa-
tion of each participant and the influence of other reward 
and punishment mechanisms, the expected profit value 
can be expressed by interval-valued fuzzy numbers. We 
assume that the accurate expected return calculated from 
the average profit rate of the industry fluctuates by 5%. 
The average profit rate and expected return of the three 
players in the IPD project are listed in Table 1.

All participants in the alliance cooperate closely, ex-
change information smoothly, share resources, and in-
crease their efforts as much as possible to achieve high 
team performance and add value to the alliance and value 
chain. For example, the owner and the architect cooper-
ate initially, communicating and strengthening the coop-
eration in all aspects. This approach optimizes the design 
scheme, shortens the design time, strengthens the man-
agement of milestones effectively, reduces the cost of the 
owner and the whole life cycle cost of the project, and 
improves owner satisfaction.

Through BIM and other information communica-
tion platforms and lean methodologies, all participants 
communicate effectively, minimize design changes and 
rework, reduce waste, reduce cost, ensure quality, speed 
up progress, ensure adherence to the construction period, 
improve work efficiency, and achieve safe and effective 
production.

IPD results in greater efficiencies. The United King-
dom’s Office of Government Commerce [UKOGC] esti-
mated that construction cost savings of up to 30% in the 
cost of construction could be achieved where integrated 
teams promote continuous improvement over a series 
of construction projects. The UKOGC further estimated 
that single projects employing integrated supply teams 
could achieve savings of 2–10% in the cost of construc-
tion (UKOGC, 2007). In a case study of IPD conducted 
by Autodesk Inc., AEC Solutions Division Headquarters, 
the contract established an Incentive Compensation Layer 
(ICL) in which the architects’ and builders’ anticipated 
profit was put at risk (AIA, 2010). If the profits were ex-
ceeded in measurable ways, the firms were eligible for ad-
ditional compensation. The ICL could be adjusted from 
minus 20% to plus 20% depending on whether the project 
goals were met or exceeded.

Therefore, the expected return of single members of a 
multi-member alliance is added to increase the percent-
age. The floating ratio does not affect the distribution rate 
of each member participating in the alliance but only 
affects the distribution value of each player at the same 
time. Moreover, it is assumed that a bi-member alliance 
will increase the profit by 10%, and a tri-member alliance 
will increase the profit by 20%. Thus, the expected profit 
for multiple members can be obtained, as listed in Table 2.

Table 2. Distributable profits of the alliance in the fuzzy 
cooperative game (unit: thousand dollars)

Alliance Expected earnings of 
alliance

Alliance distributable 
profit

v̂ ({1,2})
(17464.8, 18539.7, 

19466.7)
(1601.0, 1685.3,  

1769.5)

v̂ ({1,3})
(27828.4, 29293.0, 

30757.7)
(2529.6, 2662.7,  

2795.9)

v̂({2,3})
(10677.9, 11239.9, 

11801.9)
(970.6, 1021.7,  

1072.8)

v̂ ({1,2,3})
(30610.4, 32221.5, 

33832.5)
(5101.7, 5370.2,  

5638.8)

Table 1. Expected return of the players (unit: thousand dollars)

Player Owner Architect Builder
Budget cost 149847.9 8847.9 141000.0
Average industry profit (%) 11.10 2.50 7.09
Expected return with the average profit rate 16633.1 221.2 9996.9
Expected return with fuzzy value (15801.5, 16633.1,17464.8) (210.1, 221.2,232.3) (9497.1, 9996.9,10496.8)
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4.3. Calculating the optimal allocation  
value of the players in the alliance

According to the formula v (S) (a) = [ ( )Lv S , ( )Rv S ] men-
tioned in Section 2.3, 

:

( ) ( )( )L

S N i S

w S v S
⊆ ∈

a∑ (i = 1, 2, 3) can 

be calculated as follows:

:1

1 1( ) ( )( ) (1,2) (1,3)
6 6

L

S N S

S v S v v
⊆ ∈

w a = + +∑  

1 (1,2,3) 1963.9 103.4 ;
4

v = + a

:2

1 1( ) ( )( ) (1,2) (2,3)
6 6

L

S N S

S v S v v
⊆ ∈

w a = + +∑  

1 (1,2,3) 1704.0 89.7 ;
4

v = + a

:3

1 1( ) ( )( ) (1,3) (2,3)
6 6

L

S N S

S v S v v
⊆ ∈

w a = + +∑  

1 (1,2,3) 1858.8 97.8 .
4

v = + a

Thus, 
:1

:2

:3

( ) ( )( )

( ) ( ) ( )( )

( ) ( )( )

L

S N S
L L

S N S
L

S N S

S v S

B S v S

S v S

⊆ ∈

⊆ ∈

⊆ ∈

 
 w a
 
 a = w a = 
 
 w a
 
 

∑
∑
∑

1963.9 103.4
1704.0 89.7 .
1858.8 97.8

 + a
 + a  + a 
Equation (12) indicates the following:

1( ) ( )L Lx A B−a = a =

23 ./ 8 923 3 485.9
7673.3 403.9
8601.9 452.

1/ 8 1/ 8
1/ 8 3 / 8 1/ 8
1/ 8 1/ 8 3 / 8 7

  − −
  − − =    − − 

+

a

a
+ a
+

1427.5 75.1
648.5 34.1 .

111.28 58.5

 + a
 + a  + a 
Likewise, we can determine that:

:1

:2

:3

( ) ( )( )
2170.6 103.4

( ) ( ) ( )( ) 1883.4 89.7
2054.5 97.8

( ) ( )( )

R

S N S
R R

S N S
R

S N S

S v S

B S v S

S v S

⊆ ∈

⊆ ∈

⊆ ∈

 
 w a
   − a   a = w a = − a    − a   
 w a
 
 

∑
∑
∑

and 1( ) ( )R Rx A B−a = a =

1

2

.

6 10 10
9 1895.2 90.2

746 5 35
9 9

10 26 10
9 9 9

10 10 26
9

8

9

.5
430 7 .1

9

. 6

 − − 
  
  − − =   
  

a

− −

− a
−
− a

 
 

1553.6 50.8
740.6 58.5 .

1254.0 83.0

 − a
 − a  − a 
Therefore, according to ( ) [ ( ), ( )]L R

i i ix x xa = a a (i=1, 
2…, n), the player’s estimate of the TFN-type a-cut set 
can be obtained:

1( ) (1714.7 90.2 ,1895.2 90.2 )x a = + a − a ;

2( ) (675.4 35.5 ,746.5 35.5 )x a = + a − a ;

3( ) (1294.4 68.1 ,1430.7 68.1 )x a = + a − a .

According to the expression of the fuzzy set, 
( , , )l m r

i i i ix x x x= = ( (0), (1), (0))L L R
i i ix x x = ( (0), (1), (0))L R R

i i ix x x 
( (0), (1), (0))L R R

i i ix x x . The player’s estimated profit of TFN-type a-cut 
set can be expressed as 1 1 1 1 1 1 1( , , ) ( (0), (1), (0)) (1714.7,1804.9,1895.2)l m r L L Rx x x x x x x= = =1 1 1 1 1 1 1( , , ) ( (0), (1), (0)) (1714.7,1804.9,1895.2)l m r L L Rx x x x x x x= = = 

1 1 1 1 1 1 1( , , ) ( (0), (1), (0)) (1714.7,1804.9,1895.2)l m r L L Rx x x x x x x= = = (1714.7, 1804.9, 1895.2). In the same way, 2x =
2 2 2( , , )l m rx x x = (675.4, 710.9, 746.5), 3 3 3 3( , , )l m rx x x x=  3 3 3 3( , , )l m rx x x x=  = 

(1294.4, 1362.6, 1430.7). The calculation results are shown 
in Figure 2.

The results show that the profits obtained for the three 
players in the cooperative game have not been all distrib-
uted, that is, there is profits generated by the cooperation 
still have a surplus. Although this allocation scheme is 
certain fairness and rationality for the players, it is not 
the optimal allocation scheme and does not reach Pareto 
optimality.

As mentioned above, the efficiency condition is not 
considered in the above-mentioned player’s estimated 
profit of the TFN-type a-cut set. Therefore, the results 
are improved using Eqn (14) to adjust the distribution 
scheme.

In this case, 
3

1

( )( ) ( )L L
i

i

v N x
=

a − a∑  and
3

1

( )( ) ( )R R
i

i

v N x
=

a − a∑  are calculated as follows:

3

1

( )( ) ( )L L
i

i

v N x
=

a − a∑ =

5370.2a + 5101.7(1 – a) – (1714.7 + 90.2a + 675.4 +
35.5a + 1294.4 + 74.6a) = 1417.2 + 74.6a;

3

1

( )( ) ( )R R
i

i

v N x
=

a − a∑ =

5370.2a+5638.8(1 – a) – (1895.2 – 90.2a + 746.5 –

Figure 2. The TFN-typed imputations of players 1, 2 and 3
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35.5a + 1430.7 – 68.1a) = 1566.5 – 74.8a.
3

1

1( ) ( ) ( ( )( ) ( ))
3

L L L L
i

i

x x v N x e∗

=

a = a + a − a =∑
1714.7 90.2
675.4 35.5 1417.2 74.6

1294.4 7 6

11 ( ) 1
3 14.

   
   + =      
  

+



+ a
+ a a
+ a

2187.1 113.1
1147.8 60.4 ;
1766.8 93.0

 + a
 + a  + a 

1( ) ( ) ( ( )( )
3

R R Rx x v N∗ a = a + a −

3

1

1895.2 90.2
746.5 35.5

1430.7
(

68.1
))R

i
i

x e
=

 
 a = +a 



− a

−

−
a 

∑

1 2417.3 115.21 ( ) 1 1268.6 60.5 .1566.5 74.8
3 1 1952.8 93.0

   − a
   = − a
      − a

−



a

   

At this point, the optimal distribution scheme satis-
fying the efficiency of all players has been obtained. The 
TFN-typed profit of player 1 in the grand alliance N is 
expressed as

1 1 1 1 1 1 1( , , ) ( (0), (1), (0))l m r L L Rx x x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗= = =
(2187.1, 2302.2, 2417.3);

2 2 2 2 2 2 2( , , ) ( (0), (1), (0))l m r L L Rx x x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗= = =
(1147.8, 1208.2, 1268.6);

3 3 3 3 3 3 3( , , ) ( (0), (1), (0))l m r L L Rx x x x x x x∗ ∗ ∗ ∗ ∗ ∗ ∗= = =
(1766.8, 1859.8, 1952.8).

The calculation results are shown in Figure 3.
After considering the efficiency, the profit distribution 

of the three players in the TFN type is more
reasonable than the previous one. The lower limit, the 

mean limit, and the upper limit of the sum of the three 
player’s allocation results are:

2187.1 + 1147.8 + 1766.8 = 5101.7;
2302.2 + 1208.2 + 1859.8 = 5370.2;
2417.3 + 1268.6 + 1952.8 = 5638.8.

Figure 3 shows that the expected distributable profit v̂
({1,2,3}) of the core players is consistent with the expect-
ed profit v̂ ({1,2,3})  = (5101.7, 5370.2, 5638.8). In other 
words, the payoff vector 1 2 3( , , )x x x x∗ ∗ ∗ ∗= obtained from the 
allocation method is efficient.

5. Discussion

The computational results gained from the quadratic pro-
gramming model that considers the efficiency indicates 
that all the participants in the cooperative game receive 
a fair profit distribution. We use player 2 as an example 
to analyze the profit in different alliance situations. When 
player 2 does not participate in the alliance or the project, 
their profit is 0. When they join the grand cooperative alli-
ance, the lower limit and the upper limit of the sum of the 
three players’ profits are $1147.8 and $1268.6, respectively. 
Moreover, the most likely payoff for player 2 is $1208.2. 
The change in the profit allocated by the grand coopera-
tive alliance N to players 1 and 3 is similar to that of play-
er 2. In summary, player 2 will gain more imputation in 
the alliance game due to the transferable payoff. In other 
words, all participants in an alliance want to maximize 
their profits if they cooperate on the IPD project. As a 
consequence, the grand alliance N is strong, and each con-
struction enterprise shows great enthusiasm to participate.

Next, we compute the profit distribution of the alliance 
profits using the Shapley value (Shapley, 1953) to demon-
strate the superiority of the proposed method. 

As described in Section 3.2, for the fuzzy numbers a = 
(al, am, ar ), when al = am = ar, the TFNs  a = (al, am, ar) 
degenerate into real numbers. The fuzzy cooperative game 
becomes a crisp cooperative game. The fuzzy payoffs v (S) 
are reduced to v(S). 

In the crisp cooperative game (N, v), there is a unique 
Shapley function ji(v) : ( )P X →

:

( ) [ ( ) ( { })]s
i n

S N i S

v v S v S i
⊆ ∈

φ = γ − −∑ , (15)

where ( )!( 1)! ,
!

s
n

n s s
n

− −
γ = with s = |S|, i ∈ N. 

In this case, if the value of the imputation reaches a 
certain value, the fuzzy cooperative game becomes a crisp 
cooperative game. Furthermore, we use the classic Shapley 
value method to calculate the imputation of the owner, 
the architect, and the builder. The distributable profits of 
various alliances are shown in Table 3.

Table 3. Distributable profits of the Alliance in the crisp game 
(unit: thousand dollars)

Alliance v({1, 2}) v({1, 3}) v({2, 3}) v({1, 2, 3})
Expected earnings 
of alliance 18539.7 29293.0 11239.9 32221.5

Alliance 
distributable profit 1685.3 2662.7 1021.7 5370.2Figure 3. The optimal TFN-typed imputations of the players 

considering efficiency
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The Shapley values of players are calculated using Eqn 
(15) (Table 4).

Consequently, 1
:

( ) [ ( ) ( {1})]s
n

S N i S

v v S v S
⊆ ∈

j = γ − −∑ = 0 + 

280.9 + 443.8 + 1449.5 = 2174.2 thousand dollars. Simi-
larly, the profit distributed by the builder is $1,842.4. The 
three core players split the proceeds at $5,370.2. Thus, the 
Shapley vector is j(v) = (j1(v), (j2(v), (j3(v)) = (2174.2, 
1353.7, 1842.4). According to the Shapley value, the profits 
are distributed among the owner, the architect, and the 
builder in different crisp alliance situations. The details of 
the profit distribution are listed in Table 5.

In these alliances, if a player earns more profits by par-
ticipating in the grand alliance, it will join the alliance. 
Otherwise, the player operates as an individual. A com-
parison of the results for the crisp grand alliance and the 
TFN-type fuzzy alliance is provided in Table 6.

Analyzing Table 6, there are three characteristics as 
follows:

(1) Comparison of the profits in the crisp grand alli-
ance and the TFN-type fuzzy alliance that consid-
ers efficiency. In both cases, the distributable profit 
is $5,370.3. Due to the importance of the alliance, 
the profit of the owner is higher in the crisp grand 
than in the fuzzy alliance. The architect’s profit 
has decreased, and the builder’ profit has changed 
slightly little. The owners are the most important 
players in the alliance.

(2) Comparison of the TFN-type fuzzy value with and 
without considering efficiency. The difference be-

tween the payoff values calculated by the two al-
gorithms is relatively large. The reason is that the 
profit generated by the cooperation is not entirely 
distributed, and there is a surplus because only the 
fair distribution of the profit among the members 
is considered in the TFN-type fuzzy algorithm. In 
the modified model of the TFN-type value, effi-
ciency and fairness are considered. Additionally, 
Eqn (3) indicates that this model is a Pareto opti-
mal distribution scheme.

(3) Comparison of the crisp grand alliance and the 
modified model of the TFN-type value. The Shap-
ley value for determining the profit distribution is 
based on the consistent risk and contribution of 
all parties, which is too idealistic. Furthermore, 
IPD projects are characterized by long duration, 
high complexity, and uncontrollable factors. As a 
result, the profit distribution is difficult to define 
accurately. It is more reasonable to regard the pro-
ject alliance as a fuzzy cooperative alliance. The 
profit obtained from the TFN a–cut set method is 
closer to engineering practice than the crisp grand 
alliance. Therefore, the proposed methodology is 
practical and applicable to the situation.

In this study, the first step in the proposed methodol-
ogy provides the a–cut set and the weights of alliance that 
expresses the pre profit distribution of each player in the 
TFN-type alliance, ensuring a fair profit distribution. The 
results of this step are used as inputs for the next step, 
which provides the fuzzy payoffs of the participants. The 
pre profit distribution to the three core players is repre-
sented in Figure 2. Then, the profit is redistributed consid-
ering the efficiency of the cooperative game in the modi-
fied model. The optimization model defined in Eqn (14) 
is used to calculate the optimal quadratic programming 
model in the different fuzzy alliances and the value of the 
fuzzy alliance. Furthermore, Eqn (15) is used to obtain the 
final payoffs of the players in the fuzzy cooperative game.

Of course, there are other researchers who have stud-
ied profit distribution in other methodologies. In this pa-
per, one of the most frequently cited articles in the past 
five years will be selected for comparison. Further, we 
compared the research results of this paper with those of 
Teng et  al. (2017), who also investigated the profit dis-
tribution in IPD projects using a cooperative game ap-
proach. However, our research methods were different. 
Teng et al. (2017) regarded the alliance as a crisp alliance, 
and they used the Shapley value method to preliminarily 
distribute the profit. The Shapley value was used as the 
solution to the cooperative game and to determine the 

Table 4. Shapley value of the owner (unit: thousand dollars)

Alliance {1,2} {1,3} {2,3} {1,2,3}
v({S}) 0 1685.3 2662.7 5370.2
v({S} – 1) 0 0 0 1021.7
v({S}) – v({S} – 1) 0 1685.3 2662.7 4348.5

sγ 1/3 1/6 1/6 1/3

[ ( ) ( { })]S v S v S iγ − − 0 280.9 443.8 1449.5

Table 5. Strategies of the profit distribution among the players 
in different crisp alliance combinations (unit: thousand dollars)

Alliance Owner Architect Builder

ji(v) ({1,2}) 1038.6 646.7 0

ji(v) ({1,3}) 1441.3 0 1221.4

ji(v) ({2,3}) 0 432.7 589.0

ji(v) ({1,2,3}) 2174.2 1353.7 1842.4

Table 6. Compared with the imputations for the crisp grand alliance and the TFN-type fuzzy alliance (unit: thousand dollars)

Player The value in crisp grand alliance The TFN-type fuzzy value The TFN-type fuzzy value from the modified model 
Owner 2174.2 (1714.7, 1804.9, 1895.2) (2187.1, 2302.2, 2417.3)
Architect 1353.7 (675.4, 710.9, 746.5) (1147.8, 1208.2, 1268.6)
Builder 1842.4 (1294.4, 1362.6, 1430.7) (1766.8, 1859.8, 1952.8)
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profit distribution among the stakeholders. In addition, 
Teng et al. (2017) adopted risk-sharing of the four stake-
holders to modify the Shapley value.

Our proposed methodology considers the alliance 
weights and efficiency in fuzzy cooperative games and 
maximizes the distribution of benefits to the participants 
in a fair and reasonable manner. Therefore, it can be con-
cluded that this methodology is suitable for the profit 
distribution because efficiency and equity are taken into 
account. In addition, the method has a straightforward 
calculation, easy implementation, and closely reflects ac-
tual conditions.

Conclusions

The method presented in this paper represents the first 
attempt to use the quadratic programming model and 
method to solve the profit distribution of IPD projects. 
We establish the fuzzy payoff functions for the TFNs and 
a -cut sets expression. Due to the asymmetry of the ca-
pability of participants, the introduction of the weight of 
the alliance can better express the information of each 
participant and make the IPD profit distribution more 
equitable. By considering the effectiveness of cooperative 
game, the profit distribution can be complete without sur-
plus. The satisfaction of the IPD project participants can 
be improved and the stability of the IPD alliance and the 
work enthusiasm of all participants can be increased. We 
anticipate this method to be useful for virtual enterprises, 
supply chain management and other issues related to prof-
it distribution. The study provides a new perspective that 
enriches the theoretical research of profit distribution in 
IPD projects and offers theoretical guidance for practical 
applications and the promotion of IPD in the AEC indus-
try, promoting the efficient, fair, and healthy development 
of the AEC industry.

The theoretical research in this paper has several limi-
tations. First, we made several assumptions on the profit 
growth of cooperative alliance to simplify the model. At 
present, there is no widely accepted data on growth rates. 
The topic that requires further research. Second, this re-
search used the basic assumption of a convex cooperative 
game. The concepts of the TFNs and the a-cut sets rely on 
this assumption. Convexity is a sufficient condition for the 
fuzzy strong core in the proposed methodology. A convex 
cooperative game is a special case of a cooperative game. 
It is the main limitation of the proposed methodology. 
Third, the method for determining the income distribu-
tion depends on the contract. IPD includes three types of 
contracts: transitional contracts, relational contracts, and 
Single Purpose Entities (SPE). The IFOA contract in this 
study is a tri-party contract, and the profit distribution of 
the IPD under other contract conditions is not considered. 
Future studies should focus on the impact of SPE on the 
profit distribution in IPD projects. Moreover, weighted 
triangular approximation, a generalized symmetric TFN 
approach to solving the profit distribution in IPD projects, 
should be considered in future studies. 
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