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Abstract. In building management systems (BMS), a medium building may have between 200 and 1000 sensor points. 
Their labels need to be translated into a naming standard so they can be automatically recognised by the BMS platform. 
The current industrial practices often manually translate these points into labels (this is known as the tagging process), 
which takes around 8 hours for every 100 points. We introduce an AI-based multi-stage text classification that translates 
BMS points into formatted BMS labels. After comparing five different techniques for text classification (logistic regression, 
random forests, XGBoost, multinomial Naive Bayes and linear support vector classification), we demonstrate that XGBoost 
is the top performer with 90.29% of true positives, and use the prediction confidence to filter out false positives. This ap-
proach can be applied in sensors networks in various applications, where manual free-text data pre-processing remains 
cumbersome.
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Nomenclature

BMS – Building Management Systems;
CNN – Convolutional Neural Network;

EM – Expectation Maximisation;
HSLE – Hierarchical Label Set Expansion;

HVAC – Heating Ventilation and Air Conditioning;
ID3 – Iterative Dichotomiser 3;

MaxEnt – Maximum-Entropy Classication;
MLE – Maximum Likelihood Estimation;

NB – Naive Bayes;
NLP – Natural Language Processing;

PR-curve – Precision-Recall curve;
SVM – Support Vector Machine;

TF-IDF – Term Frequency-Inverse Document Frequency;
TSVM – Transductive Support Vector Machine;
XMTC – Extreme Multi-label Text Classication.

Introduction

When working with building management systems, there 
are two main problems to face. First, each BMS manu-
facturer has proprietary data structures and architecture. 

Second, there is no standard for the naming conven-
tions that would be automatically applied to the sensors 
or equipment within these structures. Translating build-
ing sensor points into a naming standard is a very time-
consuming task that requires highly skilled engineering 
knowledge. This should be done using each items name in 
the BMS (points) into the clean structured format (labels). 
The necessity of this manual step in the process is slow-
ing the proliferation of IoT integration with existing BMS 
and causing large costs to companies during the BMS roll 
out. The purpose of this paper is to apply several machine 
learning methods for text classification in the context of 
Building Management Systems (BMSs). The mobilisation 
of a site implies the translation of all the different elements 
that are used in analysis platforms with the purposes of 
detecting failures of internal systems (heating, cooling), 
along with controlling areas of major electricity consump-
tion and potential savings. 

Most medium-to-large buildings have installed BMS 
which can provide valuable data to any IoT implementa-
tion. This data includes the operational states of existing 
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equipment in the building and occupancy comfort pa-
rameters for the installed sensors. In the context of BMS 
point tagging, we need to engage the machine learning 
techniques for text classification. Automatic text classifi-
cation is usually done by extracting features from the text 
document. In this text classification problem, in the first 
stage the classes are different tags, which are pre-defined. 
The problem further departs from pre-defined classes and 
becomes consisting of several stages, in each of which the 
predicted classes are used for the next stage; thus, this 
becomes a semi-supervised machine learning problem. 
In this work we follow a generic strategy for text classi-
fication as defined in Dalal and Zaveri (2011), which has 
the following steps: training set of text documents, pre-
processing, feature extraction, machine learning model 
selection, train classifier and test classifier.

1. Background

1.1. Text classification methodologies

Bayesian methodology is widely applied in text clas-
sification. Models for Naive Bayes (NB) text classifica-
tion are compared in Singh et  al. (2019), and finds that 
multi-variate Bernoulli model performs well with small 
vocabulary sizes, while the multinomial model performs 
better at larger vocabulary sizes. Similarly, Liu et al. (2002) 
combines the Expectation Maximisation (EM) algorithm 
with the NB classification method using only partial in-
formation, one class of labeled documents and a set of 
mixed documents, showing extremely accurate results 
under certain class restrictions. In research by Chai et al. 
(2002), Bayesian online perceptron and Gaussian process-
es have been implemented and tested, showing that their 
performance is comparable to that of Support Vector Ma-
chines (SVMs). Parallel naive Bayes algorithm is used by 
Liu et al. (2019) for large-scale Chinese text classification. 
More recent examples for this algorithm for text classifica-
tion can be seen, for example in Venkatesh Ranjitha and 
Venkatesh Prasad (2020), where Naive Bayes is used for 
text classification, which lead to an advantage in terms of 
characteristic dialect processing. Another recent work can 
be found in Le et al. (2019), where this technique is also 
combined with sentiment lexicon. The effectiveness of this 
technique is further enhanced with the use of a dictionary 
as an input source and a document preparation process 
which improves the accuracy to 98.2%. 

Decision trees also play an important role in text clas-
sification. In research by Hasanli and Rustamov (2019) 
decision trees are applied to text categorisation and clas-
sification. Random forest is an ensemble learning version 
of decision trees, as it constructs a multitude of decision 

trees at training time and outputs the class that is made of 
the classes. In terms of performance, Ali et al. (2012) show 
that the random forest gives better results than decision 
trees for the same number of attributes in large medical 
datasets. With respect to text classification, Akinyelu and 
Adewumi (2014) use random forests for content-based 
phishing detection, which yields a very high classification 
accuracy. Similarly, Xu et al. (2012) present an improved 
random forest algorithm by simultaneously employing 
a new feature weighting method and the tree selection 
methods to categorise text documents. As a result, the 
algorithm can effectively reduce the upper bound of the 
generalisation error and improve classification perfor-
mance.

SVMs are very popular for text classification. As an ex-
ample, Joachims (1998, 2001) shows that SVMs are appro-
priate for this task, and it outperforms other algorithms. 
Also, Tong and Koller (2001) introduce an algorithm for 
performing active learning with SVMs, i.e., an algorithm 
for choosing which instances of data to request next for 
the training stage. In a comparative study, Alsaleem (2011) 
shows that SVMs outperforms NB. In Sun et al. (2009), a 
comparative study on the strategies addressing imbalanced 
text classification using SVM classifiers is described. They 
evaluated 10 methods on 3 benchmark datasets using area 
under the PR-curve as the performance metric, finding 
that the standard SVM learnt the best decision surface in 
most test cases. In more recent studies on SVM for text 
classification, Gopi et al. (2020) classify tweets data based 
on polarity using improved RBF kernel on SVM, which 
outperforms other SVM-RBF classifier and models. User 
comments are classified using Word2Vec embedding and 
SVM classifier in Kurnia et al. (2020). They classify com-
ments from social media about mobile networks applica-
tions, achieving a 79.5% accuracy. Another recent method-
ology on SVM for text classification can be seen in Zhang 
et al. (2019), where text is represented mathematically by 
vector space model, and the classifier is trained to classify 
the text based on the principle of SVM. The framework 
of the SVM for this classification system can be seen in 
Figure 1. Another interesting work by Wang et al. (2019) 
combines Char Convolutional Neural Networks with 
SVM, to obtain the emotional tendencies of users reviews. 
In research by Chatterjee et al. (2019) multi-class classi-
fication is performed using SVM and one-vs-rest, which 
divides a multi-class classification problem into one binary 
classification per class. On top of that, this is enhanced by 
using multi-threading and CUDA. 

Logistic regression also provides good results in text 
classification. The study of Genkin et al. (2007) uses lasso 
logistic regression, which provides state-of-the-art text 

 Figure 1. Framework of SVM Chinese text classification system by Zhang et al. (2019)
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categorisation while producing sparse and thus efficient 
models. In the same way, Ifrim et al. (2008) present a co-
ordinate-wise gradient ascent technique for learning logis-
tic regression in the space of all n-gram sequences (con-
tiguous sequence of n items from a given sample of text 
or speech) in the training data. They use several datasets, 
interestingly including a Chinese language dataset among 
them. A modified logistic regression for positive and un-
labeled learning is applied by Jaskie et al. (2019), who in-
troduce a new modified logistic regression with a variable 
upper bound that provides a better theoretical solution 
for the proposed problem. A comparison between Bayes 
classification and logistic regression is studied in tweets 
categorisation in Prabhat and Khullar (2017), showing af-
ter training that logistic regression gives a 10.1% more ac-
curate and 4.34% more precise than the Bayes algorithm. 
Logistic regression and its variations are popular for sen-
timent analysis, as can be seen in recent studies such as 
Ramadhan et al. (2017), which studies tweets sentiment 
analysis by extracting the features first, then transform-
ing the list of features into binary form and transformed 
again used Tf-idf method before being classified using 
logistic regression. This is very relevant for our work, as 
tweets have a character limitation, so this would prove 
that logistic regression is suitable for classification using 
text that is shorter than usual. Following a similar line of 
work, Rane and Kumar (2018) compare several method-
ologies, including logistic regression, SVM, Naive Bayes, 
AdaBoost, among others, for sentiment classification of 
Tweeter data for an US airline service analysis. Results 
show that logistic regression shows a good score with a 
F-measure of 81.9%, but it is outperformed by random 
forests in the first place, with an 86.5% F- measure. This 
creates a solid base for the BMS text classification case ex-
plored in this Thesis, as several of these methods are used 
in this work for short text classification. Also, for another 
work of tweet sentiment analysis, Hasanli and Rustamov 
(2019) compared logistic regression, Naive Bayes and 
SVM to detect sentiment polarity. Logistic regression and 
SVM show a better performance if bag-of-words is used 
for the pre-processing, and Naive Bayes performs better 
if term frequency - inverse document frequency is used. 

Deep learning has been increasingly gaining popular-
ity and the literature provides examples of using some of 
these methods for text classification as well. An example 
of this is Liu et al. (2017), which presents the first attempt 
at applying deep learning to extreme multi-label text clas-
sification (XMTC), with a family of new Convolutional 
Neural Network (CNN) models which are tailored for 
multi-label classification. Several large-scale datasets are 
constructed in Zhang et  al. (2015) to show that charac-
ter-level convolutional networks could achieve state-of-
the-art or competitive results for text classification. Lai 
et  al. (2015) introduce a recurrent convolutional neural 
network for text classification without human-designed 
features, showing that the proposed method outperforms 
the state-of-the-art methods on several datasets, particu-

larly on document-level datasets. More recent works on 
text classification can be seen for example in Elnagar et al. 
(2020). Here, the authors perform Arabic text classifica-
tion using deep learning models. Results show that atten-
tion-Gated Recurrent Units (GRUs) achieves a top perfor-
mance of 96.94% by using the dataset NADiA, which is 
the largest dataset of Arabic documents. Another example 
is given by Yao et al. (2019), where a novel text classifica-
tion method termed text graph convolutional networks is 
used with the purpose of text classification. Results of this 
work shows that this promising methodology outperforms 
other state-of-the-art deep NNs such as CNN, LSTM and 
others that are not NNs, such as logistic regression. The 
algorithms are run in various datasets, such as news or 
movie reviews, with a large corpus. Also, Gargiulo et al. 
(2019) use DNNs for hierarchical extreme multi-label 
text classification. They describe a methodology named 
Hierarchical Label Set Expansion (HLSE) used to regular-
ize the data labels, evaluating the methodologies on the 
PubMed scientific articles collection, proving the useful-
ness of the proposed HLSE methodology. The graphical 
representation of the DNN model used for this work is 
shown in Figure 2. Deep learning methodologies proved 
unmistakably useful for text classification and they should 
be considered, as the literature suggests, for large corpus 
text where a lot of features need to be processed to per-
form the classification. For the purpose of this problem, 
whose length of the text is the real challenge (11 words 
maximum per label), DNNs are not considered. Although 
they can be considered for further research. 

 There is a growing number of interesting publications 
in the field of text classification: Onan et al. (2016) pre-
sented a multiobjective weighted voting ensemble classi-
fier, which is based on a differential evolution algorithm 
for text sentiment classification, and it proved to be better 
than conventional ensemble learning methods. In study 
by Onan and Korukolu (2017), a feature selection model 
is presented based on genetic rank aggregation for text 
sentiment classification. In another work related to senti-
ment classification, Onan (2020) studies sentiment analy-
sis based on weighted word embeddings and DNNs. Other 
related works in Natural Language Processing (NLP) for 
sentiment classification can be found in Onan (2021), To-
coglu and Onan (2020), including sarcasm identification 
in Onan (2019), Onan and Tocoglu (2021) and satire iden-
tification in Onan and Tocoglu (2020).

Ensemble methods are also interesting in text clssifica-
tion, as they allow multiple learning algorithms to be used 
to obtain a better predictive performance. Onan (2018) 
includes an ensemble scheme based on language function 
analysis and feature engineering for text genre classifica-
tion. Similarly, Onan (2017) uses a hybrid ensemble prun-
ing approach based on consensus clustering and multi-ob-
jective evolutionary algorithm for sentiment classification.

As this is a multi-stage text classification problem, it is 
worth comparing it with similar works such as Montieri 
et  al. (2019), which is related to the goal of this paper. 
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They use a hierarchical approach for traffic classification 
in the deep web. This paper first uses the flat approach in 
a first experiment to determine what the best performing 
algorithm is, and the best performing approach is then 
used in the multi-stage text classification problem, from 
the simplest to the most complex categories. On each clas-
sification level, they use several classification algorithms to 
select the best performing one for the next level. The final 
result proves that the hierarchical approach is better than 
the flat approach.

A summary comparing the methodologies considered 
during the literature review for text classification are pre-
sented in Table 1.

 1.2. Text processing and categorisation

In recent years, there has been a lot of progress in natural 
language modelling and representation. NLP is of major 
interest in research as it represents the core business of In-
ternet companies today. Language modelling is defined in 
Goodman (2001) as the art of determining the probability 
of a sequence of words and introduces the N-grams, which 
computes the probability of a word sequence, but if it only 
depends on the N previous words. Assuming that similar 
words appear in similar contexts, Brown et al. (1992) used 
counts of classes, which leads to generalisation, therefore 
better performance on novel data. Bag-of-words model is 

one of the most popular representation methods, whose 
statistical framework is explained in Zhang et al. (2010). 
It consists of the sum of one-hot codes, ignoring the order 
of the words, but it can be extended to bag-of-Ngrams to 
capture local ordering of words. Term Frequency-Inverse 
Document Frequency (TF-IDF) is another common tech-
nique that evaluates how important a word is to a docu-
ment in a collection of corpus proportionally to the num-
ber of times it appears in the document. 

In a more advanced version of text modeling there 
are word vectors, also known as embedding. Each word 
is represented by a real valued vector in N-dimensional 
space (usually N = 50 – 1000). These representations man-
age to capture many degrees of textual similarity. In paper 
by Mikolov et  al. (2013a) it is shown that word vectors 
capture many linguistic properties (gender, tense, plural-
ity, even semantic concepts). Following the line of work, 
Mikolov et al. (2013b) present two novel architectures for 
computing continuous vector representations of words, 
and they measure the quality of these representations in 
a word similarity task. This work introduces Word2Vec, 
which uses a NN model to learn associations from a large 
corpus of text. The representation of this architecture is 
shown in Figure 3. In this representation, the CBOW ar-
chitecture predicts the current word based on the context, 
and the Skip-gram predicts surrounding words given the 
current word. In Mikolov et  al. (2013c), the previously 

 Figure 2. Graphical representation of the DNN models used by Gargiulo et al. (2019)
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mentioned similarities are explored in languages for 
translation, reaching above 90% accuracy for the most 
confident translations. Although for the purpose of this 
problem such a deep language representation is not need-
ed, this progress in NLP may be useful for future BMS 
automatic tagging improvements. In a more recent study 
Miaschi and Della-Orletta (2020) studied the linguistic 
knowledge implicitly encoded in the internal representa-
tions of BERT, a contextual language model (Devlin et al., 
2019), in comparison to a contextual-independent one 
(Word2Vec). The findings reveal that contextual-indepen-
dent model, the sum works best for obtaining sentence 
representations and for the contextual-dependent one, the 
mean works best. 

 In this paper, we perform text classification to cre-
ate a system that tags BMS sensor data automatically. We 
compare several methods for text classification, by fol-
lowing the generic strategy of Dalal and Zaveri (2011) for 
solving these types of problems. We apply a bag-of-words 
model for feature extraction prior to the classification. The 

paper is organised as follows. In Section 2, we describe 
the problem background and the goals in more detail. In 
Section 3, we introduce the methods to be used for text 
classification. In Section 4 all the methods are compared, 
showing the accuracy per tag type, followed by a second 
experiment with the complete tagging system. Limitations 
and further work are provided in Section 5. 

2. Problem description

The existing infrastructure uses different naming conven-
tions for sensors and equipment of buildings using labels 
that are given at the moment of the installation for brief 
description of the component’s type, location, parent-rela-
tionship, etc. (for example, Boiler 1 Temp Sensor describes 
a sensor that measures the temperature of the water in 
boiler number 1). The BMS data used in this paper was 
provided by a private company and cannot be disclosed in 
full (i.e., specific location, buildings, etc.) due to permis-
sions restrictions.

Table 1. Summary of considered text classification methodologies

Methods Description Characteristics
Logistic regression Models the probability of a certain class or event 

existing such as pass/fail
 – Easy implementation
 – Quick to run 
 – Easily to extend to multiple classes
 – Works better with simple datasets

Random forests Ensemble learning method for classification, regression 
and other tasks that operates by constructing a 
multitude of decision trees at training time

 – Good handling missing data
 – No overfitting
 – Random subset of features when node split

XGBoost Boosted tree implementation  – Trees penalization
 – Automatic feature selection
 – Trees boosting
 – It works well in datasets of all sizes

Multinomial NB It implements the naive Bayes algorithm for 
multinomially distributed data, and is one of the two 
classic naive Bayes variants used in text classification

 – Suitable for classification with discrete number of 
features

 – Widely used in text classification
Linear SVC It creates the classification boundary by returning a 

“best fit” hyperplane that separates the features
 – Quick to run
 – Scales well with increasing number of features
 – Just one hyperparameter to tune

Figure 3. Model representation for vector representation by Mikolov et al. (2013b)
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There are several problems related to this descriptive 
naming system:

 – There exists no naming standard. This complicates 
tagging when mobilising several buildings to the 
same analytics platform. Most of these analytics use 
naming conventions to create general rules that apply 
to all buildings.

 – Some tags are incomplete. The labels are created to 
give a short description. This means that some words 
would appear shortened. Such as Temp instead of 
Temperature or Grnd flr instead of Ground floor. 

 – Duplicates. If the building is big enough, with a lot 
of equipment and assets, there can be duplicates in 
labels. This is due, for example, to upgrades of the 
equipment that may occur when renewing older sys-
tems, or if new areas are built. 

The aim of this part of the paper is to automatically 
create tags, defined by the Haystack specification, based 
on the information provided from BMS data. A tag is a 
name/value pair applied to an entity (sites, equipment, 
sensor points, etc.) following the Haystack standard (Hay-
stack), which is an open source initiative that standardises 
semantic data models with the goal of making easier to 
extract value from the data. Their applications include au-
tomation, control, energy, lighting, HVAC and other en-
vironmental applications (Haystack Project, 2019). A tag 
defines a property or attribute of an entity. Some elements 
are already tagged by default, whereas others need to be 
tagged according to some data criteria. 

There are three main groups of tags on which to clas-
sify every label: Point tags, Service type and Equip tags. 
These are the descriptions of every main category accord-
ing to Haystack, from lowest to highest level of con cision: 

 – Service type: Used to classify the labels into eight 
main categories, namely cooling, heating, lighting, 
ventilation, metering, monitoring, terminals and 
globals. 

 – Equip tags: Refers to equipment type. Equipment 
is often a physical asset such as an AHU, boiler or 
chiller. These tags can also refer a logical grouping 
such as a chiller plant. There are a total of 26 equip 
tags including category ‘0’, when a point does not be-
long to any of them. Each label must belong to one 
of them at least. There are never more than two cat-
egories assigned to it. 

 – Point tags: It refers to a lower level abstraction of 
the labels. There are 36 main types of Point tags in 
the dataset and they represent the most complex clas-
sification part, as there can be many tags refering to 
one label and even its manual assignation is difficult. 

To perform the classification in the above categories, 
we divide the process in two experiments: first we consid-
er only the category of tags with the highest level of con-
cision (Point Tags) with the five classification methodolo-
gies to obtain the top- performer technique. Subsequently, 
we use such technique for multi-stage classification using 

all groups of tags in series thus, using the output of the 
prior classification as an input for the next one, so we add 
an extra feature at every stage.

2.1. Tagging experiment 1 description:  
Point Tags classification

In the first part of the paper we focus on the multi-label 
classification problem concerning the tags with the high-
est level of concision: point tags. The reason why the first 
classification problem should focus on the highest level 
categories (point tags) is that this will reduce the complex-
ity of the problem by dividing it into several classification 
stages. Subsequently, after the dataset has been classified 
within the point tags categories, a second experiment is 
carried out that includes the rest of the main categories 
with the most successful technique to provide a complete 
solution of the tagging problem, as well as an overall ac-
curacy result. 

The data has been extracted from different versions of 
the same BMS controller type (Trend). The raw data is 
used for the purpose of training/testing the algorithms. 
An example of the extracted data is shown in Table 2.

The tags that we aim to assign to each row of data are 
defined by the Haystack specification (Haystack), and they 
are separated into several categories for different purposes. 
Some of the examples of these categories are shown in 
Table 3.

All points are classified as sensors, commands, or set-
points, apart from other possible assigned categories, us-
ing one of the following three tags:

 – sensor: input, analogical/digital input, sensor 
 – cmd: output, analogical/digital output, actuator, 
command 

 – sp: setpoint, internal control variable, schedule. 

Table 2. Extraction of BMS raw data

Label Type Outstation Module Units Interval
IL4-6 
Damper Boolean 15 D11(Sv) None 300

AHU2 Low 
Temp Hold 
Off SP

Numeric 12 K1(V) °C 3600

Extact Fan28 
Override Boolean 15 W3(S) None 3600

AHU 
Heating Coil Numeric 17 D2(Sv) None 300

. . .

Table 3. Example of tagged data (other categories have been 
removed from the table for simplicity)

Label Point tags
AHU1 Dampers sensor, damper, recirc
AHU1 Frost Stat sensor, valve, frost
AHU1 Max Supply Temp sp, temp, air, discharge, oneA
UPS Rm Fire Sys Fault sensor, alarm

. . . . . .
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2.2. Tagging experiment 2 description:  
Complete tagging problem evaluation

For this part, all three categories are used to define the en-
tire problem: Service type, equip tags and point tags. The 
three compound three separated problems, whose output 
is connected to the next. Because of this, the problem is 
solved with an increased level of complexity. 

An example of data classification can be seen in Table 4. 
This would constitute a complete formulation of the tag-
ging problem as it is constructed in the BMS trend system. 
For this part, a different result is obtained for point tags as 
this is a concatenation of separated problems. This work 
uses BMS controller data, according to the real system 
used at the Mitie company (U.K.). The dataset available 
has data from 37 buildings, from which 36 (40472 points) 
have been using for training and the largest building (1875 
points) has been used for testing.

3. Methodology

This section describes the classification algorithms we 
used and how the data has been pre-processed. First, we 
pre-process the data and concatenate sparse matrices be-
fore the two-step model classification. The high level over-
view of the process is shown in Figure 4.

One of the biggest challenges in BMS data pre-process-
ing is that the default names of the sensors (text labels) are 
introduced manually, therefore we can find many typos, 
acronyms, groups of words written together separated by 
upper case, etc. The text label is first separated by upper 
case letters, taking into consideration those which con-

tain acronyms. Then these are converted to lower case. 
Next, we apply stemming, which is the process of reducing 
words to their stem. This refers to the roots of the words 
known as lemma. With this, the classification algorithm 
is more likely to capture similarities. Then, we categorised 
the result with bi-grams (groups of two words) bag of 
words. 

Lan and outstation fields can be found together, so we 
separate them before categorisation. Same with controller 
reference, such fields contain sensor type information (I/O 
such as switches, temperature sensors, etc.) and data type 
(static, variable, etc.). 

After that, all the fields with their respective vector 
representations, are concatenated in a matrix (a matrix in 
which most elements are zeros), whose rows serve as in-
puts for the first step. The first step aims to predict only sp, 
cmd or sensor, as all labels always belong to one of these 
three categories. Second step aims to predict the rest of 
the labels, by using the first step prediction, so an extra 
bit of information (plus the input data) is added for better 
accuracy.

3.1. Classification methodologies

For classification, we are dealing with multi-class and mul-
ti-label problems. There are several methods that we are 
comparing for the purpose of this work: logistic regres-
sion, decision trees, random forests, multinomial Naive 
Bayes and SVM. Considering that the text we aim to clas-
sify has the peculiarity of being very short (i.e., maximum 
11 words per input), we study which methodology works 
better in this case. 

Table 4. Example of tagging problem with all categories 

Label Service type Equip tags Point tags
CHW Pump 1 Enable East 
VT Valve
HWS TEMP SETPOINT
Space cooling setpoint

. . .

Cooling Heating 
Heating Terminals

. . .

cooling pump vtHeating 
boiler
fcu

. . .

sensor, run cmd, heat
sp, leaving, temp, water
sp, air, cool, temp, zone

. . .

Figure 4. BMS label classification process for pre-processing data and predicting categories
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From the different methodologies explored in the lit-
erature review for the text classification part, the ones ex-
plored in this Thesis are the ones whose applications are 
similar to the problem defined here. The text explored in 
this work for BMS application has a maximum length of 
11 words, therefore past applications to short text classifi-
cation with a high accuracy have been explored. 

Other applications for short-text classification, such 
as the diverse tweets classifiers, utilised random forests, 
xgboost, logistic regression, Naive Bayes and SVM among 
others. These classifiers proved to deliver good accuracy 
for these particular problems. Therefore the methodolo-
gies explained in this section are the ones that are used to 
obtain the results, due to the length of the text used here. 

All methods have been implemented in Python v3.7, 
and the library used to reproduce the algorithms has been 
sci-kit learn (Sci-Kit).

3.1.1. Logistic regression classification
Logistic regression, is known in the literature as logit re-
gression, maximum-entropy classification (MaxEnt) or the 
log-linear classifier. Despite its name, this linear model 
works as a classifier more than as a regressor. The logistic 
function is a monotonic function defined between 0 and 1:

( ) ( ) ( )
0

, 0,1 ,
1 k x x

Lf x f x
e− −

= ∈  
+

 (1)

where x0 is the value of the sigmoid’s midpoint, L is the 
saturation point of the curve and k the logistic growth rate 
or steepness of the curve. The objective function of the 
logistic regression maximizes the likelihood function. The 
Maximum Likelihood Estimation (MLE) can be written 
as follows:

( )1

1

arg max : log ( | ) (1 ( | )) ,ii

n
yy

i i i i
i

P y x P y x −
b

=

  
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where yi is the output between 0 and 1, ( | )i iP y x  the pos-
terior probability which is equal to ( )1/ 1 fe−+ , and b is 
the vector of weights/coefficients.

3.1.2. Decision trees
Decision trees build classification (or regression) mod-
els in the form of a tree structure. They break the dataset 
down into increasingly smaller subsets while the decision 
tree is incrementally developed. The resulting decision 
tree has decision nodes and leaf nodes (Figure 5). 

 The core algorithm for building decision trees is the 
Iterative Dichotomiser 3 (ID3), developed by Quinlan 
1986). The algorithm begins with the original set, iterates 
on every unused attribute of the set S and calculates the 
entropy ( )H S , defined as ( ) ( ) ( )2log

x X
H S p x p x

∈
= −∑  

, 
where S is the current dataset, X the set of classes in S and 
( )p x  the proportion of the number of elements in class x 

with respect to the number of elements in set S.

3.1.3. Random forests
Random forests or random decision forests, from Baran-
diaran (1998), are an ensemble learning method for clas-
sification, among others, that constructs a finite number 
of decision trees at training time, increasing the number of 
results for a better output. This ensemble method should, 
by definition, provide better, although sometimes very 
similar, results. 

After training, predictions for unobserved samples x′ 
can be made by averaging the predictions from all the in-
dividual regression trees on x′, ( )

1
ˆ B

bb
f f x

=
= ′∑ . In the 

case of classification trees, the alternative option is per-
formed by taking the majority vote, also known as voting 
algorithm.

3.1.4. XGBoost
XGBoost is developed by Chen and Guestrin (2016). The 
methodology creates a scalable end-to-end tree boosting 
system and introduce a sparsity-aware algorithm for par-
allel tree learning. It uses a gradient boosting framework. 

 Figure 5. Generic example of decision table and decision tree
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Generally, XGBoost is fast when compared to other im-
plementations of gradient boosting. The summary of the 
main features is listed below:
− Regularisation: It penalises more complex models 

through LASSO and Ridge regularisation to prevent 
overfitting. 

− Sparsity awareness: It automatically captures missing 
values depending on training loss and handles differ-
ent types of sparsity patterns more efficiently. 

− Cross-validation: The algorithm comes with built-
in cross-validation method at each iteration, thus 
excluding the need to hard-code this search and to 
specify the number of iterations required. 

− Parallelisation: It uses parallelised implementation. 
This is possible due to the interchangeable nature of 
the different loops, building many different trees in 
parallel. This feature allows many users to run state-
of-the-art algorithm without requiring a very power-
ful computer. 

3.1.5. Multinomial Naive Bayes
Multinomial Naive Bayes (Maron, 1961) is a specialized 
version of Naive Bayes that is widely used in text analysis. 
Whereas simple NB would model presence and absence 
of particular words, multinomial naive Bayes explicitly 
models the word counts and adjusts the underlying cal-
culations, as explained in McCallum and Nigam (1998), 
combining probability distribution of Pr with fraction of 
documents belonging to each class for each class j and 
word i, at a word frequency of fi:

( )
1

( | ) ,i

V
f

j
i

Pr j Pr i j
=

∝ π ∏  (3)

where 

1

class

class

j
N

n

j

n=

π =

∑
 is the fraction of documents or 

labels on each class, and |V| the feature space. We use the 
sum of logs and to smooth the probability going increas-
ingly up when a word re-appears several times, we take 
the log frequency:
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3.1.6. Support vector machines classification
SVMs are discriminative classifiers originally defined by 
Vapnik and Lerner (1963), based on a separating hyper-
plane. In other words, given labelled training data (super-
vised learning), the algorithm outputs an optimal hyper-
plane which categorizes new examples. In a two-dimen-
sional space, this hyperplane is a line dividing a plane into 
two parts, and each class lays on each side. 

Let us consider the case of two classes. Given a train-
ing dataset of n points of the form ( ) ( )1 1, ... ,n nx y x y

 

, 
where yi has the value of either 1 or –1, indicating the class 
to which ix



 belongs. The goal is to find the “maximum-
margin hyperplane” that divides the group of points of 

both classes. Any hyperplane can be written as the set of 
points x



 that satisfies:

0,w x b⋅ − =
 

 (5)

where w


 is the normal vector to the hyperplane, and  
b
w


 determines the offset of the hyperplane from the ori-

gin along the normal vector. For the hard-margin case, the 
minimisation problem to solve is:

 ( )minimise   subject to: 1   for  1,..., .i iw y w x b i n⋅ − ≥ =
    

(6)

In the soft-margin case, the function we wish to mi-
nimise is:
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where the parameter l determines the trade-off between 
increasing the margin size and ensuring that each point 
belongs to the correct side of the margin. 

The way of transforming SVM to create a non-linear 
classifier is by means of the kernel trick, a method of us-
ing a linear classifier to solve a non-linear problem. Boser 
et al. (1992) suggested a way to create non linear classi-
fiers by applying the kernel trick to maximum margin 
hyperplanes. The resulting algorithm is similar, except 
that every dot-product is replaced by a nonlinear kernel 
function. This allows the algorithm to fit the maximum-
margin hyperplane in a transformed feature space. 

Rane and Kumar (2018) compare some of these meth-
odologies for sentiment analysis. The comparison of the 
different methodologies for this particular work can be 
seen in Table 5.

Table 5. Accuracy of classifier for tweets sentiment analysis  
by Rane and Kumar (2018)

Classifier Precision Recall F- Measure
Decision Tree 63% 64.6% 64.5%
Random Forest 85.6% 86.5% 86.5%
SVM 81.2% 84.4% 84.8%
Gaussian Naïve Bayes 64.2% 64.7% 64.6%
AdaBoost 84.5% 83.5% 86.5%
Logistic Regression 81% 81.6% 81.9%
KNN 59% 59.2% 59.3%

 4. Experiments

In this section we describe both experiments. First, we 
perform only Point Tags classification with five different 
methodologies to obtain the top-performing one. In the 
second experiment, such methodology is used for multi-
stage text classification. This means that the output ob-
tained in the previous classification stage is used as an in-
put for the next, so an extra feature is added at every stage.
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4.1. Tagging experiment 1: Point Tags classification

The results of the experiments have been presented in two 
tables. Table 6 presents the train and test accuracy for the 
first and second classification steps. The algorithm counts 
an element as correctly tagged when we obtain 100% true 
positives and 100% true negatives per label. Table 7 pre-
sents the individual accuracy per tag type for a sample of 
the eight first tags and per method used. 

 Results in Table 6 show that for the experiments per-
formed with our data, XGBoost algorithm provides the 
best result for test accuracy, closely followed by logistic 
regression and linear SVC. The best accuracy achieved at 
the second step, however, are by logistic regression, fol-
lowed by XGBoost and linear SVC.

Results per tag type in Table 7 show that the accuracy 
per tag type varies with every different method. In fact, 
we can observe that every method outperforms on at least 
one predicted tag. Table 8 shows the runtimes for each of 
the steps.

One can see that linear SVC is the fastest, followed by 
logistic regression and XGBoost. The choice of the clas-
sification algorithm stays the same, as the runtime of less 
than a minute is considered good if the runtime/accuracy 
tradeoff is acceptable.

Assessment of errors

 We aim to consider the class probability for each predic-
tion, which is the probability for each label of belonging to 
a certain class, to calculate the confidence of the prediction 
and to discard all the elements below a certain boundary. 
Gneiting and Raftery (2007) provide summary measures 
for the evaluation of probabilistic forecasts, by assigning a 
numerical score based on the predictive distribution and 
on the event or value that materializes. The probabilities 
of our system do not seem to follow a clearly-defined dis-
tribution, as shown in the histogram in Figure 6. 

 Table 6. Results of applying five techniques and their % of absolute and relative accuracy

LogReg RndForests XGBoost MultinomialNB LinearSVC
First Step

Train 99.80 99.99 99.78 98.75 99.78
Test 99.73 99.07 99.84 87.69 99.50

Second Step
Train 83.75 96.34 81.43 55.84 85.21
Test 89.01 87.14 88.68 58.24 87.64

Table 7. Results of applying five techniques to the individual tags, % of accuracy per tag type. Bold font denotes  
the algorithm which produced the highest score for each tag type 

Tag LogReg RndForests XGBoost MultinomialNB LinearSVC
air 98.68 98.24 97.52 98.85 97.91
alarm 99.18 98.90 98.68 96.04 99.07
chilled 99.89 99.94 100.0 88.52 99.84
co2 99.56 99.50 99.89 90.66 99.84
cool 99.89 100.0 99.89 98.74 100.0
damper 99.57 99.56 99.50 90.44 99.56
discharge 98.52 98.90 98.79 94.40 98.57
enable 100.0 100.0 100.0 95.99 100.0

Table 8. Train/Test runtime of the used methods

LogReg RndForests XGBoost MultinomialNB LinearSVC
First Step (milliseconds)

Train 941.28 8670.94 925.26 15.96 170.76
Test 6.00 742.35 45.88 8.98 4.99

Second Step (seconds)
Train 6.62 200.84 20.53 0.30 2.89
Test 0.12 10.98 0.80 0.18 0.12
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Therefore, we decided to create a different metric to 
assess and discard values based on the prediction confi-
dence. It consists on scaling each probability from 0 to 
1, so that a probability around 0.5 results in a confidence 
around 0. For each prediction probability, obtained as the 
algorithm’s output, Pi, we define the confidence score, Ci, 
calculated as shown in Eqn (8):

2 0.5 .i iC P= ⋅ −  (8)

For simplicity, we take the all tags average confidence 
per label. The aim of this is to filter the values by how 
strong the choice of the algorithm is, therefore the value 
of the confidence around the value 0.5 will be close to 
zero, but a probability close to either 0 or 1 will result in 
a confidence value close to 1. The resulting chart with all 
the confidence values of the test set can be seen in Fig-
ure 7, in which a boundary of 0.85 has been set. The rea-
son for this boundary choice is by convenience: a higher 
boundary value would result in a poorer accuracy, but also 
in a lower percentage of false positives, whereas a lower 
boundary value would result in a better accuracy but more 
false positives.

 With the chosen boundary of 0.85, the results can be 
found below in Table 9. Each dot of the cloud represents 

a particular confidence score for that particular label. The 
choice of the boundary is related with the strength of the 
decisions. A lower boundary value implies a lower value 
of true and false negatives, but a higher value of true and 
false positives.

Table 9. Percentages of true/false positives/negatives with 
respect to the total length of the test set, 1875 labels 

Positive Negative
True 83.74% 3.95%
False 8.52% 3.79%

True positives are the labels that pass the boundary 
and whose classification is correct, true negatives are the 
ones that did not pass the filter because they are predict-
ed with low confidence, but the classification is incorrect, 
false positives are the elements with an incorrect classifica-
tion but that are not detected because they are predicted 
with high confidence and false negatives are the elements 
whose prediction is correct but with low confidence over-
all. As shown in Table 8, 83.74% of the test set is correctly 
put in the category of good predictions, whereas a 3.95% 
of the test set is correctly identified as misclassified ele-
ments.

4.2. Tagging experiment 2: Complete  
tagging problem evaluation

The complete text classification problem scheme has been 
illustrated in Figure 8. XGBoost methodology has been 
used in all prediction stages as conclusion from the previ-
ous experiment.

As can be seen here, the predictions start from the 
same pre-processing as the prior experiment. Then the 
first prediction considered has been for service type. As 
the results obtained for both train and test sets are above 
95%, we sub-divide the output into the eight service type 
categories that serve individually as training inputs for the 
following step. The reason for doing this is to improve the 
chances of success for further category predictions. For 
example, a predicted equip tag of boiler would come from 
a heating service type for sure. Therefore, there is no need 
of training the equip tag problem according to other ser-
vice categories. Then, every individual result is moved to 
both stages of point tag predictions as it was done in the 
previous experiment.

The results for every prediction stage can be seen be-
low in Table 10.

As can be seen in Table 10, the percentage of true posi-
tives descends as the complexity of the forecast increases. 
Also, the number of false positives increases, as every 
stage inherits the errors from the previous one.

In absolute terms, the final total accuracy of the out-
put is 90.29%. In comparison to the previous experiment, 
it can be seen that the accuracy results on this one are 
higher, this meaning that sub-dividing the problem into 
the eight predicted service type categories is favourable 
to the problem.

Figure 6. Prediction probabilities histogram of test set

Figure 7. Prediction confidence of test set calculated according 
to Eqn (8). The dashed line represents the boundary,  

currently set to 0.85
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5. Limitations and further work

The limitations of this work are related to feature extrac-
tion from the labels. The maximum length of each label is 
11 words, with misspelt words in many occasions, there-
fore, to extract as much information as possible to per-
form classification into three categories has been the main 
challenge. This said, many incoherences are found in the 
training set, as the system relies on manually tagged data 
for training. This means that some engineers many use 
slightly different tags sometimes or simply that the infor-
mation contained within the label itself is just incomplete 
and only compensated by personal experience, which lim-
its the system results. 

For this work, only proprietary data structure from 
Trend BMS controllers have been used. To further im-
prove this model we could use other BMS types (Samsung, 
Tridium, etc.) as they use different fields and will probably 
output different results. This may be potentially a factor 
for a choice on which BMS to use in the future. Another 
potential future work could consider multi-task learning 
by using a multimodal deep learning architecture named 
DISTILLER that would allow solving the three considered 
problems (service, equip, tags) simultaneously (Gneiting 
& Raftery, 2007).

Conclusions
This paper presents a two-stage text classification study in 
the field of BMS. The results of the first stage show that 
XGBoost performs better than the other four, but the oth-
ers make good candidates for this stage too, except maybe 
for multinomial Naive Bayes, which shows slightly worse 
results. The outperformer in the second stage classifica-

tion, the multi label problem, is logistic regression. The 
top performers that follows are followed by XGBoost al-
gorithm and, again, the Naive Bayes method performs the 
worst of the five. The accuracy per tag type shows that 
certain algorithms may be better in predicting certain tags 
than others. In the current paper, we have considered XG-
Boost and logistic regression to design the system, but the 
aim for further work will be a combination of methods for 
the second stage, using each method for doing only the 
classifications they are the best at, to improve the general 
accuracy of the whole implementation. Sub-dividing the 
problem into several problems improves its accuracy for 
the whole system as expected. 

In terms of the model’s deployment, the assessment of 
errors is very important. The main problem for this sys-
tem’s implementation is to locate false positive elements. 
The false positives are the incorrectly tagged elements that 
passed to the building analytics software. These elements 
may be difficult to detect, especially for buildings with a 
big number of points. Increasing the confidence bound-
ary to a higher level may help to solve this problem and 
reduce false positives to a minimum. This also may reduce 
the number of true positives, increasing the amount of 
manual work. 

The findings of this work open a new field of applica-
tion for text classification methodologies, aiming to a sci-
entific audience, which may explore the methodologies of 
this paper further to generalise this field of application for 
text processing and categorisation, or to industrial profes-
sionals who seek to implement this system to reduce oper-
ational tagging times from several days to a couple of min-
utes. Our research provides a novel multi-stage machine 
learning solution for the real-world BMS problem, which 
can be applied in several systems, or even re-trained with 
new standards that could appear in the future.
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Table 10. Percentages of true/false positives/negatives  
with respect to the total length of the test set  

for all predictions, 1875 labels

Service type Equip tags Point tags

Positive Negative Positive Negative Positive Negative
True 93.85% 0.99% 92.37% 1.59% 90.29% 2.08%
False 1.09% 4.06% 4.96% 1.09% 5.45% 2.18%

Figure 8. BMS label classification for the whole process
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