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Abstract. The International Roughness Index (IRI) has become the reference scale for assessing pavement roughness in 
many highway agencies worldwide. This research aims to develop two Artificial Neural Network (ANN) models for Dou-
ble Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections using Laos Pavement Manage-
ment System (PMS) database for National Road Network (NRN). The final database consisted of 269 and 122 observations 
covering 1850 km of DBST NRN and 718 km of AC NRN, respectively. The proposed models predict IRI as a function of 
pavement age and Cumulative Equivalent Single-Axle Load (CESAL). The obtained data were randomly divided into train-
ing (70%), validation (15%), and testing (15%) datasets. The statistical evaluation results of the training dataset reveal that 
both ANN models (DBST and AC) have good prediction ability with high values of coefficient of determination (R2 = 0.96 
and 0.94) and low values of Mean Absolute Error (MAE = 0.23 and 0.19) and Mean Squared Percentage Error (RMSPE = 
7.03 and 9.98). Eventually, the goodness of fit of the proposed ANN models was compared with the Multiple Linear Regres-
sion (MLR) models previously developed under the same conditions. The results show that ANN models yielded higher 
prediction accuracy than MLR models. 

Keywords: International Roughness Index (IRI), Laos pavement management system (PMS), artificial neural network 
(ANN), backpropagation algorithm, double bituminous surface treatment (DBST), asphalt concrete (AC), pavement age, 
cumulative equivalent single-axle load (CESAL), pavement performance model.

Introduction 

Laos is a landlocked country located in the Indochina 
peninsula which shares borders with five countries: China, 
Vietnam, Thailand, Myanmar, and Cambodia. Its unique 
location allows it to transfer to land-linked countries that 
connect its neighbors through its National Road Network 
(NRN). Over the last three decades, Laos has seen essen-
tial progress in improving the road infrastructure, where 
the road network length has grown from only 14,000 km 
in 1990 to be 58,255 km in 2020 (Asian Infrastructure 
Investment Bank [AIIB], 2009; Laos Ministry of Public 
Works and Transport, 2020). The Laos road network is 
divided into six classes: (i) National Roads (NRs); (ii) Pro-
vincial Roads (PRs); (iii) District Roads (DRs); (iv) Ur-
ban Roads (URs); (v) Rural Roads (RRs); and (vi) Special 
Roads (SRs). As shown in Table 1, the greatest share of the 

total length of the network is dominated by RRs (43.32%), 
followed by PRs (14.86%), NRs (13.22%), and the lasting 
28.60% are DRs, URs, and SRs (Laos Ministry of Public 
Works and Transport, 2018, 2020).

Laos paved roads are categorized according to their 
structural properties into three groups: Double Bitumi-
nous Surface Treatment (DBST), Asphalt Concrete (AC), 
and Cement Concrete (CC). NRs involve roughly 7700 
km of the road network (as illustrated in Figure 1), the 
superiority of which (85.84%) have a paved surface, while 
gravel and earth sections comprise only 10.70% and 3.46% 
of them, respectively. Most NRs’ paved sections are DBST 
(71.64%), while AC and CC cover just 13.00% and 1.20% 
of them, respectively (Laos Ministry of Public Works and 
Transport, 2020).
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Pavement performance prediction models are an es-
sential component in any Pavement Management Sys-
tem (PMS) because they play a crucial role in forecasting 
pavement performance in the future, estimating main-
tenance and rehabilitation needs, and setting priorities 
among projects under restricted funds (Al-Mansour & 
Al-Swailem, 1999). 

The World Bank evolved Laos PMS in 2004 to include 
the NRN (Japan International Cooperation Agency [JICA] 
& Mitsubishi Research Institute, 2013). Laos PMS em-
ploys the Highway Development and Management Model 
(HDM-4) as an analysis engine to set roads’ short- and 
medium-term maintenance strategies (Gharieb & Nishika-
wa, 2021). 

Pavement deteriorates under the combined effect of 
different factors such as traffic loads and environmen-
tal condition (George et al., 1989; Surendrakumar et al., 
2013). A considerable number of variables need to be 
taken into consideration for predicting pavement per-
formance. Ideally, these variables involve pavement age, 
material properties, traffic loads, subgrade properties, and 
environmental factors (Gupta et al., 2011; Owusu‐Ababio, 
2002).

Transportation agencies utilize several indices to de-
pict pavement condition, such as the Present Serviceability 
Rating (PSR), Pavement Condition Index (PCI), Interna-
tional Roughness Index (IRI), and the Present Serviceabil-
ity Index (PSI) (Shahnazari et al., 2012). All these indices 
transform pavement distresses into a more practical index 
(Smith & Ram, 2016). The roughness of pavement is one 
of the most interesting characteristics that can be mea-
sured from roads because the roughness of a pavement 
surface can affect ride quality, driving safety, and vehicle 
operating cost (Zang et al., 2018). Rough surface consid-
erably impacts vehicle speed, fuel consumption, tire wear 
and increases maintenance costs of road surfaces (Abulizi 
et al., 2016). 

In 1986, IRI was initially introduced in a research ef-
fort driven by the World Bank, which aimed to establish 
a global and transportable index to quantify pavement 
roughness (Sayers et al., 1986a, 1986b). IRI is calculated 
based on the dynamic response of a mathematical model 

called “quarter-car”. The IRI is defined as “the accumu-
lated suspension vertical motion divided by the distance 
traveled as obtained from a mathematical model of a 
simulated quarter-car traversing a measured profile at 80 
km/h” (ARA, 2001). The IRI is usually measured in me-
ters per kilometer or inches per mile (Múčka, 2017). At 
present, due to its stability over time and transferability 
over the world, it has become the most widely employed 
pavement index, not only for roughness assessment, with 
examples in both developed countries (Pérez-Acebo et al., 
2021; Sidess et al., 2020; Yamany et al., 2021; Yamany & 
Abraham, 2021) and developing countries (Albuquerque 
& Núñez, 2011; Nguyen et al., 2019; Obunguta & Matsu-
shima, 2020; Olowosulu et  al., 2021; Pérez-Acebo et  al., 
2019).

In Laos, road maintenance strategy is mainly based on 
assessing pavement roughness evaluated in terms of the 
IRI. The Laos Public Works and Transport Institute (PTI) 
collects the IRI data for NRN utilizing the Dynamic Re-
sponse Intelligent Monitoring System (DRIMS) provided 
to the Laos government as technical support by Nagasaki 
University in a JICA technical cooperation project (Japan 
International Cooperation Agency (JICA) & Mitsubishi 
Research Institute, 2013). DRIMS has been developed to 
be a low-cost solution for road authorities to monitor and 
evaluate their road network. This made roughness data 
in IRI a simple, convenient, and inexpensive indicator for 
monitoring and assessing changes in different pavement 
surfaces (Gharieb & Nishikawa, 2021). 

DRIMS comprises both hardware and software. Figure 
2a illustrates the four main components of DRIMS hard-
ware: (i) laptop; (ii) data acquisition module; (iii) acceler-
ometer; and (iv) GPS logger, which all are connected via 
cables. As shown in Figures 2b and 2c, The DRIMS soft-
ware includes two kinds of applications that are uniquely 
developed (Asakawa et al., 2012; Fujino et al., 2005): an 
application for data acquisition and calibration (Figure 2b) 
and an application to carry out the analysis (Figure 2c). 
By utilizing these two applications, the required data were 
measured and analyzed then the IRI value was calculated 
every 100 m interval over the traveled distance (Douang-
phachanh & Oneyama, 2014).

Table 1. Basic statistics of Laos road network 2020 (Laos Ministry of Public Works and Transport, 2018, 2020)

Type of Road DBST
(km)

Asphalt
(km)

Concrete
(km)

Gravel
(km)

Earth
(km)

Total

Length (km) Proportion (%)
National Roads 5516.91 1001.03 92.43 823.65 266.55 7700.57 13.22
Provincial Roads 2067.41 64.70 91.53 5044.29 1389.48 8657.41 14.86
District Roads 720.39 0.00 67.83 4438.95 1947.54 7174.70 12.32
Urban Roads 1341.19 134.17 292.98 1457.11 807.18 4032.64 6.92
Rural Roads 756.28 4.00 46.93 10,877.94 13,549.13 25,234.27 43.32
Special Roads 350.20 11.53 57.71 1234.75 3800.69 5454.88 9.36

Total
Length (km) 10,752.38 1215.43 649.40 23,876.69 21,760.57 58,254.48 100.00
Proportion (%) 18.46 2.09 1.11 40.99 37.35 100.00
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Figure 1. Laos National Road Network (Laos Ministry of Public Works and Transport, 2020)

Figure 2. DRIMS: a – Hardware components; b – Data collection and calibration application; c – Data analysis application  
(Asakawa et al., 2012; Fujino et al., 2005)

a) b) c)
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Laos PMS uses default HDM-4 pavement deteriora-
tion models without calibration to predict the IRI, which 
leads to an enormous error between measured and pre-
dicted IRI values. Thus, developing an accurate IRI predic-
tion model is necessary based on Laos’s local conditions to 
operate PMS precisely. 

There are different types of pavement deterioration 
models in the literature, which are classified depending 
on the authors. For instance, the pavement management 
guide (American Association of State Highway and Trans-
portation Officials [AASHTO], 2012) grouped them into 
deterministic, probabilistic, Bayesian, and subjective (or 
expert-based) models. Similarly, Uddin (2006) classified 
the prediction models into deterministic (mainly based 
on regression analysis), probabilistic (including mainly 
the Markovian and Bayesian models), and Artificial Neu-
ral Network (ANN) models. Additionally, Justo-Silva et al. 
(2021) classified them into deterministic, probabilistic, and 
hybrid (including Fuzzy Logic, ANN, and Neuro-fuzzy). 
Nevertheless, the deterministic and the probabilistic mod-
els are the most widely used and they are recognized as the 
basic groups (Abaza, 2016, 2018). 

Modeling via traditional regression methods is very 
complicated and requires predefinition of the form of the 
regression equation. So, over the last two decades, the 
ANN has attracted pavement experts’ interest in analyz-
ing prediction problems involving very complex relation-
ships among variables (Kırbaş & Karaşahin, 2016). Lately, 
there has been a wide variety of studies with the specific 
objective of applying the ANN approach in modeling 
pavement roughness (Abd El-Hakim & El-Badawy, 2013; 
Abdelaziz et al., 2020; Choi et al., 2004; Chou & Pellinen, 
2005; Georgiou et al., 2018; Hossain et al., 2020; Kaloop 
et al., 2020; La Torre et al., 1998; Lin et al., 2003; Mazari & 
Rodriguez, 2016; Teomete et al., 2004; Ziari et al., 2015). 
Most of these models were developed using the Long-
Term Pavement Performance (LTPP) database, whereas 
others were derived based on direct field measurements 
or the regional agency PMS database. Table 2 summed up 
some of the previous studies’ results that applied different 
techniques in modeling IRI.

The literature review of the existing IRI prediction 
models for different pavement types revealed that:

 – ANN models show good performance in predicting 
and determining pavement roughness condition over 
the years.

 – Despite the advantages of the ANN technique, some 
authors regard the ANN models as a “black box” as 
it is impossible to know the exact influence of each 
factor (variable) (Pérez-Acebo et al., 2020; Sollazzo 
et al., 2017).

 – Most of these models were developed based on a lo-
calized database, preventing them from being used 
globally. 

 – Variables such as traffic loads, pavement age, pave-
ment distresses, environmental conditions, and struc-
tural strength significantly affect pavement roughness 
deterioration. 

 – Relatively few studies have been conducted to predict 
the IRI of DBST pavement sections, most of which 
were about CC and AC pavement.

This research, hence, aims to develop two indigenous 
models for predicting the IRI of DBST and AC pavement 
sections for Laos NRN utilizing an ANN technique and 
compare its accuracy with the Multiple Linear Regression 
(MLR) models that were previously developed under the 
same conditions. The main objective of the developed 
models is to provide Laos PMS with precise IRI predic-
tion models to assist the accountable authorities in mak-
ing consistent maintenance decisions to deteriorated pave-
ment sections.

1. Methodology

To fulfill the research objective, the methodology followed 
in this study commenced by reviewing the relevant litera-
ture. Then, the MLR models were defined as developed 
previously. After that, ANN approach was applied to de-
velop the proposed models. Basic statistical analyses were 
conducted to evaluate and clarify the proposed models’ 
sensitivity. Finally, the proposed ANN models were com-
pared statistically with the MLR models for DBST and AC 
pavement sections. The research methodology is summed 
up in Figure 3.

1.1. Multiple linear regression models

The modeling was based on the Laos PMS database of 
the NRN. The original database included measurements 
on 214 and 36 pavement sections covered DBST and AC 
paved NRN over 14 years, starting from 2001 till 2015. 
After data screening, the valid number of sections and ob-
servations were declined, as illustrated in Table 3 (Gharieb 
& Nishikawa, 2021). 

MLR models were developed utilizing the valid num-
ber of observations, including 269 observations from 83 
sections covering a total length of 1849.26 km of DBST 
NRs and 122 observations from 29 sections covering a 
total length of 718.55 km of AC NRs. Gharieb and Ni-
shikawa (2021) reported efforts regarding data gathering, 
processing, and variables’ calculation. MLR models are 
defined as shown in Eqns (1)–(2). In addition, Table 4 il-
lustrates the description of models’ variables.

IRIDBST = 3.006 + 0.259 age + 0.038 CESAL; (1)

      IRIAC = 1.782 + 0.203 age + 0.123 YESAL.  (2)

It was noticed that the YESAL was used in the IRIAC 
model (Eqn (2)) instead of CESAL, contrary to what is 
expected, as was done in the IRIDBST model (Eqn (1)) 
to avoid multicollinearity among independent variables 
(Gharieb & Nishikawa, 2021). Multicollinearity emerges 
when independent variables that are strongly correlated 
exist in the model (Alin, 2010). Table 5 illustrates the cor-
relation between variables utilizing the Pearson correla-
tion coefficient. 
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Table 2. Summary of literature IRI prediction models

Authors, year Pavement type Source of data Modeling* Independent variables* Model performance
La Torre et al. 
(1998)

AC 
pavement

LTPP GPS-1 
database

ANN ACTH, ACEM, UTH, 
UEM, SEM, FI, AP, 
ESAL, AGE0, IRI0

RMSE = 0.113, N = 144

Lin et al. 
(2003)

NA Direct field 
measurement, 
Taiwan

ANN RL, LRUT, RRUT, AC, CR, 
D/P, P, MPH, SPH, BLD, COR, 
STR, MMH, SMH 

R2 = 0.84, 
RMS = 0.068, N = 100

Choi et al. 
(2004)

AC on 
granular base

LTPP GPS-1 
database

ANN P200, ACTH, ASC, 
SN, CESAL 

r = 0.87, MSE = 0.025, 
N = 92

MLR r = 0.46, MSE = 0.278, 
N = 117

Teomete et al. 
(2004)

Jointed Portland 
Cement Concrete 
(JPCC)

LTPP 
database

ANN IRI0, AGE, TFAULT, 
TCLS, TCMS, TCHS, ESAL

R2 = 0.84,
N = 5045

Chou and 
Pellinen (2005)

Portland Cement 
Concrete (PCC)

Indian pavement 
management 
system database

ANN IRI0, AGE, FI, AP, 
F/T, ESAL

R2 = 0.98, RMSE = 0.074, 
N = 90

Asphalt overlay 
on concrete 
pavement

R2 = 0.88, RMSE = 0.124, 
N = 1080

Hot-Mix 
Asphalt (HMA) 

R2 = 0.90, RMSE = 0.121, 
N = 640

Abd El-Hakim 
and El-Badawy 
(2013)

Jointed Plain 
Concrete 
Pavement (JPCP)

LTPP 
database

ANN IRI0, AGE, TC, SPALL, P, 
TFAULT, FI, P200

R2 = 0.83, 
Se/Sy = 0.414, N = 184

Ziari et al. 
(2015)

AC over 
granular base

LTPP 
database

ANN AGE, AAP, AAT, AAFI, 
AADT, AADTT, ESAL, STH, 
PTH

R2 = 0.90, RMSE = 0.09, 
MAPE = 5.54, N = 205

GMDH R2 = 0.63, RMSE = 0.405, 
MAPE = 28.62, N = 205

Mazari and 
Rodriguez 
(2016)

AC over unbound 
granular layers

LTPP 
database

Hybrid 
GEP-ANN

SN, AGE, CESAL R2 = 0.99, RMSE = 
0.049, N = 95

Abdelaziz et al. 
(2020)

AC 
overlay

LTPP database 
for six sections; 
GPS-1, 2, 6;
SPS-1, 3, 5

ANN IRI0, AGE, FC, 
TC, SDRUT

R2 = 0.75, N = 2439
MLR R2 = 0.57, SE = 0.325

N = 2439

Georgiou et al. 
(2018)

AC 
pavement

Direct field 
measurement, 
Greece

ANN CR, RUT, PH R2 = 0.96, MAE = 6.9%, 
RMSPE = 8.3%

SVM R2 = 0.93, MAE = 7.7%, 
RMSPE = 8.9%

Hossain et al. 
(2020)

Rigid 
pavement

LTPP 
database

ANN AAT, AAFI, 
AAMiH, AAMaH, 
AAP, AADT, AADTT

RMSE = 0.01, 
MAPE = 0.01

Kaloop et al. 
(2020)

JPCP LTPP GPS-3 
database

ANN IRI0, FI, TFAULT r = 0.80, MAE = 0.37, 
RMSE = 0.49, N = 184

WOPELM r = 0.92, MAE = 0.23, 
RMSE = 0.24, N = 184

Terzi (2013) Flexible Pavement LTPP-IMS 
Database

ANFIS AGE, SN, CESAL R2 = 0.97

Pérez-Acebo 
et al. (2021)

Semi-rigid 
pavement

PMS of the 
regional 
government of 
Biscay

MLR R.Age, TotVeh, TotBit, TotH.
Veh, BASE, Bthick, SURF

R2 = 0.645, SEE = 0.341
N = 81

Nguyen et al. 
(2019)

AC 
pavement

2811 Samples as a 
case study in the 
North of Vietnam 

PSOANFIS Road Length, Analysis Area, 
Summed Cracks, 
Maximum Depth of Rut, 
Average Depth of Rut

R = 0.888, RMSE = 0.145 
GANFIS R = 0.872, RMSE = 0.155 
FAANFIS R = 0.849, RMSE = 0.170 
ANN R = 0.804, RMSE = 0.186 

Note: * All abbreviation definitions are provided in Table A1, Appendix.
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As seen in both models, Age and CESAL possess a high 
correlation with the IRI, while YESAL possesses a moder-
ate correlation with the IRI in the AC model. Although 
the impact of the CESAL is higher than the YESAL in 
modeling the IRIAC, the YESAL was used to avoid multi-
collinearity among Age and CESAL where the moderate 
correlation (0.62) between them was replaced with the low 
correlation (0.31) between Age and the YESAL. Since the 
correlation between Age and CESAL in the DBST model 
is as low as 0.42, CESAL was used without any multicol-
linearity concern.

1.2. Artificial neural network models

An ANN is a form of an Artificial Intelligence (AI) applied 
to resolve nonlinear engineering problems such as esti-
mating current and predicting future pavement conditions 
(Adeli, 2001). An ANN is a computational intelligence 
system that mimics the human brain’s information pro-
cessing and knowledge acquisition (Georgiou et al., 2018) 
and consists of many neurons interconnected through di-
rected links, and each link has an associated weight. The 
weights acquired through the training process represent 
abstracted information from the data set, which an ANN 
uses to solve a particular problem. Three key components 
need to be determined to construct an ANN: the structure 
of connection between input and output layers (architec-
ture), the neuron activation function, and the method of 
adjusting the connection weight (learning method).

1.2.1. Architecture of the ANN 

Feedforward Backpropagation ANN is one of the most 
commonly used neural network that is capable of per-
forming any linear and nonlinear computations and rep-
resenting any function arbitrarily well (Xu et  al., 2014). 
Feedforward means no lateral connection exists between 
the artificial neurons in a given layer, and the data flow 
does not go back to previous layers (Chou & Pellinen, 
2005). An ANN is generally constructed from an input 
layer where there are as many neurons as the independent 
variables considered in the analysis, one or several hidden 
layers of neurons, and an output layer with as many neu-
rons as the number of dependent variables.

A network with n hidden layers is usually called an 
“n + 1-layer network” as the input layer does not perform 
any calculations on the data. There is no specific standard 
procedure to determine the number of hidden layers in a 
neural network. Researchers usually use trial and error to 

Table 3. Summary of the number of sections and observations 
in each surface-type group

Surface 
type

Total No.  
of

sections

Total No.  
of

observations

Valid No.  
of

sections

Valid No.  
of

observations
DBST 214 997 83 269
AC 36 184 29 122

Table 4. MLR model variables’ description

Variable Description Unit

IRIDBST
The predicted value of the IRI for 
DBST pavement sections m/km

IRIAC
The predicted value of the IRI for 
AC pavement sections m/km

Age Pavement age since the last overlay 
to the day of the IRI reading years

CESAL

The cumulative number of 
equivalent single axle loads that 
pavement experienced from the 
last overlay to the day of the IRI 
reading

104 axles/lane

YESAL

The average cumulative equivalent 
single axle loads that pavement 
experienced from the last overlay 
to the day of the IRI reading 
(CESAL/Age)

104 axles/lane

Figure 3. Flow chart of the research methodology

Table 5. Pearson correlation coefficient matrixes

DBST Model AC Model
Variable IRI AGE CESAL Variable IRI AGE CESAL YEASL

IRI 1 0.85 0.73 IRI 1 0.82 0.83 0.64
AGE 0.85 1 0.42 AGE 0.82 1 0.62 0.31

CESAL 0.73 0.42 1
CESAL 0.83 0.62 1 0.90
YESAL 0.64 0.31 0.90 1
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find the optimum number of hidden layers and neurons in 
each hidden layer. Figure 4 presents the general architec-
ture of the feedforward backpropagation neural network 
that is most used.

1.2.2. Activation function
Each neuron in the ANN works as a processing unit, as 
illustrated in Figure 5, receiving inputs and turn over the 
output to the next layer (Huang & Moore, 1997). All neu-
rons of a given layer are connected to all neurons in the 
subsequent layer. 

The nonlinear relationship between variables in input 
and output layers in the ANN needs a function to create a 
relation between neurons. Computation between two neu-
rons of different layers in the neural network is provided 
by three transfer functions: Log-Sigmoid, Tan-Sigmoid, 
and Linear (Demuth & Beale, 1992). These functions have 
the following mathematical Eqns (3)–(5):

( ) −
=

+
1logsig 

1 x
x

e
; (3)

( ) −
= −

+ 2
2tansig 1

1 x
x

e
; (4)

( ) =purelin x x . (5)

The sigmoid function and linear threshold function 
were used in this study for the hidden layer and output 
layer. The processing of each neuron is simply a weighted 
summation that is transferred via activation function, 
which is shown as the following Eqn (6) (Mosa, 2017): 

=

= ∑
1

,
n

j i ij
i

O f x w
 

(6)

where: Oj is the output of jth neuron, f is the activation 
function, n is the total number of inputs in this layer, Xi is 
ith input, Wij is the connection weight between ith input 
and jth neuron.

1.2.3. Learning algorithm
Levenberg-Marquardt’s backpropagation (LMBP) algo-
rithm is a numerical optimization technique for training 

the neural network (Demuth & Beale, 1992). The network 
will be trained in standard training procedures conducted 
in three steps. The first step is the feedforward of the input 
training dataset, where the input data is passed forward 
through the network to reach the output layer. After that, 
the associated error at the output layer is calculated. Lastly, 
the errors are propagated back towards the input layer, 
where weights and biases of the network are iteratively 
adjusted to minimize the network performance function. 
The performance function for feedforward networks is the 
Mean Square Error (MSE). MSE is the average squared 
error between the network outputs and the target outputs.

1.3. Models’ performance measures

The performance of the developed models will be evalu-
ated in terms of statistical measures of goodness of fit. 
There are many statistical criteria for evaluating the per-
formance of the developed models. In this research, the 
proposed models were assessed utilizing the coefficient of 
determination (R2), Mean Absolute Error (MAE), and the 
Root Mean Squared Percentage Error (RMSPE). The cor-
responding equations are mathematically defined through 
Eqns (7)–(9) (Hamdi et al., 2017): 
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=

−
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−

∑
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1 ,
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n i act i pred

i i act

IRI IRI

n IRI
, (9)

where: n is the number of samples, IRIact and IRIpred are 
the actual and the predicted IRI value, respectively, IRIact 
is the average value of actual IRI.

The R2 should be close to 1 for a better correlation 
between the predicted and the actual values, while the 
lower values of MAE and RMSPE correspond to a higher 
forecasting capacity and lower error for predicted values.

Figure 4. The general architecture of the feedforward 
backpropagation ANN

Figure 5. Basic artificial neuron
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2. Results

2.1. ANN model development
The current study utilized the same database for the MLR 
models (Gharieb & Nishikawa, 2021) to develop an ANN 
model for each type of pavement. Pavement Age and 
CESAL are used as input variables for predicting the IRI 
value. Despite the significant influence of the environmen-
tal factors, subgrade soil properties, pavement structural 
capacity, and initial IRI0 value on the progression of the 
unevenness (Makendran et al., 2015; Mazari & Rodriguez, 
2016; Odoki & Kerali, 2001; Sandra & Sarkar, 2013), an 
assessment of the effect of those factors on IRI progres-

sion was not possible, since the Laos PMS database does 
not have any information regarding those variables. The 
obtained data were randomly divided into training (70%), 
validation (15%), and testing (15%) datasets. The dataset 
range covers a broad range of pavement conditions under 
different traffic loading characteristics, raising confidence 
in the proposed models. Figure 6 shows the histogram 
and the normal probability distribution of the IRI, Age, 
CESAL, and YESAL. The figure shows that the distribu-
tions of input and output variables are not fully normally 
distributed and not similar, which means the relationship 
between the input variables (Age and CESAL or YESAL) 
and IRI is nonlinear.

Figure 6. Histogram along with the normal probability distribution for: a – DBST; b – AC models variables
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The descriptive statistics of variables used for training, 
validation, testing, and all datasets in both DBST and AC 
models are summarized in Table 6. The training data are 
used to fit the model, while the validation data are used 
to avoid overfitting. The test data are used to compute the 
quality of the prediction estimates.

Development of ANN models were conducted using 
the Neural Network Toolbox incorporated in the MAT-
LAB R2020b. A two-layer feed-forward ANN (exclud-
ing the input layer) with a tan-sigmoid transfer func-
tion in the hidden layer and a linear transfer function in 
the output layer was created. The Levenberg-Marquardt 
backpropagation algorithm was used for training the  
models.

To form an accurate ANN model, a trial-and-error 
process could be used to judge the number of neurons in 
the hidden layer. There is no standard method for select-
ing the appropriate number of neurons, so training the 
ANN model with a sequential number of hidden neurons 
and then selecting the number of neurons that achieve 
minimum MSE was employed. 

As an initial guess, two neurons were used in the 
hidden layer. Trial networks with a varying number of 
neurons in the hidden layer were trained to evaluate the 
performance of different network architectures. Ten trials 
were conducted for each number of neurons in the hidden 

layer then the average values were calculated and plotted 
as shown in Figure 7. 

The results indicate that the MSE is sensitive to the 
number of neurons in the hidden layer, where MSE de-
creases as the number of neurons in the hidden layer in-
crease. The lowest MSE value was achieved at 9 and 11 
hidden neurons for DBST and AC models.

After determining the optimum number of neurons 
in the hidden layer, Figure 8 displays the architecture of 
the proposed neural network models for the DBST and 
the AC pavement sections. DBST neural network architec-
ture is composed of one input layer including two neurons 
(Age and CESAL), one output layer including one neuron 
(IRI), and one hidden layer in between with nine neurons 
(2-9-1). Similar configurations were used for developing 
ANN for the AC pavement sections, with a different num-
ber of neurons in the hidden layer (2-11-1).

The final neural network architecture was retrained 
several times using the training data set to guarantee that 
it has the best solution and to find the correct weights for 
the optimum solution. The connection weights are initially 
appointed randomly. Figure 9 illustrates the error perfor-
mance versus epochs to check the progress while training, 
validating, and testing the ANN. Epochs are the number of 
learning cycles where weights were adjusted to minimize 
the difference between the measured and the predicted IRI. 

Figure 7. Progress of MSE versus the number of neurons in the hidden layer for the: a – DBST model; b – AC model

Table 6. Descriptive statistics of the variables used for IRI modeling

Variable
Training (70%) Validation (15%) Test (15%) All data

Min Max Mean Std Min Max Mean Std Min Max Mean Std Min Max Mean Std

DBST Model
Age 0.01 14.10 6.16 3.70 0.17 13.39 6.13 3.88 0.11 13.39 5.28 3.73 0.10 14.10 6.03 3.73
CESAL 0.02 99.26 13.88 16.63 0.02 64.41 13.40 16.08 0.02 87.07 10.34 16.68 0.02 99.26 13.28 16.55
IRI 2.20 8.91 5.17 1.45 2.46 8.83 5.06 1.50 2.93 8.18 4.73 1.28 2.20 8.91 5.09 1.44

AC Model
Age 0.09 12.08 5.82 3.45 0.09 13.08 6.73 3.83 0.15 10.76 5.74 3.01 0.09 13.08 5.95 3.44
YESAL 0.03 20.53 4.56 3.61 0.73 10.13 3.99 2.41 0.50 10.32 4.20 2.90 0.03 20.53 4.42 3.34
IRI 1.47 5.46 3.52 1.04 1.63 5.18 3.75 1.06 1.73 4.52 3.41 0.90 1.47 5.46 3.54 1.02
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The error function in terms of MSE between the mea-
sured and the predicted IRI was monitored during the 
training process. When the network begins to overfit the 
data, the error on the validation set will begin to increase, 
so the training was stopped, and the network weights and 
biases were maintained at the minimum of the validation 
set error, as shown in Tables A2, A3, and A4 in Appendix. 

The results revealed that the MSE decreases with the 
training epochs. For DBST pavement sections, the best 
training performance of the model is gained at epoch 13, 
where the validation error is equal to 0.099. At the same 
time, the best training performance of the AC model is 
achieved at epoch 31, where the validation error is equal 
to 0.058.

2.2. Models’ evaluation

To ensure the good generalization ability of a trained 
neural network, once each network was developed using 
a training dataset and validated, it was tested using the test 
dataset. Like the validation dataset, a test dataset is never 

used for training the neural network. Figures 10 and 11 
show scatter plots of the measured and the predicted IRI 
values of DBST and AC pavement sections, respectively, 
using the ANN model for training, validation, testing, and 
all datasets. 

The figures showed good distribution of data points 
around the equality line, indicating a highly accurate pre-
diction of the developed models. The equality line is the 
target of the training activity. Moreover, the R2, MAE, and 
RMSPE were calculated for training, validation, testing, 
and all datasets in both DBST and AC models as shown 
in Table 7. 

The values of R2, MSA, and RMSPE for the DBST 
model were equal to 0.949, 0.244, and 7.331, respectively, 
whereas they were equal to 0.934, 0.193, and 9.652 for the 
AC model, considering all dataset. Larger values of R2 and 
lower values of MAE/RMSPE suggest that a strong cor-
relation exists between the predicted and the measured 
IRI values. 

In addition, Figure 12 shows the histogram of the pre-
diction errors for training, validation, and testing datas-
ets in both DBST and AC models. The prediction errors 
are statistically normally distributed. As can be seen in 
Figure 12a, the prediction errors in the DBST model are 

Figure 8. Neural network architecture for the:  
a – DBST model; b – AC model

Figure 9. ANN Error performance while training, validation, 
and testing for the: a – DBST model; b – AC model

a) a)

b)

b)
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Figure 10. DBST model goodness-of-fit results of the: a – Training data; b – Validation data; c – Test data; d – All data

Figure 11. AC model goodness-of-fit results of the: a – Training data; b – Validation data; c – Test data; d – All data

mainly concentrated between –0.70 and 0.53 m/km, while 
the prediction errors in the AC model are mainly concen-
trated between –0.41 and 0.42 m/km, as shown in Figure 
12b. The results shown in Figure 12 confirm what has il-
lustrated in Table 7 that MAE values in the AC model are 

less than those in the DBST model. Overall, the statisti-
cal evaluation results reveal that both models have good 
prediction ability and their R2 values show their success 
in modeling the IRI.

a)

a)

c)

c)

b)

b)

d)

d)
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2.3. Sensitivity analysis of the ANN model

The relative importance of each input variable to the 
IRI prediction was studied employing sensitivity analy-
sis. Two methods can conduct ANN sensitivity analysis; 
the weights method as firstly proposed by Garson (1991) 
and the first-order partial derivative method (Nourani & 
Sayyah Fard, 2012; Shekharan, 1999). In this study, the 
weight method was employed as it comprises less calcula-
tions while gives comparable results to the second method 
(Liu, 2013). The Weights method is a process of splitting 
the connection weights (Tables A2 and A3) to determine 
the relative importance of the different inputs. This meth-
od basically involves splitting the hidden-output connec-
tion weights of every hidden neuron into components 
connected with every input neuron, using absolute values 
of all weights (Goh, 1995). By utilizing Eqn (10) (Jokić 
et al., 2011), the relative importance of input variables to 
IRI prediction for DBST and AC pavement sections was 
computed as a percentage value. For each model, the sum 
of relative importance values of all input variables must 
be 100%.
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where: Ri is the relative importance of each input variable, 
nh is the hidden neurons’ number, nv is the input neurons 
number, wj is the input-hidden connection weights, and 
Oj is the hidden-output connection weights. 

The calculated Ri values are within 0 and 1. A larger 
Ri value points out a greater impact of the corresponding 
input variable on the predicted IRI. As illustrated in Table 
8, the results of sensitivity analysis indicate that, for the 
DBST model, both age and CESAL play a remarkable role 
in IRI predictions, as there is no significant difference in 
the relative importance values between them. While in the 
AC model, age plays the most crucial role in IRI predic-
tions. The cause of this phenomenon might be due to the 
effect of pavement structural capacity, where under the 
same range of traffic loads, AC pavement sections are less 
affected than DBST pavement sections.

Table 8. The relative importance of ANN input variables

Variables
DBST model AC model

Age CESAL Age YESAL
Ri (%) 46.86 53.14 67.15 32.85

2.4. Comparative study

The proposed ANN models were compared statistically 
with the previous developed MLR models (Gharieb & Ni-
shikawa, 2021) for both DBST and AC pavement sections. 
For the first level of comparison, R2, MAE, and RMSPE 
were calculated for the ANN and the MLR models using 
training datasets. From the results reported in Table 9, it 

Table 7. Performance of the DBST and the AC models of training, validation, testing, and all data

Parameter
DBST model AC model

Training Validation Test All Training Validation Test All
n 189 40 40 269 86 18 18 122
R2 0.958 0.954 0.884 0.949 0.935 0.946 0.902 0.934
MAE 0.231 0.237 0.309 0.244 0.191 0.183 0.209 0.193
RMSPE 7.026 7.596 8.394 7.331 9.979 8.123 9.467 9.652

Figure 12. Distribution of the ANN prediction errors for the: a – DBST model; b – AC model

a) b)
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can be observed that the ANN models for both BDST and 
AC pavement sections present high R2 and low MAE and 
RMSPE values, although the goodness-of-fit statistics of 
the MLR models for both DBST and AC pavement sec-
tions are less efficient compared with those corresponding 
to ANN models. 

In the second level of comparison, the ANN model’s 
performance in predicting the IRI values is compared with 
those produced by the MLR method and the measured 
values, as shown in Figure 13. The comparison is carried 
out utilizing validation and testing datasets. Figure 13a 
shows that both DBST models (ANN and MLR) have al-
most the same prediction ability with high values of R2 

(0.930 and 0.923) where the two lines (ANN IRI and MLR 
IRI) are almost parallel to the Measured IRI line with 
some minor differences. While for AC pavement sections, 
the ANN model is more precise than the MLR model, 

with a much higher R2 value of 0.935 compared to 0.849 
for the MLR model. Also, the results shown in Figure 13b 
confirm this where the differences between lines ANN IRI 
and Measured IRI are less than those between lines MLR 
IRI and Measured IRI.

From those results illustrated in Table 9 and Figure 13,  
It is noteworthy to mention that both methods have out-
standing predictive ability. However, it can be concluded 
that the proposed ANN models yield superior perfor-
mance and precise predictions compared to the MLR 
models using the same database.

Conclusions

ANN can be used in PMS to estimate current and predict 
future pavement conditions, assess maintenance needs, 
and select maintenance and rehabilitation strategies. Laos’ 
road maintenance strategy is mainly based on assessing 
pavement roughness in terms of the IRI. Laos PMS uses 
default HDM-4 pavement deterioration models without 
calibration to predict the IRI, which leads to an enormous 
error between measured and predicted IRI values. 

Thus, a typical three-layer feedforward backpropaga-
tion ANN was applied in this research to develop new 
IRI prediction models for two families of pavement: 
DBST and AC, to operate PMS properly. Models’ variables 
were extracted from the Laos PMS database. The Leven-
berg Marquardt algorithm was employed for training.  

Figure 13. Comparing the measured IRI with the predicted IRI calculated by the MLR and the ANN models for the:  
a – DBST pavement sections; b – AC pavement sections
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Table 9. Comparison of the goodness of fit statistics  
for the ANN and the MLR models

Parameter
DBST Model AC Model

ANN MLR ANN MLR
n 189 215 86 98
R2 0.958 0.892 0.935 0.847
MAE 0.231 0.336 0.191 0.314
RMSPE 7.026 9.626 9.979 12.186 
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The developed ANN models successfully predicted the IRI 
with R2 values of 0.96 and 0.94 for the training dataset of 
DBST and AC models, respectively. The performance of 
the proposed ANN models is deemed much better com-
pared to the similar MLR models developed previously. 

Despite the better prediction of ANN models’ to IRI 
values, ANN models cannot be incorporated in Laos PMS 
due to the difficulty of deriving a formula that works with 
all possible inputs’ values. Even if deriving a formula, the 
developed formula will end up with a long equation in-
cluding the inputs, weights, and biases which is useless. 
All these difficulties give an advantage to the MLR mod-
els in terms of ease of integrating them into the current 
system. The effect of the environmental factors, subgrade 
soil properties, pavement structural capacity, and initial 
IRI0 value on the progression of the unevenness will be 
studied in the future.
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APPENDIX

Table A1 illustrates the abbreviations and definitions of variables that have been used in the IRI literature review models. 
Table A2 and Table A3 illustrate the weight matrix for calculating the relative contribution of each input variable in pre-
dicting IRI for DBST and AC pavement sections, respectively. As well as, Table A4 illustrates the bias values for hidden 
and output neurons in DBST and AC ANN models.

Table A1. The abbreviation and definition of variables used in the IRI literature review models

Abbreviation 
Symbols Variable Name Abbreviation

Symbols Variable Name

IRI0 Initial IRI RL Road Level
AGE0 Initial age CR Cracking
AGE Pavement age since last overlay AC Alligator Cracking
ESAL Equivalent Single-Axle Load FC Fatigue Cracking
CESAL Cumulative ESAL TCLS Transverse Cracks Low Severity
AADT Average Annual Daily Traffic TCMS Transverse Cracks Medium Severity
AADTT Average Annual Daily Truck Traffic TCHS Transverse Cracks High Severity
AP Annual Precipitation D/P Digging / Patching
AAP Annual Average Precipitation P Patching
FI Freezing Index RUT Rutting
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Abbreviation 
Symbols Variable Name Abbreviation

Symbols Variable Name

AAFI Annual Average Freezing Index LRUT Left Rutting
F/T Number of Freeze/Thaw Cycles RRUT Right Rutting
AAT Annual Average Temperature SDRUT Standard Deviation of Rut Depth
ASC Asphalt Content SPALL Percentage of Joints with Spalling
ACTH Asphalt Concrete thickness BLD Bleeding
STH Surface Thickness COR Corrugation
PTH Pavement Thickness STR Stripping
UTH Unbound Layer Thickness TFAULT Total Joint Faulting
P200 Percent Passing No. 200 sieve PH Potholes
SN Structural Number MPH Mild Potholes
UEM Unbound Layer Elastic Modulus SPH Severe Potholes
SEM Subgrade Elastic Modulus MMH Mild Manholes
ACEM Asphalt Concrete Elastic Modulus SMH Severe Manholes
AAMiH Annual Average Minimum Humidity AAMaH Annual Average Maximum Humidity
R.Age The real age of the pavement SURF The bituminous material of the surface layer
TotVeh The accumulated vehicles that circulated through 

the section in both direction
BASE The coefficient that considers the combination 

of material to create a semi-rigid pavement
TotH.Veh The accumulated number of heavy vehicles that 

crossed the section in the design lane
Bthick The thickness of the treated base layer

TotBit The total thickness of the bituminous layers GMDH Group Method of Data Handling
WOPELM Wavelet Optimally Pruned Extreme Learning 

Machine
GANFIS Genetic Algorithm based Adaptive Network-

Based Fuzzy Inference System
PSOANFIS Particle Swarm Optimization based Adaptive 

Network-Based Fuzzy Inference System
FAANFIS Firefly Algorithm based Adaptive Network-

Based Fuzzy Inference System
SVM Support Vector Machine ANFIS Adaptive Neural-Based Fuzzy Inference System

Table A2. The weight matrix of variables used in DBST ANN model

Variable H1 H2 H3 H4 H5 H6 H7 H8 H9
Age 1.96 –0.94 –6.22 –8.54 3.60 –6.58 –5.48 0.15 –3.20
CESAL 3.20 4.53 6.63 –0.43 3.28 –3.61 1.28 3.95 2.53
IRIpred –0.17 0.14 0.10 –0.22 0.17 –0.24 –0.12 0.35 –0.08

Table A3. The weight matrix of variables used in AC ANN model

Variable H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11
Age –7.70 4.20 3.63 3.40 –6.50 –1.18 –6.97 1.39 –18.14 –2.74 2.25
YESAL 0.25 –6.37 –1.21 –0.45 4.45 –6.35 0.14 9.96 2.76 3.80 1.72
IRIpred –0.27 –0.61 –3.07 3.58 0.55 0.99 –0.42 0.69 –0.48 0.49 0.71

Table A4. The Bias matrix of variables

Model H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 Out layer
DBST –4.77 –2.16 3.82 5.74 0.56 –5.00 –2.66 4.29 –4.47 – – –0.31
AC 5.76 –7.70 –1.93 –1.44 0.21 –2.39 –1.42 4.09 –10.09 –4.31 5.47 –0.64

End of Table A1


