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Abstract. Decision making is a key to business or project success in any sectors, especially in construction that requires 
handling numerous information and knowledge. Multiple criteria decision making (MCDM) is an important tool for deci-
sion problem solving due to simultaneous consideration of multiple criteria and objectives. Various MCDM methods are 
continually emerging and tend to be increasingly adopted to address the real-world construction problems. Therefore, it 
is urged to systematically review the existing body of literature to demonstrate the evolution of the mainstream MCDM 
methods in general and their application status in construction. A total of 530 construction articles published from 2000 to 
2019 are selected in this study and then categorized into seven major application areas using a novel systematic literature 
review (SLR) methodology. The bibliometric analysis is then used to describe the research trend. Subsequently, the qualita-
tive discussion by themes is conducted to analyze the application of MCDM methods in construction. A further discussion 
makes it possible to identify the potential challenges (e.g. applicability, robustness, postpone effect, dynamic and prospec-
tive challenges and scale problem) to existing research. It also contributes to the recommendation of future directions for 
the development of MCDM methods that would benefit construction research and practice. 

Keywords: decision support system, construction, multiple criteria decision making, multiple attribute decision making, 
multiple objective decision making, systematic literature review.

Introduction

The significant role of construction in economic develop-
ment has been widely acknowledged and long recognized 
(Giang & Pheng, 2011; Zhao et al., 2012). Construction 
activities can often be described as a summary of various 
tasks and requirements, involving conflicting aspects and 
factors to consider (Jato-Espino et al., 2014). Due to the 
sophistication of technologies and the increase in com-
plexity and dynamics, decision making in construction 
projects is becoming complicated and difficult (de Aze-
vedo et  al., 2013; Bakht & El-Diraby, 2015). Therefore, 
accurate and agile decisions should be made in a scien-
tific manner based on qualitative or quantitative analysis 
(Zavadskas et  al., 2016a), rather than relying solely on 
intuition or experience. Otherwise, there may be a latent 
negative effect on resource utilization, cost efficiency, en-
vironment and sustainability (Sitorus et al., 2019).

Based on theoretical and practical requirements, a wide 
variety of MCDM methods have been developed in general 

(Zavadskas et al., 2016b), with even minor variations or a 
combination of existing methods to create new branches 
of relevant research (Velasquez & Hester, 2013). This may 
favor decision makers in providing more choices, but ap-
pear to be a paradoxical result, as selecting an appropriate 
method among various alternatives may be difficult, partic-
ularly for decision makers with a limited understanding of 
MCDM methods. As an operational research method com-
prehensively considering computational and mathematical 
tools in a certain environment to find a suitable solution 
(Zavadskas et al., 2014), MCDM has attracted considerable 
academic attention across a number of industry sectors. 
Due to the complex and dynamic nature, the above-men-
tioned problem is particularly true for the use of MCDM 
methods in the construction industry and its projects. 
Therefore, this paper addresses the problem through a 
thorough investigation of existing MCDM methods and a 
systematic synthesis of their application in construction. 

Invited Review

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3846/jcem.2021.15260
https://orcid.org/0000-0001-7690-6739
https://orcid.org/0000-0001-9347-5942
https://orcid.org/0000-0002-7955-1467


Journal of Civil Engineering and Management, 2021, 27(6): 372–403 373

Actually, several previous attempts have been made 
to review the literature on the use of MCDM methods 
in construction. For example, Jato-Espino et  al. (2014) 
evaluated the application of six MCDM methods and 
their hybrid variants in construction. Sierra et al. (2018) 
reviewed the state-of-the-art of 19 multiple-criteria assess-
ment methods for social sustainability in infrastructure 
development. Despite that, some limitations exist within 
these previous literature reviews. Firstly, only a limited 
number of MCDM methods are discussed, ignoring the 
differences and connections among various MCDM meth-
ods. Secondly, the majority of these literature reviews are 
not strictly conducted in a systematic manner, yielding 
results that are supposedly affected by bias. Thirdly, some 
literature reviews are based on different MCDM methods 
instead of their application areas, which tend to be meth-
od-oriented rather than problem-oriented. 

This research aims to systematically review the ap-
plication status of MCDM methods in the construction 
industry. The specific objectives of this research are: (1) to 
classify MCDM methods in general and analyze their re-
lationships; (2) to identify the evolution of MCDM meth-
ods; (3) to design a novel methodology for systematically 
reviewing the utilization of MCDM models in construc-
tion from the bibliometric perspective; (4) to determine 
the main areas of applying MCDM models in construc-
tion; and (5) to analyze the potential gaps and provide 
future directions for MCDM research in construction. The 
following sections are arranged accordingly to achieve the 
research objectives one by one.

1. Overview of MCDM methods
1.1. Concept and general structure of MCDM

Although MCDM methods are widely diverse, how to 
evaluate a set of alternatives in terms of a number of cri-
teria is a key issue of MCDM methods in general (Tri-
antaphyllou, 2000). MCDM refers to making decisions 
in the presence of multiple, usually conflicting criteria 
(Zavadskas et al., 2014). It can be perceived as a process 
of evaluating the real-world situations based on various 
qualitative and/or quantitative criteria in certain circum-
stances to find a suitable alternative/solution. Roy (1996) 
defined four types of problems that MCDM can solve: (1) 
selection problem, in which MCDM is adopted to choose 
a specific alternative or develop a selection procedure; (2) 
sorting problem, in which MCDM is used to assign the al-
ternatives in terms of norms or build the assignment pro-
cedure; (3) ranking problem, in which MCDM is applied 
to order the alternatives according to the preference or set 
up the ranking procedure; and (4) description problem, in 
which MCDM is utilized to present the alternatives and 
their consequences. The problem structure of MCDM is 
treated as a combination of problems and methods (Kee-
ney, 1982; Cinelli et al., 2014). From this perspective, the 
whole MCDM process can be divided into four stages, 
namely problem structuring, problem formulating, meth-
od selection and evaluation, and decision recommendation 
(Bouyssou et al., 2006; Tsoukiàs, 2007; Bigaret et al., 2017).

1.2. Classification of MCDM

MCDM consists of many subfields. Existing studies show 
that MCDM can mainly be divided into multiple attribute 
decision making (MADM) and multiple objective deci-
sion making (MODM) (Hwang & Yoon, 1981; Chen & 
Hwang, 1992; Zavadskas et al., 2014; Kahraman & Otay, 
2019). According to Hwang and Masud (1979), the dis-
tinctive feature of MADM is that there are usually a lim-
ited number of predetermined alternatives. The selection 
of alternatives is based on inter- and intra-attribute com-
parisons, which involve explicit or implicit trade-offs. On 
the contrary, the alternatives of MODM are not predeter-
mined. MODM methods are to design the alternatives in 
terms of their constraints to attain the acceptable levels of 
objectives. Triantaphyllou (2000) concluded that MADM 
concentrates on discrete decision spaces, whereas MODM 
studies decision problems whose space is continuous. 

1.3. Evolutionary development of MADM

The historical origin of MADM can be traced back to the 
research on utility theory published by Bernoulli in 1738. 
According to Bernoulli (1738), a decision is made on the 
basis of the utility value rather than the excepted value. 
von Neumann and Morgenstern (1947) further paved the 
way for the development of MADM by applying the dy-
namic mathematic model for strategic interaction between 
rational decision makers. Nowadays, MADM methods are 
generally grouped into six categories, including multiple 
attribute utility (value) functions, pairwise comparisons 
methods, distance (ratio) to reference point methods, 
outranking-based MADM methods, fuzzy set methods 
and their variants, and other MADM methods. Based on 
Liou and Tzeng (2012) and Tzeng and Shen (2017), this 
research summarizes the evolutionary development of 
MADM methods in the form of dendrogram (see Figure 1).  
The six categories of MADM are discussed below one by 
one. 

1.3.1. Multiple attribute utility (value) functions

The goal of multiple attribute utility (value) functions is 
to construct the expression that represents the preference 
of decision makers based on utility/value functions. Al-
though utility/value functions can be utilized to transform 
the values of diverse criteria for alternatives, either factual 
(objective, quantitative) or judgmental (subjective, quali-
tative), into a common and dimensionless scale (Fülöp, 
2001), an obvious drawback of utility/value functions is 
that the criteria should follow the assumption of inde-
pendence, which is termed preferential independence. 
As a result, Choquet (1954) and Sugeno (1974) proposed 
Choquet integral and Sugeno integral, respectively, to ad-
dress the interrelationship among the criteria (Angilella 
et  al., 2004). Representative methods in this category 
include simple additive weighting (SAW) (value added 
not utility) by MacCrimmon (1968) and multi-attribute 
utility theory (MAUT) by Keeney and Raiffa (1972) and 
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 Figure 1. Evolutionary development of MADM methods
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Keeney and Raiffa (1976). In addition to MAUT, Edwards 
(1971) developed simple multi-attribute rating tech-
nique (SMART) for multi-attribute utility measurement. 
SMART was further corrected by Edwards and Barron 
(1994) and renamed to SMART using swings (SMARTS). 
SMART and SMARTS are two simplest MAUT methods 
(Chen et al., 2010). 

The weights of the criteria play a critical role in the 
methods of this category and have an influence on the 
process of evaluation. Several studies have been conduct-
ed for weights calculation. Keršulienė et  al. (2010) sug-
gested a new step-wise weight assessment ratio analysis 
(SWARA) technique for the determination of attributes’ 
weights and provided an opportunity to estimate the dif-
ferences of their significances. Ginevičius (2011) offered 
factor relationship (FARE) to measure the weights based 
on the relationships between all the criteria describing the 
phenomenon considered. Krylovas et al. (2014) proposed 
the Kemeny median indicator ranks accordance (KE-
MIRA) method to determine criteria priority and select 
criteria weights in the case of two separate groups of cri-
teria. To address the impreciseness of criteria measure-
ment, Jessop (2014) presented imprecise multi-attribute 
evaluation (IMP) to describe the weights by a suitable 
probability distribution. Zavadskas and Podvezko (2016) 
supported integrated determination of objective criteria 
weights (IDOCRIW) that combines the weights yielded 
by the entropy and the criterion impact LOSs (CILOS) 
method. These weighting methods can also be adopted in 
the following MCDM methods that involve the weights 
of criteria.

1.3.2. Pairwise comparisons methods
Analytic hierarchy process (AHP) was designed by Saaty 
(1972), streamlining a complex problem into a hierarchy 
structure and eliciting the preference by converting the 
subjective comparison of relative importance into the 
overall scores or weights. Due to the limitation of inde-
pendence assumption of criteria for AHP, its extension 
method analytic network process (ANP) includes the in-
terrelationships among criteria (Saaty, 1996). A wide criti-
cism received is that AHP and ANP over-rely on the sub-
jective opinions of experts or decision makers. Dynamic 
AHP (DAHP) developed by Saaty (1992) can solve the 
inconsistency of expert opinions to some extent. Moreo-
ver, the impreciseness of expert opinions should be con-
sidered. To reduce the comparison data in AHP and ANP, 
Rezaei (2015) proposed the best-worst method (BWM) to 
derive the weights based on a pairwise comparison of the 
best and the worst criteria/alternatives with other criteria/
alternatives. The result reveals that BWM is more easily 
used and performs better compared to AHP and ANP.

1.3.3. Distance (ratio) to reference point methods
Distance to reference point methods include technique for 
order preference by similarity to an ideal solution (TOP-
SIS) (Hwang & Yoon, 1981), complex proportional assess-

ment (COPRAS) (Zavadskas et al., 1994), multi-attribute 
border approximation area comparison (MABAC) (Bana e 
Costa & Vansnick, 1994), Vlsekriterijumska optimizacija i 
kompromisno resenje (VIKOR) (Opricovic, 1998), multi-
objective optimization by ratio analysis (MOORA) (Brau-
ers & Zavadskas, 2006), MOORA plus full multiplicative 
form (MULTIMOORA) (Brauers & Zavadskas, 2010), 
additive ratio assessment (ARAS) (Zavadskas & Turskis, 
2010), and evaluation based on distance from average 
solution (EDAS) (Keshavarz Ghorabaee et al., 2015). All 
these methods are based on the aggregation function that 
represents the degree of proximity with the reference point 
to determine the preference. In this process, normalization 
is adopted to eliminate the units and scale of criteria, and 
the weights of the criteria can be generated by different 
methods, such as the weighting methods mentioned in 
Sections 1.3.1 and 1.3.2. 

The best (compromise) alternative of TOPSIS should 
have the shortest distance from the positive ideal point 
and the longest distance from the negative ideal point. 
MABAC ranks the alternatives according to the distance 
to the border approximation area. As for VIKOR, the best 
alternative provides a maximum utility of the majority 
and a minimum of an individual regret. EDAS chooses 
the best alternative relating to the distance from average 
solution. COPRAS determines the ranking of alternatives 
by the calculated utility ratio based on the minimization 
index and the maximization index. MOORA ranks the 
alternatives based on the distance with the ratio, which is 
representative for all alternatives concerning that objec-
tive. MULTIMOORA further orders the utility function of 
alternatives according to the ratio of the product of maxi-
mizing attributes’ values to the product of minimizing at-
tributes’ values. And ARAS ranks the alternatives based 
on the utility degree calculated by comparison with the 
ideally best optimality function. 

1.3.4. Outranking-based MADM methods
Unlike MCDM methods that assume the existence of a 
single optimal alternative, outranking-based MADM 
methods follow the principle that one alternative may 
have a degree of dominance over another (Kangas et al., 
2001). As a member in this category, elimination et coix 
traduisant la realité (ELECTRE) is a family that provides 
a series of methods (Roy, 1968). ELECTRE I (Roy, 1971) 
is designed for the selection problem. ELECTRE II (Roy, 
1976), ELECTRE III (Roy, 1977) and ELECTRE IV (Roy 
& Vincke, 1981) characterize the ranking problem by or-
dering alternatives from the best to the worst. ELECTRE 
TRI (Yu, 1992), ELECTRE TRI-C (Almeida-Dias et  al., 
2010) and ELECTRE TRI-nC (Almeida-Dias et al., 2012) 
tackle the sorting problem by assigning alternatives to pre-
defined sets (Govindan & Jepsen, 2016).

Preference ranking organization method for enrich-
ment evaluation (PROMETHEE) is another family mem-
ber in this category, which deals with “the appraisal and 
the selection of a set of options on the basis of several 
criteria, with the objective of identifying the pros and 
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cons of the alternatives and obtaining a ranking among 
them” (Cascales et  al., 2015). Brans (1982) developed 
PROMETHEE I for partial ranking and PROMETHEE II 
for complete ranking. Soon thereafter, PROMETHEE III 
and PROMETHEE IV were proposed for interval order 
and continuous case, respectively. Two extension methods 
were PROMETHEE V involving the segmentation con-
straints (Brans & Mareschal, 1992) and PROMETHEE VI 
representing the human brain (Brans & Mareschal, 1995). 
Moreover, Figueira et al. (2004) put forwarded two new 
methods, namely PROMETHEE TRI for dealing with 
the sorting problem and PROMETHEE CLUSTER for 
addressing the nominal classification. Similar to PRO-
METHEE methods, Xu (2001) introduced superiority and 
inferiority ranking (SIR) method that is based on the uti-
lization of superiority and inferiority values to determine 
the type of the preference function.

1.3.5. Fuzzy set methods and their variants
For the purpose of dealing with uncertain information, 
Zadeh (1965) and Bellman and Zadeh (1970) put forward 
fuzzy set theory (generally Type-1 fuzzy set), which is 
characterized by a membership function that represents 
the degree of truth in fuzzy logic. It was generalized by 
Zadeh (1975) through proposing Type-2 fuzzy set that in-
corporates uncertainty into the membership function of a 
fuzzy set. As a special case of Type-2 fuzzy set, interval-
valued fuzzy set (IVFS) proposed by Zadeh (1975) and 
other researchers has attracted great attention because the 
membership function of interval arithmetic is much sim-
pler than the general Type-2 fuzzy set. Atanassov (1986) 
introduced intuitionistic fuzzy set (IFS) characterized by 
the membership degree and non-membership degree, 
based on which Atanassov and Gargov (1989) further de-
fined interval-valued intuitionistic fuzzy set (IVIFS). In 
order to express the opinions of decision makers more 
realistically and accurately, Cuong (2014) proposed pic-
ture fuzzy set (PFS), including positive, neutral, negative, 
and refusal membership functions. As an extension of IFS, 
Kutlu Gündoğdu and Kahraman (2019, 2020) introduced 
Spherical fuzzy set (SFS) to raise the membership func-
tions from two to three dimensions.

Sometimes, it is difficult to determine the accurate 
membership degree of evaluation information. For this 
reason, Torra and Narukawa (2009) introduced hesitant 
fuzzy set (HFS), in which the membership degrees are 
represented by several possible crisp numbers. Smaran-
dache (1998) put forward neutrosophic set (NS) to deal 
with incomplete, indeterminate and inconsistent deci-
sion information through truth, falsity and indetermi-
nacy memberships, generalizing fuzzy set theory, IFS and 
HFS. The corresponding membership functions of such 
decision information are non-standard subsets of [0, 1]*. 
In addition to the above-mentioned fuzzy set methods, 
rough set and grey set were proposed by Pawlak (1982) 
and Deng (1982), respectively, to solve problems in dif-
ferent scenarios. Compared to traditional fuzzy set that 
addresses subjective uncertainty, such as artificial classi-

fication and language description, rough set and grey set 
relate to objective uncertainty, such as missing informa-
tion and unpredictable process. 

Among existing studies on uncertain MADM, Sakawa 
et  al. (1984) used fuzzy MADM methods to solve non-
linear programming problems. Hashiyama et  al. (1995) 
explored dynamic MADM methods by fuzzy neural net-
work. In addition, a large number of pioneers are com-
mitted to combining fuzzy set with existing MADM 
methods, including Fuzzy-AHP (van Laarhoven & Pe-
drycz, 1983), Fuzzy ELECTRE, Fuzzy PROMETHEE 
(Perny & Roy, 1992), Fuzzy TOPSIS (Triantaphyllou & 
Lin, 1996), Fuzzy VIKOR (Opricovic & Tzeng, 2002), 
Fuzzy-ANP (Mikhailov & Singh, 2003), Fuzzy MOORA 
(Brauers & Zavadskas, 2006), Fuzzy COPRAS (Zavads-
kas & Antuchevičienė, 2007), fuzzy decision making trial 
and evaluation laboratory (DEMATEL) (Hsu et al., 2007), 
Fuzzy ARAS (Turskis & Zavadskas, 2010) and Fuzzy EDAS 
(Keshavarz Ghorabaee et al., 2016), etc. (see Figure 1).

With regard to rough set and grey set, Pawlak and 
Słowiński (1994) utilized rough set in the field of MADM. 
Tzeng and Tasur (1994) conducted multi-criteria evalua-
tion of grey relation models. Greco et al. (2001) presented 
grey set theory while Greco et al. (2010) further proposed 
dominance-based rough set (DRSA) for decision mak-
ing. Other examples of combining grey set with existing 
MADM methods include Grey AHP (Xu, 1993), Grey 
TOPSIS (Chen & Tzeng, 2004), COPRAS of alternatives 
with grey relations (COPRAS‐G) (Zavadskas et al., 2008) 
and ARAS with grey values (ARAS-G) (Turskis et  al., 
2013). 

1.3.6. Other methods
There are many other methods that do not fall in any of 
hereinabove MADM categories, e.g. DEMATEL devel-
oped by Fontela and Gabus (1972, 1976) for the analysis 
of cause-effect chain components in complex structural 
models. To better solve complicated problems, some re-
cent research efforts put emphasis on strengthening single 
methods with complement methods or replacing existing 
methods with advanced methods for MADM. For exam-
ple, the ANP-DEMATEL hybrid can be built to develop 
interdependent and feedback relationships among criteria 
(Yang et al., 2008; Wu, 2008; Tzeng & Shen, 2017). Modi-
fied VIKOR can be used to deal with “the best of a bad 
bunch” problem (Opricovic & Tzeng, 2007). Moreover, 
weighted aggregated sum product assessment (WASPAS) 
that combines weighted sum mode (WSM) and weighted 
product model (WPM) significantly improve the accu-
racy of estimation compared to the individual use of each 
method (Zavadskas et al., 2012a). 

1.4. Evolutionary development of MODM

Based on Liou and Tzeng (2012) and Tzeng and Shen 
(2017), Figure 2 shows the evolutionary development 
dendrogram of MODM methods. The concept of vec-
tor optimization proposed by Kuhn and Tucker (1951) is 
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Figure 2. Evolutionary development of MODM methods
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generally recognized as the origin of MODM (Tzeng & 
Shen, 2017). Most real-life MODM problems have several 
conflicting objectives to be considered simultaneously, 
which may be nonlinear. Under such circumstances, there 
is no single solution that optimizes the conflicting objec-
tives, but there exist a number of Pareto-optimal solutions 
(Koopmans, 1951) or compromise solutions (Yu, 1973). 
These solutions cannot improve any objectives without 
deteriorating other objectives. In other words, MODM 
aims to solve mathematical optimization problems under 
specified constraints, involving more than one objective to 
be achieved simultaneously. Its results are a set of Pareto-
optimal solutions or a set of trade-offs in satisfying the 
conflicting objectives. 

1.4.1. No-preference methods
MODM can be divided into methods with no-preference, 
methods with a priori information, methods with a pos-
teriori information, and methods with progressive infor-
mation (Cohon & Marks, 1975; Hwang & Masud, 1979; 
Sengupta et al., 2017). When using no-preference meth-
ods, the MODM problem is solved to generate some neu-
tral compromise solutions and the preference of decision 
makers is not considered during the optimization process. 
Subsequently, decision makers can select or reject the pro-
posed solution. Global criterion method, also known as 
compromise programming (Yu, 1973; Zeleny, 1973), can 
be regarded as the most common example in this category, 
whose idea is to find the closest compromise solution to 
the ideal objective vector. However, the challenge is that 
the solution varies with the change of the metrics to mea-
sure the closeness. Normalization is also required when 
the units and/or orders of objective functions are different. 

1.4.2. Methods with a priori information
For methods with a priori information (namely a priori 
methods), decision makers provide the global preference 
information, such as certain desired goals or pre-ordered 
objectives. The Pareto-optimal solution (a close solution) 
is found through the scalarizing function that combines 
the preference information and the original problem. A 
priori methods include goal programming (GP) (Charnes 
et al., 1955), lexicographic ordering (Fishburn, 1974), etc. 
They deal with both ordinal and cardinal information. 
With regard to GP methods, decision makers specify the 
desired aspiration level (maximum or minimum level). 
GP is then used to minimize the deviations between the 
achievement of goals and their aspiration levels. For lexi-
cographic ordering methods, decision makers order the 
objective functions based on their preference. Subsequent-
ly, the objectives are optimized until attaining the unique 
solution. The common weakness of a priori methods is 
that the preference of decision makers may be too opti-
mistic or pessimistic. It is also hard for decision makers 
to express their preference without a good understanding 
of decision making problems. 

Although data envelopment analysis (DEA) and 
MCDM are generally known as two different subfields of 

operational research and management science, they han-
dle similar problems (Stewart, 1996). Actually, many DEA 
methods can be derived directly from GP (Liu & Sharp, 
1999). DEA is a mathematical programming-based meth-
od for performance evaluation where multiple inputs and 
outputs exist for decision making units (Cook et al., 2014). 
A large number of DEA methods are based on the CCR 
model proposed by Charnes et al. (1978). Subsequent to 
the CCR model, Banker et al. (1984) developed the BCC 
model to address the variable return to scale. Charnes 
et al. (1985) further introduced additive models into DEA, 
which was extended by Charnes et  al. (1987). Sengupta 
(1992a, 1992b) incorporated fuzzy sets into DEA models 
to deal with the impreciseness or vagueness of inputs and 
outputs. According to Liu et al. (2016b), cross-efficiency in 
DEA by Doyle and Green (1994), stochastic DEA by Simar 
and Wilson (2000), network DEA by Fare et  al. (2000), 
and dynamic DEA by Tone and Tsutsui (2010) represent 
the major schools of DEA-related research. 

Traditional MODM optimization techniques focus on 
valuation in a fixed and given environment. However, it is 
usually hard to optimize all the objectives simultaneously. 
Thus, the trade-offs among the objectives become the key 
to such algorithms. Actually, the trade-offs are properties 
of imperfectly designed systems (Zeleny, 2011). For this 
reason, Zeleny (1982, 1986) proposed de Novo program-
ming to enhance traditional mathematical programming 
by relaxing the assumption of fixed resources. As a result, 
the optimization trade-offs are eliminated. Among follow-
up studies on de Novo programming, Li and Lee (1990) 
proposed a model of de Novo programming with fuzzy 
coefficients. Sasaki et al. (1995) implemented genetic al-
gorithm (GA) for de Novo programming with fuzzy goals 
and constraints, which was based on multiple criteria and 
multiple constraints (MC2) by Seiford and Yu (1979) and 
fuzzy MC2 by Shi and Liu (1993). Chen and Hsieh (2006) 
further built a fuzzy multi-stage method of de Novo pro-
gramming with the dynamic nature. Huang and Tzeng 
(2014) extended de Novo programming to changeable 
space (parameters), helping decision makers to achieve 
the desired outcomes (aspiration levels) rather than the 
traditional ideal points. 

1.4.3. Methods with a posteriori information

Methods with a posteriori information, also known as 
“a posteriori” methods, generate the Pareto-optimal so-
lution and present it to decision makers for reference. 
Such methods deal with a single objective according to 
the global preference of decision makers. When using the 
weighting method established by Gass and Saaty (1955) in 
the category of a posteriori, various weight vectors can be 
adopted to produce Pareto-optimal solutions. Thereafter, 
decision makers select a most preferred solution among 
them. The obvious weakness of this method is that it is 
only suitable for convex problems and on the other hand 
weights are not easy to understand. Compared to the 
weighting method, the ε constraints method proposed by 
Haimes et al. (1971) can be used for non-convex problems.  
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It selects one of the objective functions to optimize while 
converting other objective functions into constraint func-
tions by their bounds. However, there is a concern that 
the upper bounds are unknown before optimization and 
therefore have to be set properly to obtain a solution. 

Based on GP, Zeleny (1973) developed the method of 
weighted metrics, finding different Pareto-optimal solu-
tions closest to the ideal objective vector using metrics 
augmented with various weights. Through this method, 
decision makers can select the solution according to their 
preference. The achievement scalarizing function pro-
posed by Wierzbicki (1982, 1986) calculates the weighted 
distance between the reference point and each Pareto-
optimal solution, based on which a new Pareto-optimal 
solution closest to the reference point is produced. Das 
and Dennis (1998) developed the normal boundary inter-
section (NBI) method that is independent of the relative 
scales of objective functions. The NBI method gives an 
evenly distributed set of weights to produce a uniformly 
distributed set of Pareto-optimal solutions, overcoming 
a lack of even distribution within the above-mentioned 
methods of weighted metrics. Compared to the NBI meth-
od, Messac et al. (2003) further designed the normalized 
normal constraint method to reduce the possibility of pro-
ducing dominated solutions. 

Evolutionary multi-objective optimization (EMO) is 
another a posteriori method that optimizes the complex 
numerical problem based on evolutionary algorithms. 
EMO represents a problem-independent algorithmic 
framework that provides a set of guidelines or strategies 
to explore the solution space more thoroughly and finally 
obtains a set of solutions that approximate the set of op-
timal solutions for decision makers’ reference. The origin 
of evolutionary algorithms in MODM can be traced back 
to Schaffer (1984) that utilized GA for multi-objective 
optimization, namely vector-evaluated genetic algorithm 
(VEGA). Subsequently, Goldberg (1989) revolutionar-
ily designed a new non-dominated sorting procedure, 
since which different EMO methods have mushroomed. 
Among these methods, Sakawa et  al. (1994) combined 
fuzzy multi-objective programming by Zimmermann 
(1978) and EMO to deal with nonlinear goal program-
ming. Michalewicz (1996) pointed out that evolutionary 
programming methods have a good performance on non-
linear constrained optimization problems. 

The current EMO can be generally divided into three 
categories, namely Pareto based EMO, indicator-based 
EMO and decomposition based EMO. Pareto based EMO 
ranks the population of an evolutionary algorithm based 
on Pareto optimality. Its representative algorithms include 
SPEA II by Zitzler and Thiele (1999), non-dominated sort-
ing genetic algorithm (NSGA) II by Deb et al. (2002), etc. 
Since Pareto based EMO does not work well for multiple 
objectives (e.g. four or more objectives), researchers have 
started to show interest in the other two families: indica-
tor-based EMO that is guided by an indicator to measure 

the performance of the set and decomposition based EMO 
that divides the problem into several subproblems, each 
of which targets different parts of the Pareto front. The 
indicator-based evolutionary algorithm (IBEA) (Zitzler & 
Künzli, 2004) and S metric selection evolutionary multi-
objective algorithm (SMS-EMOA) (Emmerich et al., 2005) 
fall into the category of indicator-based EMO. On the 
other hand, NSGA III (Deb & Jain, 2014) belongs to the 
category of decomposition based EMO.

Early EMO approaches do not use an elite-preserva-
tion mechanism until the appearance of the second gen-
eration of EMO algorithms, such as NSGA II by Deb et al. 
(2002). Despite that, the second generation of EMO meth-
ods does not work well for multiple objectives (e.g. four or 
more objectives). As a result, the third generation of EMO 
methods, such as NSGA III by Deb and Jain (2014), is in-
troduced to handle various decision making problems that 
involve more than four objectives. In recent years, some 
new EMO methods have been developed, which include 
particle swarm optimization (PSO), ant colony optimiza-
tion algorithm (ACO), particle bee algorithm (PBA) and 
their variants. 

1.4.4. Methods with progressive information

Methods with progressive information, also known as 
interactive methods, are generally used to obtain a most 
satisfactory solution through an iterative process that 
solves local problems, progressively involving the local 
preference of decision makers and providing current so-
lutions. Reference point method is a common example of 
MODM methods in this category, which was proposed by 
Wierzbicki (1982) based on the achievement scalarizing 
function. The core idea of this method is directing the 
search by reference points that represent desirable values 
for objective functions and generating new alternatives by 
shifting reference points. The successor methods, such as 
satisficing trade-off method (STOM) (Nakayama, 1995) 
and given-unknown-equation-substitute-solve (GUESS) 
(Buchanan, 1997), share the same idea. Unlike the refer-
ence point method by Wierzbicki (1982) that uses refer-
ence points, the reference direction approach by Korho-
nen and Laakso (1984, 1985, 1986) chooses a reference 
direction, which makes the search process more visual. 
Based on the nondifferentiable interactive multi-objective 
bundle-based optimization system (NIMBUS) method by 
Miettinen (1998), Miettinen and Mäkelä (2006) and Pur-
shouse et al. (2014) developed the synchronous NIMBUS 
algorithm and the interactive EMO method respectively, 
which have gained comprehensive attention. By compari-
son, interactive methods are advantageous over non-inter-
active methods, such as no-preference methods, methods 
with a priori information and methods with a posteriori 
information. This is because decision makers usually have 
enough knowledge about problems but do not necessarily 
have a deep understanding of theories.
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2. Methodology

2.1. Survey methodology

Literature review plays a significant role in conveying the 
subject knowledge that has been established to readers. It 
has been improved considerably from traditional narra-
tive review to SLR recently. Unlike traditional narrative 
review, SLR adopts a rigorous, replicable and transpar-
ent review process and meanwhile makes the decisions, 
procedures and conclusions of reviewers unbiased and 
traceable (Tranfield et al., 2003; Thomé et al., 2016). For 
this reason, an enormous application of SLR has been wit-
nessed in different disciplines. The procedure of SLR can 
be commonly divided into: (1) formulating the question; 
(2) determining the required characteristics of primary 
studies; (3) retrieving the sample of potentially relevant 
literature; (4) selecting the pertinent literature; (5) synthe-
sizing the literature; and (6) reporting the results (Durach 
et al., 2017). 

As mentioned in the Introduction section, there 
are several existing attempts to review the literature on 
MCDM methods in construction, such as Jato-Espino 
et al. (2014) and Sierra et al. (2018). However, few of them 
are conducted in a systematic manner. Unlike existing lit-
erature reviews, this research uses a stepwise method for 
SLR to assess and aggregate previous research works. It 
further provides a balanced and objective summary of re-
search evidence for the application of MCDM methods in 
construction. The detailed steps of searching and filtering 
can be found in Figure 3. To avoid any bias and random 
error, this research introduces reliability analysis. During 
exclusion, coding and classification, nonparametric test is 
performed to test the reliability of relevant inter-processes. 

2.2. Searching methodology

This research mainly focuses on the application of MCDM 
in construction. Four research questions (see Figure 3) 
are answered through SLR. Based on the review of the 
literature on MCDM methods in general (see Section 1), 
the tendency of MCDM evolution is recognized. Subse-
quently, 59 keywords, including the mainstream methods 
mentioned in Sections 1.3 and 1.4, are identified in this 
research. The strings “decision making” and “construc-
tion” are first chosen to narrow the search scope to de-
cision making in construction. Boolean logic “OR” is 
then used to combine the following string of keywords: 
“(TS=((decision making OR DM) AND construction AND 
(MCDM OR MCDA OR MADM OR MODM OR MRDM 
OR ACO OR AHP OR ANP OR ARAS OR BWM OR Cho-
quet Integral OR COPRAS OR DASA OR DEA OR DE-
MATEL OR De Novo OR EDAS OR ELECTRE OR EMO 
OR FARE OR Fuzzy Set (theory) OR GA OR Grey Set OR 
Grey theory OR GUESS OR IBEA OR IDOCRIW OR IMP 
OR KEMIRA OR MABAC OR MAUT OR MOORA OR 
MULTIMOORA OR Multiple criteria OR Nondominated 
solutions generation method OR Normal boundary intersec-
tion methods OR Normal constraint method OR NSGA OR 

NIMUS OR PBA OR PROMETHEE OR PSO OR Reference 
Point Method OR Rough Set OR Rough theory OR SAW 
OR SMS-EMOA OR SPEA OR SIR OR STOM OR Sugeno 
Integral OR SWARA OR TOPSIS OR VIKOR OR WASPAS 
OR Weighting method OR Goal programming)))”. 

2.3. Selection of data sources and papers
Core collection in Web of Science, a comprehensive sci-
entific citation indexing service provider, is selected as the 
database for the literature search. Only the articles writ-
ten in English and citied by Science Citation Index Ex-
panded (SCIE) or Social Science Citation Index (SSCI) are 
retrieved as the potential literature. The literature search 
shows very few related articles published before 2000. 
Therefore, a timespan from 2000 to 2019 was chosen and 
the baseline sample including 1658 articles in 596 jour-
nals was found during the literature search on 30th March 
2020. Three exclusion filters are adopted for the baseline 
sample in order to generate the final literature sample. The 
first filter excludes the journals that contain less than two 
articles. As a result, it becomes more possible to ensure 
the homogeneity of selected articles. The second and third 
filters eliminate the articles that fall outside the scope of 
this research through reading titles/abstracts and full con-
tents, respectively. 

To ensure the accuracy of literature screening, the 
whole process is conducted by the first and second au-
thors separately. The individual results of each screening 
are tested by the related samples McNemar test, a non-
parametric test that examines if the statistically significant 
change exists on a dichotomous trait at two time points 
for dependent samples. According to the test results, all 
three pairs pass the test (see Table 1). In other words, no 
possible bias or error is detected in terms of literature 
screening. For any different opinions between each filter, 
joint decision is made after discussion between the first 
and second authors. Finally, 530 articles from 125 journals 
are selected as the final literature sample. 

2.4. Thematic classification 

Content co-occurrence analysis is a systematic and ob-
jective means to extract the themes of science and detect 
the linkages between these themes directly from the sub-
ject contents of texts (Sedighi, 2016). Since abstracts are 
considered as concise descriptions of research contents, 
this research constructs the distance-based map of terms 
in titles and abstracts based on content co-occurrence 
analysis to identify the themes of MCDM application in 
construction. VOSviewer, a bibliometric mapping soft-
ware package, is adopted to create the map. A total of 88 
terms that occur more than three times are selected from 
11841 terms after excluding the term “MCDM methods” 
and general terms, such as “system” or “method”. Figure 
4 shows the results of content co-occurrence analysis, in 
which nodes represent terms while the distance between 
two nodes reflects the strength of their linkage. Colors in-
dicate the clusters to which terms are assigned through 
similarity analysis (van Eck & Waltman, 2010). 
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Figure 3. Steps of literature searching and filtering
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As shown in Figure 4, seven major themes for MCDM 
application in construction are identified, including: (1) 
contractor (subcontractor) / staff / supplier selection (in 
red); (2) cost / time / quality performance assessment (in 
yellow); (3) design /system / method / project / portfolio 
selection (in blue); (4) layout / location selection (in or-
ange); (5) material/ equipment selection (in purple); (6) 
risk / safety management (in light blue); and (7) sustain-
ability / environment assessment (in green). According 
to Cobo et al. (2011), sometimes it is hard to determine 
to which cluster borderline terms belong when using 
software packages, such as VOSviewer, for bibliometric 
analysis. In these cases, adjustment by researchers is nec-
essary, taking research questions into consideration. Such 
adjustment is also included in this research when classify-
ing MCDM application in construction into seven major 
themes according to the meaning of each term and the 
essence of each theme. 

In order to ensure the objective adjustment and ac-
curate classification, the similar procedure with screen-
ing process is conducted to classify the 530 articles into 

the appropriate themes and subthemes. Obviously, there 
are continuous observations rather than dichotomies for 
the themes and subthemes. Therefore, Wilcoxon signed 
ranks test, a non-parametric test that measures two occa-
sions and assesses the statistically significant differences 
between two time points, is employed to verify the con-
sistency of the classification results. For the coding theme 
(frequency for disagree is 18) and subthemes (frequency 
for disagree is 12), both significances (0.017 and 0.013, 
respectively) are smaller than 0.05, which reflect that the 
first and second authors did not elicit a statistically signifi-
cant difference in the classification results.

3. Bibliometric analysis of MCDM  
methods in construction

3.1. Distribution by publication years 

The distribution of 530 articles on MCDM methods in 
construction by publication years is presented in Figure 5.  
Despite particular fluctuations, on the whole the number 
of relevant publications increased from one in 2002 to 140 

Table 1. Nonparametric test for filtering

No. Content Frequency for agree Frequency for disagree Nonparametric test Sig.
1 The result of the 1st filter 1274 0 Related samples McNemar test 1.000
2 The result of the 2nd filter 551 3 Related samples McNemar test 1.000
3 The result of the 3rd filter 530 2 Related samples McNemar test 1.000

Note: The significant level is 0.05.

Figure 4. Content co-occurrence analysis of terms in titles and abstracts
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in 2019. Different research trends are found for MADM 
and MODM methods. Since 2005, the number of research 
papers on MADM methods is usually greater than those 
on MODM methods, especially in recent years (see Fig-
ure 5). Compared to MADM, MODM requires a larger 
amount of data to achieve a desired level of performance. 
For this reason, MODM is less utilized and therefore 
MADM dominates in construction. The number of papers 
on MADM gradually increased from the minimum in 
2005 to the maximum in 2019 although there were slight 
falls in 2013, 2015 and 2016. On the other hand, the num-
ber of papers on MODM methods fluctuated from 2005 to 
2019, during which the peak appeared in 2019.

As seen in Figure 6, the number of papers on single 
methods was greater than the number of hybrid methods 
from 2005 to 2007. The trend reversed since 2008. As a 
result, hybrid methods were more commonly observed 
than single methods from 2008 to 2019. The gap between 
the two categories increased dramatically in recent four 
years. Figure 6 shows that the application of hybrid meth-
ods in construction rose steadily from 2005 to 2019 with 
an exception in 2013. On the other hand, the application 
of single methods fluctuated during the same period with 
a peak in 2019. As mentioned above, decision making in 
construction projects is becoming complicated and dif-
ficult due to the sophistication of technologies and the 
increase in complexity and dynamics. The combination of 
different MCDM methods offsets one’s demerits by an-
other’s merits and therefore better addresses the decision 
making problem. This explains why hybrid methods be-
come more popular in construction.

Based on the trend analysis, the application of soft 
computing methods and crisp set methods in construction 
is presented in Figure 7. It can be seen that both categories 
have experienced a similar trend regardless of a slight dif-
ference. Both of them increased slowly in the initial years 
from 2000 to 2013 and attracted a significant increase in 
the last five years. By comparison, the application of crisp 
set methods is slightly more than that of soft computing 
methods during the recent 15 years except for 2011–2013 
and 2016. With regard to the soft computing methods, 
the overwhelming majority of publications adopt fuzzy set 
related methods in comparison with rough set and grey 
set related methods. This phenomenon can be corrobo-
rated from the literature review in Section 1.3, which is 
due to the continuous development of fuzzy set methods 
and the popularization of its joint use with other MCDM 
methods.

3.2. Distribution by journals 

After the screening process, 125 journals are left in this re-
search for the literature review. Table 2 presents a list of 21 
selected journals that contain at least five papers. Among 
these journals, Journal of Civil Engineering and Manage-
ment ranks first, contributing 8.30% of selected articles. 
It is followed by Journal of Construction Engineering and 

Figure 5. Distribution of publications on MADM  
and MODM methods

Figure 6. Distribution of publications on single 
and hybrid methods

Figure 7. Distribution of publications on soft computing 
methods and crisp set methods
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Management (7.74%), Automation in Construction (5.85%),  
Sustainability (5.47%) and Journal of Management in En-
gineering (3.40%). Most selected articles are published in 
construction, engineering or construction/engineering 
management journals. Some articles are published in sus-
tainability and environment related journals.

3.3. Distribution by authors

Table 3 shows the top eight authors, each of whom has at 
least five articles on MCDM methods in construction. The 
number of their articles and the number of their articles’ 
citations are also presented in Table 3. By comparison, 
Professor Edmundas Kazimieras Zavadskas from Vilnius 
Gediminas Technical University is the most authoritative 
author who has 40 articles on MCDM methods in con-
struction. By the end of March 2020, these articles have 
been cited for 1547 times.

3.4. Distribution by MCDM methods

As mentioned above, a total of 530 papers are selected 
for the literature review, based on which it is possible to 
identify 29 single methods and 94 hybrid methods. The 
top five most commonly used signal methods are: AHP 
(60 papers; 11.32%), fuzzy theory (52 papers; 9.81%), GA 
(24 papers; 4.53%), DEA (16 papers; 3.02%), and ANP 
(14 papers; 2.64%). Among the hybrid methods used in 
construction, fuzzy-AHP method (53 papers; 10.00%) 
ranks first, which is followed by fuzzy-TOPSIS (28 papers; 
5.28%), AHP-fuzzy-TOPSIS (8 papers; 1.51%), fuzzy-ANP 
(8 papers; 1.51%), ANP-DEMATEL (7 papers; 1.32%), 
and fuzzy-DEMATEL (7 papers; 1.32%). By comparison, 
hybrid methods that contain fuzzy logic (159 papers; 
30.00%) and hybrid methods that contain AHP (104 pa-
pers; 19.62%) can be considered as the largest two hybrid 
groups.

Table 2. Distribution of journals

No Journal title Frequency Percentage Cumulative percentage
1 Journal of Civil Engineering and Management 44 8.30% 8.30%
2 Journal of Construction Engineering and Management 41 7.74% 16.04%
3 Automation in Construction 31 5.85% 21.89%
4 Sustainability 29 5.47% 27.36%
5 Journal of Management in Engineering 18 3.40% 30.75%
6 Expert Systems with Applications 16 3.02% 33.77%
7 Journal of Cleaner Production 15 2.83% 36.60%
8 Mathematical Problems in Engineering 11 2.08% 38.68%
9 Archives of Civil and Mechanical Engineering 10 1.89% 40.57%

10 Journal of Intelligent and Fuzzy Systems 10 1.89% 42.45%
11 KSCE Journal of Civil Engineering 10 1.89% 44.34%
12 Building and Environment 8 1.51% 45.85%
13 Energy and Buildings 8 1.51% 47.36%
14 Engineering, Construction and Architectural Management 8 1.51% 48.87%
15 International Journal of Project Management 8 1.51% 50.38%
16 International Journal of Strategic Property Management 8 1.51% 51.89%
17 Symmetry-Basel 8 1.51% 53.40%
18 Journal of Computing in Civil Engineering 7 1.32% 54.72%
19 Safety Science 7 1.32% 56.04%
20 Sustainable Cities and Society 7 1.32% 57.36%
21 Technological and Economic Development of Economy 7 1.32% 58.68%
22 Others – 41.32% 100.00%

Table 3. Publications on MCDM in construction by authors

No Author No. of 
articles

No. of 
citations No Author No. of 

articles
No. of 

citations
1 Edmundas Kazimieras Zavadskas 40 1547 5 Guiwu Wei  8  89
2 Zenonas Turskis 25 1107 6 Yi-Kai Juan  6  165
3 Jolanta Tamošaitienė 12  657 7 Abdolreza Yazdani-Chamzini  6  133
4 Jurgita Antucheviciene 12  250 8 Heng Li  6  70
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As seen in Figure 8, a contour map presents the dis-
tribution of single and hybrid methods by publication 
years. AHP-related methods cover both single AHP and 
hybrid methods that contain AHP. Similarly, fuzzy-related 
methods refer to both single fuzzy algorithm and hybrid 
methods that contain fuzzy algorithm. It is clearly shown 
in Figure 8 that research using AHP-related and fuzzy-
related methods has become more and more intensive in 
recent ten years. In Figure 8, EMO-related methods mean 
single and hybrid methods that have relevance to EMO. 
The contour map in Figure 8 shows slight concentration 
on research using EMO-related methods during 2010–
2011, 2014–2015 and 2017–2019, respectively, although 
there is no continuous research evidence for the use of 
EMO-related methods. On the other hand, slight concen-
tration on research on TOPSIS-related methods can be 
observed during 2011–2012, 2013–2014 and 2016–2019, 
respectively. 

4. Discussion about application themes

4.1. Contractor (subcontractor)/staff/supplier 
selection (article number = 74)

4.1.1. Bidding

For the potential participants of a project, whether to bid 
or not bid for the project is one of the most crucial deci-
sions. During the bidding process, a bidder has to find 
a balance between the expected profit and the chance of 
winning (Chou et al., 2013). For this purpose, there are 
generally three solving ideas. The first idea is pair-wising 
the factors that influence the bid decision to generate their 
weights and then calculating the bid numbers or compar-
ing the bid alternatives. AHP and improved AHP methods 
are widely used for this purpose. Fuzzy set (Chou et al., 
2013; Plebankiewicz, 2014) and rough set (Shi et al., 2016) 
can be incorporated into AHP to reflect the human way 
of thinking and perform the evaluation of linguistic vari-

ables. Another idea is developing a benchmark based on 
expert knowledge and historical information and subse-
quently providing a ranking of different projects to bid 
in reference to the benchmark for bid project selection. 
Fuzzy-TOPSIS (Al-Humaidi, 2016) and DEA methods 
(El-Mashaleh, 2013; Polat & Bingol, 2017) can be adopted 
under this circumstance. The last idea is estimating project 
award prices with the help of artificial intelligence (AI) 
models, such as artificial neural networks (ANN) and gen-
eral regression neural network (GRNN) (Shi et al., 2016).

4.1.2. Contractor/subcontractor/supplier selection
Appropriate contractor (subcontractor) and supplier se-
lection is a key to the success of a project (Nieto-Morote 
& Ruz-Vila, 2012; Abbasianjahromi et al., 2013; Seth et al., 
2018). In construction practice, such selection is usually 
divided into prequalification and bid evaluation (Hasnain 
et al., 2018). In theory, the client of a project has to se-
lect the most competent contractor based on its capability 
in various aspects. It is the same for the contractor of a 
project to select its subcontractors and suppliers. How to 
identify and weight the criteria for measuring the capabil-
ity of the contractor, subcontractors or suppliers is crucial 
for right selection. Most MCDM methods can be used 
to solve this problem. In recent years, some new MCDM 
methods have been applied to improve the solution. For 
the identification of selection criteria, single membership 
is the weakness of traditional fuzzy set methods. Intui-
tionistic fuzzy values replace single membership values to 
measure the hesitation margin of decision makers, which 
make the measurement of uncertainty and fuzziness more 
flexible (Palha et al., 2016; Wan et al., 2016). Compared to 
the traditional AHP and/or fuzzy set methods, determin-
ing the weights for selection criteria by the hybrid method, 
such as the combination of DEMATEL, BWM and grey 
set methods (Yazdani et al., 2019) and the combination of 
EMO methods (e.g. GA) and fuzzy set methods (Lin et al., 
2008), would make the selection model more consistent.

Figure 8. Counter map for single and hybrid methods by publication years
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4.1.3. Partner/staff selection
Since project participants play a significant role in project 
performance, the selection of staff and partners in a pro-
ject has received considerable academic attention in recent 
years. Relevant studies can be divided into decision mak-
ing hierarchy and selection methodology (Shahhosseini & 
Sebt, 2011). The research on staff selection targets project 
managers (Zavadskas et  al., 2012b; Afshari, 2015, 2017) 
and key personnel (Shahhosseini & Sebt, 2011). The selec-
tion of staff is mainly based their capability and suitability 
for the work. On the other hand, the research on partner 
selection solves the problem from broader aspects, such as 
the ranking of alternatives (Radziszewska-Zielina, 2010) 
and the trade-off between minimizing the negative envi-
ronmental impact and maximizing the positive business 
performance (Wu & Barnes, 2016). In terms of staff/part-
ner selection, there are relatively more subjective criteria 
represented by linguistics and vague patterns. Therefore, 
fuzzy set theory and its related hybrid methods are more 
efficient under such a circumstance (Shahhosseini & Sebt, 
2011). This explains why fuzzy-Delphi method (Afshari, 
2015) and fuzzy-AHP (Chen & Wu, 2012) are chosen for 
the selection of project managers and partners respec-
tively. Despite that, fuzzy-Delphi and fuzzy-AHP are still 
considered as traditional fuzzy set methods, which can-
not extract fuzzy rules from the history data. As a result, 
adaptive neuro-fuzzy inference system (ANFIS) is applied 
to increase the adaptive ability of a selection model (Shah-
hosseini & Sebt, 2011).

4.2. Cost/time/quality performance  
assessment (article number = 91)

4.2.1. Time, cost or quality performance assessment
Performance assessment is often described as a systematic 
way of measuring project performance by evaluating the 
inputs, activities and outputs regarding each project objec-
tive (e.g. cost, time and quality). A majority of researchers 
have tried to build frameworks that allow decision makers 
to better understand the situation of performance assess-
ment without being overwhelmed by its complexity. Both 
quantitative and qualitative variables are involved when 
establishing frameworks to comprehensively reflect the as-
sessment. Fuzzy logic (Gunduz et al., 2015) and its variants, 
such as fuzzy-ANP (Kabak et al., 2014) as well as fuzzy-
AHP and fuzzy-TOPSIS (Liang et al., 2017a), are widely 
used to deal with the uncertain and imprecise information 
during the assessment. Due to the complexity of perfor-
mance assessment, it is difficult to define a specific func-
tional equation. Without assuming a particular functional 
form, DEA (Tsolas, 2013) and its related hybrid methods, 
such as DEA-principal component analysis (PCA) (Iyer & 
Banerjee, 2016), and fuzzy-related hybrid methods, such 
as fuzzy-AHP and fuzzy-DEA (A. S. Loron & M. S. Loron, 
2015), are also popularly used for identifying the bench-
marks to compare the alternatives. To further imitate the 
decision making process in the human brain, evolutionary 
fuzzy neural inference model (EFNIM), which combines 

GA, fuzzy logic and neural network, exerts the advantages 
and avoids the drawbacks of each single method. Such a 
combined method can be used to solve the complex deci-
sion making problems, such as budget allocation perfor-
mance (Cheng et al., 2008) and construction productivity 
forecast (Mirahadi & Zayed, 2016). 

4.2.2. Trade-off
In construction projects, trade-off can be divided into 
time-cost-resource utilization optimization (TCRO) (Zah-
raie & Tavakolan, 2009), time-cost-quality trade-off (Diao 
et  al., 2011), and time-cost-environment impact (TCEI) 
(Ozcan-Deniz et al., 2012). TCRO can be further divided 
into the resource-constrained project scheduling problem 
(RCPSP) that minimizes the time of project completion 
under resource restrictions and the resource leveling prob-
lem (RLP) that allocates resources under project comple-
tion time constraints (Li et al., 2018). The exact (i.e. enu-
merative, dynamic programming, linear programming, 
etc.), heuristics (i.e. inductive method, local search meth-
od, etc.), and metaheuristics methods (i.e. EMO, etc.) are 
often employed to solve the problems mentioned above 
(Eshtehardian et al., 2009). Compared to exact methods 
and heuristics, metaheuristics methods can more thor-
oughly explore the solution space and therefore are more 
flexible for the problems mentioned above. It is found in 
this research that two articles adopt heuristics methods 
while 13 articles utilize metaheuristics methods among 
a total of 15 articles on the trade-off problems. As the 
second generation of EMO algorithms, NSGA-II (Mon-
ghasemi et al., 2015) is the most popular metaheuristics 
method for the trade-off problems.

4.3. Design/system/method/project/portfolio 
selection (article number = 109)

4.3.1. Design selection
There is a growing body of literature that recognizes the 
importance of decision making during the design pro-
cess (Tiwari et  al., 2017). Since the design proposed by 
architects and designers is sometimes not conducive to 
construction contractors or not satisfied by customers and 
end-users, user-centered design has drawn an increas-
ing attention recently. Compared to MADM methods, 
MODM methods provide more choices to customers for 
selection. For this reason, MODM methods, such as DEA 
(Cariaga et al., 2007) and case-based reasoning (CBR)-GA 
(Cebi et al., 2010), are mostly used to deal with user-cen-
tered design. Another important issue is the comparison 
of different design schemes according to predetermined 
criteria. Curiel-Esparza and Canto-Perello (2013) used 
AHP to select utility tunnels techniques. Reizgevicius et al. 
(2014) adopted hybrid TOPSIS multifunctional methods 
to evaluate 4D computer-aided design. In construction 
today, building information modeling (BIM) is widely 
recognized as a digital revolution. With the emergence of 
BIM, however, the number of possible design solutions 
increase markedly, which may cause impracticability for 
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determining the optimal solution (Inyim et al., 2015). In 
this case, stochastic optimization methods (e.g. NSGA-II) 
is often chosen to solve the complex design problem (Mi-
gilinskas et al., 2017), such as rock-fill dam design (Nikoo 
et al., 2015) and sewerage rehabilitation design (Lin et al., 
2016). 

4.3.2. Management system/construction  
method selection
Project management systems and construction methods 
play a vital role in project delivery and success. Instead 
of rigorous data, the selection of project management 
systems and construction methods is largely based on ac-
quaintance and preference (Chen et al., 2010). MCDM and 
its integrated methods, which measure both tangible and 
intangible variables in intricate and varied circumstanc-
es, can handle the selection of project management sys-
tems and construction methods effectively and efficiently 
(Chen, 2018). Taking project delivery system (PDS) selec-
tion as an example, DEA and ANN (Chen et  al., 2011), 
RST (Liu et al., 2015a, 2016a), fuzzy multi-criteria group 
decision making (FMCGDM) (Khanzadi et al., 2016), and 
interval-valued intuitionistic fuzzy set (IVIFS) (An et al., 
2018) can be observed within the relevant literature. Al-
though various studies have been conducted to explore 
the mechanism for the selection of appropriate tools, a 
common trend is the integration of MCDM methods and 
simulation technologies, which avoids the reliance on 
costly experimental tests or historical data. For instance, 
Khoramshokooh et al. (2018) explored cut-off wall selec-
tion with the combination of PROMETHEE and multi-
layer perceptron (MLP) simulation model while Marzouk 
and Al Daour (2018) investigated labor evacuation of 
construction sites through the mass motion simulation 
platform based on TOPSIS.

4.3.3. Project/portfolio selection
Where the selection of a construction project is con-
cerned, the client of the project should consider both fi-
nancial and nonfinancial criteria when choosing the best 
project alternative (Dikmen et al., 2007). Establishing an 
objective evaluation model that can thoroughly evaluate 
the feasibility of each project alternative and determine its 
prioritization is paramount important. During the process 
of project selection, the traditional analysis fails to analyze 
qualitative attributes that cannot be easily expressed in 
monetary terms (Yan et al., 2011). To eliminate this limi-
tation and meanwhile realistically and accurately measure 
the preference of decision makers, different intuitionistic 
fuzzy techniques are often used for project selection, such 
as intuitionistic fuzzy Einstein correlated averaging (IVIF-
ECA), intuitionistic fuzzy TOPSIS (IFT) and dynamic in-
tuitionistic fuzzy weighted averaging (DIFWA) (Gu et al., 
2014; Ghoddousi et al., 2018). Since single project selec-
tion does not consider the interaction between projects 
(Ghapanchi et al., 2012), the selection of project portfolio 
has increasingly drawn research attention in recent years. 

For example, Abbasianjahromi and Rajaie (2012) selected 
a portfolio based on the risk endurable level while Gha-
panchi et al. (2012) investigated the efficiency of project 
portfolio. The MCDM methods used for single project se-
lection also apply to project portfolio selection. 

4.4. Layout/location selection (article number = 56)

4.4.1. Network design/location selection

Network design refers to the decision making problem 
that determines the optimal planning, maintains the 
transport networks for different purposes, and reduces 
the negative impacts on environment (Zolfani et al., 2011; 
Miandoabchi et al., 2015). There are two types of relevant 
solutions for transport networks (i.e. alternatives). One is 
based on the use of MADM methods. For example, hybrid 
AHP (Zolfani et al., 2011) and fuzzy-TOPSIS (Liang et al., 
2017b) are proposed to select from a limited number of 
predetermined alternatives. The other is based on the use 
of MODM methods. For example, GA and multi-objective 
B-cell algorithm (Miandoabchi et al., 2015) are adopted to 
obtain a set of Pareto-optimal solutions. 

Project location is always restrained by a set of con-
straints and can be generally selected by three types of 
MCDM methods. The first is single or hybrid MADM 
methods, such as ELECTRE II (Dosal et  al., 2012) and 
fuzzy-AHP (Ardeshir et al., 2014a). The second is com-
bined with spatial analysis techniques, such as geographic 
information systems (GIS) (Gumusay et  al., 2016) and 
spatial database management system (SDBMS) (Díaz-
Cuevas et al., 2018). The third is transforming the decision 
making problem, especially material source selection, into 
the classic transhipment problem, which can be solved by 
MODM methods, such as binary linear programming 
models (Jaskowski et al., 2014).

4.4.2. Site layout planning
Construction site layout planning and facility layout de-
sign are essential decision making processes during which 
available site facilities are allocated to free locations to de-
liver construction projects in a safer, more efficient and 
effective manner (Cheng & Lien, 2012; Ning et al., 2016). 
However, site layout planning and design represent a com-
plicated task due to the conflicting objectives, diversity of 
decision criteria, and variety of possible solutions associ-
ated with construction projects (RazaviAlavi & AbouRizk, 
2017). Compared to MADM methods, it is appropriate to 
utilize MODM methods to deal with site layout planning 
and design. The decision making framework can be gen-
erally divided into alternatives identification, layout op-
timization, evaluation and selection. During the process 
of alternatives identification, fuzzy logic is employed to 
address uncertain factors (Ning et al., 2011) or represent 
the closeness of facilities (Xu et al., 2016). The processes 
of optimization, evaluation and selection result in a set of 
elite site layout existed solutions that are both feasible (i.e., 
completely satisfy hard constraints) and qualified (i.e., sat-
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isfy soft constraints to the highest levels). Since examining 
all possible solutions is almost impossible, metaheuristic 
optimization methods, such as PBA (Cheng & Lien, 2012), 
ACO (Adrian et al., 2015), multi-objective simulated an-
nealing-based GA (MOSA-based GA) (Xu et  al., 2016), 
and GA-based simulation optimization method (Lu et al., 
2018) are taken to find the limited number of non-domi-
nated solutions for further selection.

4.5. Material/equipment selection  
(article number = 35)

The appropriate use of construction material and equip-
ment is a prerequisite to the quality and efficient execution 
of construction activities in a project (Ćirović & Plamen-
ac, 2006; Rahman et  al., 2012). Actually, the process of 
material and equipment selection is inherently a multi-
faceted cost and benefit trade-off, which is further com-
pounded by the complexity and the unique context of the 
project (Shapira & Goldenberg, 2005; Goldenberg & Sha-
pira, 2007). Some research attempts have been made for 
equipment selection, comparing equipment alternatives 
or estimating equipment parameters. The overwhelm-
ing majority is selecting the optimal equipment from a 
limited number of alternatives. For this reason, MADM 
methods are chosen predominantly for equipment selec-
tion. For example, fuzzy-TOPSIS method was adopted 
by Yazdani-Chamzini and Yakhchali (2012) for tunnel 
boring machine (TBM) selection while VIKOR, TOPSIS 
and PROMETHEE combined methods were employed by 
Masoumi et al. (2018) for monitoring instrument selec-
tion. Compared to MADM methods, article by Zhai et al. 
(2018) was the only within the reviewed publications us-
ing GA as a MODM method, which extracted load cy-
cles of wheel loaders. Material selection is essentially the 
same as equipment selection, for which both MADM and 
MODM methods can be applied. Unlike equipment se-
lection that mainly relies on MADM methods, MODM 
methods are more commonly adopted to determine the 
material ratio or combination for material selection. For 
example, AHP and multi-objective optimization models 
were recommended by Yepes et al. (2015) for the selection 
of reinforced concrete (RC) beams while AHP and fuzzy 
MOORA were introduced by Ilce and Ozkaya, (2018) for 
the selection of raised floor materials.

4.6. Risk/safety management (article number = 82) 

The dynamic nature of construction projects results in 
circumstances of high uncertainty and risk (Taylan et al., 
2014). Risk management is a pivotal component of the 
decision making process and plays a significant role in 
project success (KarimiAzari et  al., 2011). It can be di-
vided into three processes, namely risk identification, risk 
assessment and risk mitigation (Salah & Moselhi, 2016). 
During the three processes, MCDM methods are gener-
ally involved to achieve different purposes. As a particu-
lar area of risk management, safety management follows 
the general procedures of risk management and uses the 

MCDM methods for safety issues. Risk identification helps 
decision makers in a construction project to identify risk 
factors associated with the project. For example, Li et al. 
(2013) proposed an improved AHP method to identify 
risk factors during open-cut subway construction. Chien 
et al. (2014) applied DEMATEL to pinpoint risk factors 
when implementing new technologies in construction 
projects. 

Based on risk identification, risk assessment evaluates 
the potential adverse effect. Risk assessment approaches 
range from classical methods to fuzzy set techniques 
(KarimiAzari et al., 2011). The classical ones refer to the 
quantitative methods using the loss expectancy theory, 
which describes a risk source as a function of possibility 
(likelihood) and consequence of its occurrence (Saman-
tra et al., 2017). On the other hand, MCDM methods are 
adopted to calculate the weight of each risk factor, which 
may include fault tree analysis (Ardeshir et  al., 2014b), 
probabilistic cost estimation process model (Cha & Lee, 
2018), and Bayesian network model (Malekmohammadi 
& Moghadam, 2018). The information of risk is often un-
certain and inaccurate in construction practice. For this 
reason, fuzzy set techniques are utilized to measure both 
quantitative and qualitative factors, taking the uncertainty 
and inaccuracy of factors into consideration during risk 
assessment. The basic idea is assessing both the signifi-
cance of risk (SR) and the influence of risk (IR), and then 
ranking different risk factors based on SR and IR. Fuzzy 
set theory (Zhang & Zou, 2007), PFS (Wang et al., 2018), 
hesitant fuzzy sets (HFSs) (Zolfaghari & Mousavi, 2018) 
and 2-tuple linguistic neutrosophic EDAS (Wang et  al., 
2019) are proposed to carry out risk assessment under 
such circumstances.

In this research, there are only a few studies in which 
MCDM methods are adopted for risk mitigation, which 
tends to optimize risk response or risk allocation. For ex-
ample, TOPSIS and K-nearest neighbor (KNN) techniques 
by Chen et  al. (2012) and grey system theory by Chen 
et al. (2017) help construction material suppliers to handle 
the financial risk hedging with regard to the fluctuation 
in material prices and the variation in currency exchange 
rates or interest rates. It is worth mentioning that risk allo-
cation can be considered as the nondeterministic polyno-
mial (NP)-hardness problem. Therefore, GA (Fang et al., 
2013; Alireza et al., 2014) and adaptive algorithm (Rahimi 
et al., 2018) are proposed to search the optimal solutions 
from a large number of candidates during a finite time.

4.7. Sustainability/environment assessment  
(article number = 71)

4.7.1. Sustainable performance assessment
Nowadays, the concept of sustainability is generally ac-
knowledged to be crucial in the construction industry 
(Ghoddousi et al., 2018). Relevant research mainly focuses 
on the identification of sustainable performance index and 
the implementation of sustainability assessment. Sustain-
ability in the construction industry can be treated as the 
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reconciliation of economic, environmental, and social 
dimensions (Torres-Machí et al., 2015). How to identify 
and balance the factors for each dimension becomes a 
major issue for decision makers (Cadena & Magro, 2015). 
MADM methods are dominant in relevant research to 
achieve this purpose. For example, interval-valued fuzzy 
set (Chen et al., 2015), weighted aggregated sum product 
assessment (WASPAS) (Gholipour et al., 2018), and fuzzy-
DEMATEL-ANP approaches (Mavi & Standing, 2018) are 
employed to establish the sustainable performance index 
or sustainable assessment criteria. On the other hand, 
construction researchers apply MADM methods to assess 
the sustainable performance of construction projects or 
measure the improvement of construction sustainability, 
which can be seen from Antuchevičienė et al. (2010) for 
revitalizing old buildings and Tan et al. (2014) for reduc-
ing construction wastes and saving natural resources. Be-
sides the MADM methods mentioned above, integrated 
value model for sustainable assessment (Modelo Integrado 
de Valor para una Evaluación Sostenible – MIVES) (Pons 
et al., 2016) and MADM method based on value function 
(Pons & Aguado, 2012; Cuadrado et  al., 2016) are also 
applied in the construction industry for sustainability as-
sessment.

4.7.2. Environmental impact assessment
The construction industry accounts for a significant pro-
portion of total resource and energy consumption. There-
fore, it is necessary to access the environmental impact of 
construction projects and further achieve environmentally 
conscious construction by taking effective actions during 
construction projects (Liu et al., 2018). Based on generic 
frameworks for rating the environmental performance of 
buildings and projects, such as Building Research Estab-
lishment Environmental Assessment Method (BREEAM) 
in the UK, Leadership in Energy and Environmental De-
sign (LEED) in the US and Green Star in Australia, lo-
calization and customization of assessment categories and 
criteria may be needed (Banani et  al., 2016; Zarghami 
et al., 2018). MCDM methods, such as MAUT and TOP-
SIS (Seyis & Ergen, 2017), DEA (Vyas & Jha, 2017) and 
fuzzy-AHP (Zarghami et al., 2018) are often involved in 
the process of localization and customization. Since the 
measurement of life-cycle environmental impact focuses 
on the quantification of tangible and intangible factors, 
fuzzy logic, such as fuzzy-ANP (Ignatius et  al., 2016), 
BIM-aided fuzzy-PROMETHEE (Chen & Pan, 2016), and 
vague set technique (Liu et al., 2018) are utilized in the 
construction industry.

4.8. Suitability of MCDM application  
in construction 

A comprehensive analysis of the application of MCDM 
methods in construction shows that relevant research can 
be divided into decision making problems with a limited 
number of alternatives and those with a much larger num-
ber of alternatives. As for decision making problems with 

a limited number of alternatives, such as contractor (sub-
contractor)/supplier selection and material/equipment se-
lection, MADM methods are more suitable under such a 
circumstance. Fuzzy logic is extensively used to accurately 
reflect uncertain information. Construction researchers 
tend to apply advanced fuzzy methods or fuzzy methods 
that are combined with other MCDM methods to solve 
decision making problems more effectively. On the other 
hand, many decision making problems in construction 
with a much larger number of alternatives, such as lay-
out/location selection, may be formulated as classical op-
timization problems that are purposed to obtain possible 
satisfactory solutions within practical time limits. MODM 
methods, especially single EMO methods and EMO meth-
ods that are combined with other MCDM techniques, gain 
growing popularity in this context. 

5. Challenges and future research directions

5.1. Challenges and knowledge gaps in construction

According to the statistical analysis in Section 3 and the 
discussion in Section 4, this research finds some com-
mon challenges and knowledge gaps for the application 
of MCDM methods in construction. First of all, most of 
the reviewed studies have not taken the applicability of 
the model into account. This research reveals 29 single 
methods and 94 hybrid methods of MCDM. In fact, few 
reviewed studies have analyzed the potential requirements 
for using certain MCDM methods, such as the indepen-
dence restriction of attributes, the amount and dimension 
of attributes, and the conversion of qualitative attributes. 
For example, VIKOR’s attributes should be independent 
of each other. However, none of the 17 studies on VIKOR 
reviewed in this research discusses the independence of 
attributes. The ignorance of the above requirements may 
lead to the inapplicability of the model or even wrong de-
cision making. 

Secondly, most of the reviewed works have ignored 
the robustness of the model. Few construction research-
ers have noted the following two concerns for applying 
MCDM methods in construction: (1) there is a potential 
risk of rank reversal error on adding or removing decision 
alternatives (Nazari et al., 2017); and (2) the use of differ-
ent MCDM methods (especially MADM methods) may 
lead to different ranking orders (Zolfaghari & Mousavi, 
2018). The two concerns reflect the rank reversal problem 
that is characterized by a change in the rank ordering of 
the preferability of alternatives when the chosen methods 
or the original alternatives change (Sałabun et al., 2016; 
Ziemba & Wątróbski, 2016). The rank reversal problem 
is particularly true for AHP-related methods. Some other 
MCDM methods applied in construction (i.e. ANP, ELEC-
TRE, TOPSIS, PROMETHEE, MAUT, etc.) also encounter 
the same obstacle. In reality, the overwhelming majority 
of construction studies have either neglected testing the 
problems and validating the results when decision alter-
natives change or avoided comparing the strengths and 
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performance of different MCDM methods in ranking al-
ternatives. 

Thirdly, the uptake of new MCDM methods in con-
striction lags behind. An obvious lag between MCDM 
application in construction and that in general is iden-
tified when referring to the dendrogram of MADM (see 
Figure 1) and the dendrogram of MODM (see Figure 
2). For example, the revised PROMETHEE-II methods 
based on Brans (1982) in general are still commonly uti-
lized in construction in recent years, which can be seen 
from Cavalcante et al. (2017), Silva et al. (2017) and Wu 
et al. (2018a). On the other hand, NSGA-II proposed by 
Deb et al. (2002) in general is not widespread in construc-
tion until recently (Lin et al., 2016; Yang et al., 2017; Wu 
et al., 2018b). In other words, “postpone effect” exists in 
the application of MCDM methods in construction. It is 
found in this research that MCDM methods adopted in 
construction mostly combine antiquity and ease of ap-
plication. AHP and fuzzy-AHP are still the most popular 
single method and hybrid method, respectively. By com-
parison, the newer and more advanced methods have not 
yet received enough attention and large-scale application 
in construction. 

Fourthly, most reviewed publications have completed 
by the historical and static data. In reality, decision mak-
ing environment and decision making data are not static. 
Instead, construction projects are managed under fast-
changing conditions. However, working in a dynamic or 
predictable manner can be only seen from several publica-
tions in recent years, such as Zhang et al. (2019) that built 
a model based on interval-AHP and TOPSIS to identify 
the real-time safety risk of metro construction adjacent 
building, Latifi et al. (2019) that presented a framwork ac-
cording to the game theory and MODM to danamically 
optimize low impact development practices for urban 
storm water management, and Chalekaee et al. (2019) that 
established a new hybrid model based on several MADM 
methods to adress the future constrution delay change re-
sponse problem. Unfortunatelly, the vast majority of pre-
vious publicarions are purely structured on the historical 
and static basis. As a result, they lose the power in practice 
when making decisions. 

Fifthly, little has been done for the scale problem in 
MCDM application in construction. The scale problem 
arises when adding criteria or alternatives cause a signifi-
cant increase in both computational time and cost. It can 
be categorized into (1) a large number of criteria; (2) a 
large number of alternatives; and (3) a large number of 
both criteria and alternatives (Liu et al., 2015b). It is dif-
ficult for a single MCDM method to deal with the scale 
problem in large and complex situations. When the num-
ber of objectives is greater than 3, the consumption of 
computational resources, especially computational time, 
will increase exponentially following the increase in the 
number of objectives. Such situations will intensify in the 
context of big data. The construction industry is enter-
ing an era of big data. The rapid development of digital 
technologies in construction, such as BIM and GIS, makes 
the acquisition and processing of big data easier and more 
accessible. It can also be found in this research that many 
construction studies have integrated BIM and GIS into 
MCDM methods, such as AHP (Ristić et al., 2018), TOP-
SIS (Marzouk & Al Daour, 2018) and fuzzy DEMATEL 
(Gigović et al., 2017). However, the acquired data by BIM 
or GIS is not fully utilized due to the scale problem of 
these traditional MCDM methods. Therefore, the scale 
problem become one of the biggest challenges to the ap-
plication of MCDM methods in construction. 

5.2. Future studies on MCDM methods in general

MCDM in general has been developing with the emer-
gence of different methods one after another. However, 
there are still some challenges that lie ahead (see Table 4).  
With regard to MADM methods, improving existing 
methods to make them more robust (see the conditions for 
robustness from Brauers and Zavadskas (2010)) demands 
future studies. New algorithms or frameworks should 
be proposed in the future for robustness improvement. 
In addition to robustness improvement, future research 
efforts should be made to address the impreciseness or 
uncertainty of information during decision making pro-
cesses. Soft computing represented by fuzzy set, grey set 
and rough set has been increasingly adopted. Soft comput-

Table 4. The research challenges and future studies on MCDM methods

Research challenges Future studies

MADM

Less robustness New or advanced algorithm design
Impreciseness or uncertainty of information Soft computing
Unstable situation DMADM

Future aspects of issues
PMADM
MADM based scenarios

MODM
Higher dimensionality New or advanced algorithm design
Less robustness Hyper-heuristics and new algorithm design
Computationally expensive Surrogate models

DSS for MCDM High volume, high velocity and high variety  
of the information

Interdisciplinary integration (MCDM methods  
and other techniques)
Advanced DSS for MCDM
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ing methods are good at dealing with complex problems, 
imitating the human mind. Their combination with other 
MCDM methods can be further foreseen. Moreover, most 
general MCDM methods reviewed in Sections 1.3 and 1.4 
are structured for a stable environment (unlike completely 
“static” within construction studies, “stable” means that 
change may exist but is slow) and based on the historical 
data. In reality, most decisions need to be made dynami-
cally and even predictably to meet decision making re-
quirements. Therefore, dynamic MADM (DMADM) that 
focuses on an unstable situation and prospective MADM 
(PMADM) that works on future aspects of issues and their 
dimensions are expected for future studies. In particular, a 
promising study is developing the framework of MADM 
based scenarios that can be applied regarding future issues 
in the unpredictable situations. 

As for MODM methods, it is found in this research 
that most existing works solely solve low-dimensional 
problems (i.e. limited number of decision space and less 
than three objectives). Therefore, new and advanced al-
gorithms or frameworks are necessary to be developed, 
focusing on problems with higher dimensionality, such as 
a research on the new performance indicators for indi-
cator-based EMO. Obviously, each MODM method has 
both strengths and weaknesses. Selecting an appropriate 
method to obtain the most robust solution is one of the 
difficulties for decision makers. New techniques, such as 
hyper-heuristics that attempts to find the right method or 
heuristic sequence in a given situation automatically, have 
drawn notable attention recently. Most existing MODM 
methods become struggling for solving certain real-world 
multi-objective optimization problems in which computa-
tional cost is unaffordable or even prohibitive. Therefore, 
a future research trend is to adopt surrogate models that 
can reduce the fitness function evaluations required to 
produce acceptable results, especially for the computation 
with EMO. 

It is worth to mention that, to address the complex 
situations of MCDM problems in practice, one solution is 
interdisciplinary integration. The integration of MCDM 
methods with the techniques from different disciplines, 
such as automation technology, computer science and 
operational research, is expected to transform big data 
into actionable information and knowledge for MCDM 
methods in a timely manner. For example, AI represented 
by machine learning seeks to detect patterns from the his-
torical data and make predictions according to the new 
data (Henrique et  al., 2019). Some studies, such as Tu-
labandhula and Rudin (2014) and Kashyap (2017), have 
demonstrated the major contribution of AI algorithms to 
the improvement of the capability to handle large datasets 
of decision making. Another solution is the adoption of 
Decision Support System (DSS) for MCDM, especially in 
the context of big data characterized by high volume, high 
velocity and high variety of information. With the help of 
data management, visualization and web-based technolo-
gies, DSS could provide a useful platform or framework, 

handling big data and making existing MCDM meth-
ods well adapted to the complex situations of MCDM 
problems. In summary, interdisciplinary integration and 
advanced DSS (e.g. biometric and intelligent DSS) for 
MCDM problems indicate important research directions 
for the MCDM application in general (see Figures 1 and 2).  
More details can be found from Kaklauskas (2015) and 
Filip (2020).

5.3. Future research directions  
for MCDM in construction

Based on the identification of MCDM challenges in con-
struction (see Section 5.1) and the analysis of future stud-
ies on MCDM methods in general (see Section 5.2), fur-
ther research directions are discussed below for MCDM in 
construction. As mentioned above, little or no attention to 
the applicability of MCDM methods is the first and fore-
most challenge in construction. To address this challenge, 
construction researchers should take the requirements of 
the MCDM method itself into consideration. It is appro-
priate for them to make frameworks solid and complete. 
On the other hand, decision makers are encouraged to pay 
attention to the applicability of MCDM methods carefully 
so that they can have a good understanding of the precon-
ditions for applying certain MCDM methods. 

The robustness challenge can be addressed from both 
internal and external perspectives of MCDM methods. 
To solve the problems inherent within existing MCDM 
methods, such as the reversal problem that mainly stems 
from the difference between the scale used for pair-wise 
comparison of alternatives and the actual scale of measur-
ing each criterion (Shapira & Goldenberg, 2005), future 
researches can be pursued in the following three ways: (1) 
adopting absolute measurement of alternatives instead of 
relative measurement; (2) ensuring decision makers’ un-
derstanding of pair-wise comparison; and (3) improving 
the aggregation procedure of existing preferences. It is also 
important for construction researchers to ensure that non-
robust results are not caused by “garbage in, garbage out”. 

“Postpone effect” is well known because construction 
lags behind in terms of MCDM research and applica-
tion. Figures 1 and 2 show the evolutionary development 
of MADM and MODM, respectively. It is important for 
construction researchers and decision makers to embrace 
the cutting edge MCDM methods. Under the premise of 
equally applicable conditions, for example, BWM is su-
perior to AHP and ANP (see Section 1.3.2) and NSGA 
III performs better than NSGA II (see Section 1.4.3). An-
other future effort lies in the application of soft comput-
ing techniques, especially the improved methods of fuzzy 
set, rough set and grey set and their combination with 
other advanced MCDM methods, to solve complicated 
problems of decision making in construction. When fac-
ing new certain MODM problems, it is also possible for 
construction researchers and decision makers to try hy-
per-heuristic and identify which heuristic method works 
more efficiently and effectively.
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The lack of real-time and dynamic analysis challenges 
MCDM application in construction. Construction re-
searchers and decision makers should focus on DMADM, 
PMADM relevant methods and MADM based scenarios, 
to overcome the reliance on the historical and static data 
as a common weakness in construction. The highlight of 
real-time and dynamic analysis not only addresses the 
challenge of the historical and static data but also pro-
vides a solution to the challenge of the “postpone effect” 
because new and advanced techniques are introduced into 
decision making. 

In order to deal with the scale problem, it is possible to 
pursue research on decomposition based EMO methods 
that transform original problems into several single-ob-
jective optimization problems and indicator-based EMO 
that does not have scalability limitations compared to con-
ventional Pareto based EMO. For the high dimensional 
search space and expensive objective functions for real-
world complicated construction problems, research atten-
tion can be paid to surrogate models for evaluating the 
fitness functions to save calculation costs. Other possible 
solutions are external, that is, making use of interdisciplin-
ary integration and advanced DSS. For the former solu-
tion, the integration of MCDM methods and emerging 
techniques (e.g. AI) can process the large volume data in 
construction to a certain extent. For the latter solution, 
advanced DSS can assist MCDM methods to collect and 
handle the big data of construction projects more suffi-
ciently, comprehensively and agilely. With regard to in-
terdisciplinary integration and advanced DSS as new and 
promising areas, Pan and Zhang (2021) and Marcher et al. 
(2020) summarized the frontier and exploratory research 
in construction recently. In the future, more and closer 
attention should be given in construction to relevant re-
search on interdisciplinary integration and advanced DSS 
for MCDM. 

Conclusions

Decision making is a critical process to achieve success 
in any sectors, especially in a sector like construction that 
requires handling numerous information and knowledge. 
MCDM methods contribute to appropriate decision mak-
ing in general as well as in construction. They can be di-
vided into MADM and MODM methods. This research 
first analyzes the evolutionary development of MADM 
and MODM in the general sense. A total of 530 con-
struction articles published between 2000 and 2019 are 
then reviewed using the proposed methodology of SLR. 
Based on the SLR, this research offers a systematic and 
thorough understanding of MCDM application in seven 
construction areas. It is found from the analysis of relevant 
literature that various MCDM methods have developed 
in recent years at a faster rate and meanwhile there is a 
tendency toward cross-integration, which allow construc-
tion to adapt itself to increasingly complex environments. 

In this research, the results of the literature review 
show the ever-growing popularity of MADM methods 

since 2005. This is because, compared to MODM meth-
ods, MADM methods generally require a smaller amount 
of data to deal with decision making problems. As a result, 
it is more practicable and possible. According to existing 
studies, AHP and fuzzy logic are more commonly used 
for construction decision making problems than other 
single methods. On the other hand, fuzzy-AHP and fuzzy-
TOPSIS are two dominant hybrid methods. Compared to 
single methods, hybrid methods become more promising. 
It is found in this research that MCDM methods can be 
mainly applied in seven construction areas (namely seven 
major themes) for decision making problems, ranging 
from contractor (subcontractor) / staff / supplier selec-
tion to sustainability/environment assessment. The find-
ing of this research implies the penetrating involvement 
of MCDM in almost every aspect of construction decision 
making. 

The development of MCDM research in construction 
is never stopped. This study identifies the potential chal-
lenges of the current MCDM research in construction, 
including the applicability concern, robustness problem, 
postpone effect, dynamic and prospective challenge, and 
scale problem. Subsequently, it presents the future direc-
tions for MCDM research in a new era. The new MCDM 
methods, such as soft computing, AI and other modern 
techniques, are expected to play important roles in ad-
dressing the above challenges for decision making in con-
struction. The ultimate reason is not only the advance-
ment of MCDM methods but also the complexity of con-
struction problems.

Overall, this research adds value to the body of MCDM 
knowledge in three ways:

 – It reveals the evolutionary development of MADM 
and MODM methods by retroactively classifying 
and deeply investigating the mainstream methods. 
Compared to previous studies, it updates the body 
of MCDM knowledge and adds the latest and most 
significant methods to the dendrograms (see Figures 
1 and 2).

 – It proposes a novel methodology of SLR to objective-
ly explore the progression of MCDM in construction. 
The bibliometric analysis and discussion further pro-
vide researchers and practitioners with an intuitive 
understanding of the MCDM application status in 
different key areas. 

 – For the application of MCDM methods in con-
struction, this research identifies the challenges and 
knowledge gaps. It also highlights the future research 
directions accordingly. These can provide insights 
and inspirations to construction research and prac-
tice in the MCDM context. 

The SLR methodology proposed in this research has 
some strengths: (1) it can provide an evidence-based re-
view, which seeks to comprehensively cover the subject to 
explore the body of literature; (2) the exclusion procedure 
depending on statistical non-parametric test can produce 
unbiased results to the greatest extent; and (3) the theme 
identification based on content co-occurrence analysis can 
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objectively permit the accurate assessment and identify 
the application status. However, this research has certain 
limitations. Firstly, the scope of MCDM methods included 
in this research is limited to the mainstream methods. Al-
though a large number of MCDM methods have emerged 
in recent years, it is impossible for this research to cover 
every method. Noteworthily, it does not mean that the 
methods excluded in this research have no importance. 
Secondly, the articles are collected from the journals in 
the Web of Science during the period from 2000 to 2019. 
The articles published in non-SCIE and non-SSCI journals 
are excluded. Meanwhile, conference articles, books and 
dissertations are not considered in the literature sample. 
Finally, the majority of existing studies on DSS for MCDM 
in construction mainly focus on system frameworks rather 
than MCDM methods and therefore they are not reviewed 
in this research. Due to all these reasons, future research 
is recommended through the collection and review of rel-
evant literature from a wider range. 
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