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Abstract. Owing to the indeterminacy, incompleteness, and inconsistency of decision makers’ arguments/cognitions re-
garding complicated decision-making problems, the truth, falsity, and indeterminacy degrees given by decision makers 
may imply the partial certainty and partial uncertainty information. In this case, a simplified neutrosophic set (SNS) can-
not express the uncertainty degrees of the truth, falsity, indeterminacy arguments. To depict the hybrid information of SNS 
and neutrosophic (indeterminate) numbers (NNs) together, this study presents a simplified neutrosophic indeterminate set 
(SNIS) to describe the uncertainty degrees of the truth, falsity, indeterminacy, and then based on the de-neutrosophication 
technology using the parameterized SNSs of SNISs we introduce the q-indeterminate correlation coefficients of SNISs with 
a parameter q ∈ [0, 1]. Next, a simplified neutrosophic indeterminate multicriteria decision-making method using the q-
indeterminate correlation coefficients of SNISs is established along with decision makers’ risk attitudes, such as the small 
risk for q = 0, the moderate risk for q = 0.5, and the large risk for q = 1, to carry out multicriteria decision-making problems 
in SNIS setting. Eventually, the proposed decision-making approach is applied in an example of selecting a satisfactory 
slope design scheme for an open pit mine to indicate the practicality and flexibility in SNIS setting.

Keywords: q-indeterminate correlation coefficient, simplified neutrosophic indeterminate set, multicriteria decision mak-
ing, neutrosophic number, slope design scheme.

Introduction

Smarandache (1998) firstly presented a neutrosophic set from philosophical viewpoint as a powerful general formal 
framework to depict the inconsistent and indeterminate information in the real life. Owing to an important mathematical 
tool of correlation coefficients in decision-making and pattern recognition problems, Hanafy et al. (2012) presented the 
centroid-based correlation coefficient of neutrosophic sets. In single-valued neutrosophic situations Wang et al. (2010) 
and Ye (2013a, 2013b) proposed correlation coefficients between single-valued neutrosophic sets (SvNSs) and utilized 
them in multicriteria decision-making (MDM) problems with SvNS information. In interval-valued neutrosophic setting 
Wang et al. (2005), Broumi and Smarandache (2013) proposed the correlation coefficient of interval-valued neutrosophic 
sets (IvNSs). Then, Ye (2014a) further presented the improved correlation coefficients of SvNSs and IvNSs for MDM 
problems. Salama et al. (2014) introduced a correlation coefficient of neutrosophic data from probability spaces. Zhang 
et al. (2015) presented an improved weighted correlation coefficient of IvNSs for MDM applications. Regarding interval-
valued neutrosophic hesitant fuzzy sets, Ye (2016) also put forward their correlation coefficients for MDM problems. 
Based on simplified neutrosophic sets (SNSs) (Ye, 2014b) implying SvNSs and IvNSs, Shi (2016) proposed the correlation 
coefficient of SNSs and applied it to the vibration fault diagnosis of rolling bearing with SNS information. Şahin and Liu 
(2017) presented a single-valued neutrosophic correlation coefficient for MDM problems. Next, Ye (2017a) introduced the 
correlation coefficient of dynamic single-valued neutrosophic multisets for MDM applications. Recently, Hu et al. (2018) 
proposed element-weighted neutrosophic correlation coefficient for improving CAMShift tracker in RGBD video. Xue 
et al. (2019) introduced a neutrosophic cubic correlation coefficient for pattern recognition problems with neutrosophic 
cubic information. 
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However, the truth, falsity, indeterminacy degrees yielded by decision makers in complicated MDM problems may 
imply the partial certainty and partial uncertainty information owing to inconsistency, incompleteness, and indetermi-
nacy of decision makers’ cognitions. Then, SNSs (Ye, 2014b) contain the single-valued and interval-valued neutrosophic 
sets described by the truth, falsity, and indeterminacy degrees as the generalization of fuzzy sets (Zadeh, 1965), (interval-
valued) intuitionistic fuzzy sets (Atanassov, 1986; Atanassov & Gargov, 1989), while a neutrosophic number (NN) (i.e., 
an indeterminate number) (Smarandache, 1998, 2013, 2014), denoted by p = a + dI for a, d ∈ ℜ (all real numbers) and 
I ∈ [IL, IU], consists of its certain term a and its uncertain term dI with indeterminacy I ∈ [IL, IU] to flexibly depict the 
partial determinacy and partial indeterminacy information in actual applications. Thus, NN easily depicts a changeable 
interval number (p = [a + dIL, a + dIU]) depending on a specified indeterminate range of I ∈ [IL, IU], which shows its 
main highlight in the expression of indeterminate information. Hence, NNs have been wildly applied in many areas, such 
as decision making (Ye, 2017b) and slope stability assessment (Li et al., 2019).

Although SNSs and NNs were applied in MDM problems (Peng et al., 2014, 2016; Wu et al., 2016; Ye, 2017b; Zhou 
et al., 2019), either SNS or NN cannot express the uncertainty degrees of the truth, falsity, indeterminacy arguments. 
Furthermore, existing neutrosophic correlation coefficients cannot deal with such a MDM problem with the uncertainty 
degrees of the truth, falsity, indeterminacy arguments and also lack decision makers’ risk attitudes in indeterminate 
decision-making applications. Motivated by both the hybrid information of SNS and NN and the decision makers’ risk 
attitudes in indeterminate decision-making problems, this study proposes a simplified neutrosophic indeterminate set 
(SNIS) for the first time to describe the uncertainty degrees of the truth, indeterminacy, falsity, and then based on the 
de-neutrosophication technology using the parameterized SvNSs of SNISs we introduce two q-indeterminate correlation 
coefficients of SNISs with a parameter q ∈ [0, 1] and their MDM approach with decision makers’ risk attitudes in SNIS 
setting to solve MDM problems with SNIS information under inconsistent and indeterminate environment.

This work is constructed as the following framework. Section 1 introduces preliminaries of SvNSs for further study. 
In Section 2, SNIS is proposed to describe the uncertainty degrees of the truth, indeterminacy, falsity, and then q-inde-
terminate correlation coefficients between SNISs are introduced based on the de-neutrosophication technology using 
the parameterized SvNSs of SNISs with a parameter q ∈ [0, 1]. Section 3 presents a MDM method using the proposed 
q-indeterminate correlation coefficients is established along with decision makers’ risk attitudes, such as the small risk 
for q = 0, the moderate risk for q = 0.5, and the large risk for q = 1, in SNIS setting. In Section 4, the proposed MDM 
method is applied to a MDM example of selecting a satisfactory slope design scheme for an open pit mine regarding 
decision makers’ risk attitudes to indicate the applicability and flexibility of the proposed MDM method in SNIS setting. 
Lastly, conclusions and further study are presented.

1. Preliminaries of SvNSs

Regarding a subset of a neutrosophic set Smarandache (1998) and Wang et  al. (2010) defined a SvNS 
{ , ( ), ( ), ( ) | }k E k E k E E kE u a u b u c u u U= 〈 〉 ∈  in the universe set U = {u1, u2, …, un}, where aE(uk): U → [0, 1], bE(uk): U → 

[0, 1], and cE(uk): U → [0, 1] (k = 1, 2, …, n) are the truth, indeterminacy, and falsity membership functions of the ele-
ment uk to the set E, such that 0 ≤ aE(uk) + bE(uk) + cE(uk) ≤ 3 for uk ∈ U. 

Then, an element , ( ), ( ), ( )k E k E k S Eu a u b u c u〈 〉  in E is denoted as the single-valued neutrosophic number (SvNN) ek = 
<ak, bk, ck> for the simplified representation.

Set two SvNNs as e1 = <a1, b1, c1> and e2 = <a2, b2, c2> and v > 0. Then, there exist the following relations (Smaran-
dache, 1998; Wang et al., 2010):

(1) e1 ⊆ e2 ⇔ a1 ≤ a2, b1 ≥ b2, c1 ≥ c2;
(2) e1 = e2 ⇔ e1 ⊆ e2 and e2 ⊆ e1;
(3) (e1)c = <c1, 1 - b1, a1> (Complement of e1). 
Suppose that two SvNSs are E1 = {e11, e12, …, e1n} and E2 = {e21, e22, …, e2n}, where e1k = <a1k, b1k, c1k> and e1k = 

<a1k, b1k, c1k> (k = 1, 2, …, n) are SvNNs. Ye (2013a, 2013b) proposed two weighted correlation coefficients of SvNSs:
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Then, the correlation coefficients of Eqns (1) and (2) contain the following properties (Ye, 2013a, 2013b):

(1) W1(E1, E2) = W1(E2, E1) and W2(E1, E2) = W2(E2, E1);
(2) W1(E1, E2) = W2(E1, E2) = 1 if E1 = E2;
(3) W1(E1, E2), W2(E1, E2) ∈ [0, 1].

2. Simplified neutrosophic indeterminate sets and their q-indeterminate correlation coefficients

By combining SNS with NNs (indeterminate numbers), a SNIS concept is introduced as the generalization of a SNS 
concept in indeterminate and inconsistent setting.
Definition 1. Set U = {u1, u2, …, un} as a universe set. A SNIS P in U is defined as the following form:

{ }, ( , ), ( , ), ( , ) |k P k P k P k kP u A u I B u I C u I u U= ∈ ,

where ( , ) [0,1]P k k kA u I I= a + d ⊆ , ( , ) [0,1]P k k kB u I I= b +r ⊆ , and ( , ) [0,1]P k k kC u I I= g + h ⊆  with indeterminacy I ∈ 
[IL, IU] for uk ∈ U (k = 1, 2, .., n) are the truth, indeterminacy, and falsity NNs that consist of their certain terms ak, bk, 
gk for ak, bk, gk ∈ ℜ and their uncertain terms dkI, rkI, hkI for dk, rk, hk ∈ ℜ and I ∈ [IL, IU], such that the condition 
0 sup ( , ) sup ( , ) sup ( , ) 3P k P k P kA u I B u I C u I≤ + + ≤ . 

Thus, it is obvious that SNIS implies the SvNS family and IvNS family depending on the indeterminate values and 
ranges of I ∈ [IL, IU].

In a SNIS P, the element , ( , ), ( , ), ( , )k P k P k P ku A u I B u I C u I  for uk ∈ U (k = 1, 2, …, n) and I ∈ [IL, IU] is denoted by 
its simplified form ( ), ( ), ( ) , ,k k k k k k k k kA I B I C I I I I= a + d b +r g + h , which is called a simplified neutrosophic inde-
terminate number (SNIN). 

Considering the de-neutrosophication of SNIS, we can introduce a parameter q ∈ [0, 1] to transform SNIS into the 
parameterized SvNS, which is defined as a q-indeterminate SvNS with q ∈ [0, 1].
Definition 2. Let P = {p1, p2, …, pn} be a SNIS, where ( ), ( ), ( )k k k kp A I B I C I=  (k = 1, 2, …, n) for I ∈ [IL, IU] are SNINs, and  
let q ∈ [0, 1] be a parameter. Then, the parameterized SvNS of P is defined as a q-indeterminate SvNS 
P(q)  = {p1(q), p2(q), …, pn(q)} for q ∈ [0, 1], where ( ) ( ), ( ), ( ) ( ), ( ), ( )L U L L U L L U L

k k k k k k k k k k k k kp q A q B q C q I q I I I q I I I q I I= = a + d + d - b +r +r - g + h + h -
 ( ) ( ), ( ), ( ) ( ), ( ), ( )L U L L U L L U L

k k k k k k k k k k k k kp q A q B q C q I q I I I q I I I q I I= = a + d + d - b +r +r - g + h + h -  (k = 1, 2, …, n) are q-indeterminate SvNNs with q ∈ [0, 1].
Clearly, each pk(q) (k = 1, 2, …, n) is changed when the value of q ∈ [0, 1] is changed for a specified indeterminate 

range of I ∈ [IL, IU]. Obviously, the q-indeterminate SvNN implies a family of SvNNs depending on different values of q 
∈ [0, 1], while SvNN is only a special case of q-indeterminate SvNN if q is equal to a specified value.

As the extension of existing correlation coefficients of SvNSs (Ye, 2013a, 2013b), we define the q-indeterminate corre-
lation and information energy of SNISs with q ∈ [0, 1] and propose two q-indeterminate correlation coefficients between 
two SNISs.
Definition 3. Let two SNISs be P1 = {p11, p12, …, p1n} and P2 = {p21, p22, …, p2n}, where 1 1 1 1( ), ( ), ( )k k k kp A I B I C I=  
and 2 2 2 2( ), ( ), ( )k k k kp A I B I C I=  (k = 1, 2, …, n) for I ∈ [IL, IU] are two groups of SNINs. Then the q-indeterminate 
correlation of SNISs P1 and P2 with q ∈ [0, 1] is presented below:
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By Eqn (3), the q-indeterminate correlations between P1 and P1 and between P2 and P2 are obtained by the following 
forms:
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which are also called the q-indeterminate informational energy of SNISs P1 and P2.
Thus, the two q-indeterminate correlation coefficients of SNISs P1 and P2 are given by the following formulae:
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Based on the properties of single-valued neutrosophic correlation coefficients (Ye, 2013a, 2013b), it is obvious that the 
q-indeterminate correlation coefficients of Eqns (6) and (7) for q ∈ [0, 1] also contain the following properties:

(P1) 1 1 2 1 2 1( , ) ( , )q qR P P R P P=  and 2 1 2 2 2 1( , ) ( , )q qR P P R P P= ;
(P2) 1 1 2 2 1 2( , ) ( , ) 1q qR P P R P P= =  if P1 = P2;
(P3) 1 1 2 2 1 2( , ), ( , ) [0,1]q qR P P R P P ∈ .

Proof. It is obvious that the properties (P1) and (P2) are straightforward. Thus, one only verifies the property (P3).
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Therefore, this proof is finished. 
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If the importance of each SNIN sjk (j = 1, 2; k = 1, 2, …, n) in P1 and P2 is considered and specified by the weight vk 
for vk ∈ [0, 1] and 

1
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n
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=∑ , the q-indeterminate weighted correlation coefficients of SNISs P1 and P2 can be given 
as follows:

1 1 1 2 2 2

1 1 1 2 2 2
1

1 1 1 2 2 2
1 1 2

2
1 1 1 1

[ ( )][ ( )]
[ ( )][ ( )]
[ ( )][ ( )]

( , )

[ ( )] [

L U L L U L
k k k k k kn

L U L L U L
k k k k k k k

L U L L U Lk
k k k k k kq

L U L
k k k k k

I q I I I q I I
v I q I I I q I I

I q I I I q I I
W P P

v I q I I

=

 a + d + d - a + d + d -
 
+ b +r +r - b +r +r - 
 + g + h + h - g + h + h - =

a + d + d - + b +

∑

( )

( )

2 2
1 1 1 1 1

1

2 2 2
2 2 2 2 2 2 2 2 2

1

;

( )] [ ( )]

[ ( )] [ ( )] [ ( )]

n
L U L L U L

k k k k k
k

n
L U L L U L L U L

k k k k k k k k k k
k

I q I I I q I I

v I q I I I q I I I q I I

=

=

 
 r +r - + g + h + h -
  
 
 
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∑

∑
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It is obvious that the q-indeterminate weighted correlation coefficients of Eqns (8) and (9) also contain these properties:

(P1) 1 1 2 1 2 1( , ) ( , )q qW P P W P P=  and 2 1 2 2 2 1( , ) ( , )q qW P P W P P= ;
(P2) 1 1 2 2 1 2( , ) ( , ) 1q qW P P W P P= =  if P1 = P2;
(P3) 1 1 2 2 1 2( , ), ( , ) [0,1]q qW P P W P P ∈ .

3. MDM approach based on the q-indeterminate weighted correlation coefficients of SNISs

Regarding the q-indeterminate weighted correlation coefficients of SNISs, this section presents a MDM approach with 
decision makers’ risk attitudes in SNIS setting.

For a MDM problem in indeterminate decision-making setting, suppose that a set of m alternatives is represented 
by P = {P1, P2, …, Pm} and evaluated by a set of n criteria H = {H1, H2, …, Hn}. Then, the weight vector of H is speci-
fied as V = (v1, v2, …, vn) by decision makers. Thus, when decision makers give the satisfactory evaluations of each 
alternative Pi (i = 1, 2, …, m) over criteria Hk (k = 1, 2, …, n), their evaluation values are expressed by the truth NN 

( ) [0,1]ik ik ikA I I= a + d ⊆ , the indeterminacy NN ( ) [0,1]k k kB I I= b +r ⊆ , and the falsity NN ( ) [0,1]k k kC I I= g + h ⊆  for 
I ∈ [IL, IU], which are constructed as SNIN ( ), ( ), ( ) , ,ik ik ik ik ik ik ik ik ik ikp A I B I C I I I I= = a + d b +r g + h  (k = 1, 2, …, n; 
i = 1, 2, …, m). Consequently, the decision matrix of SNINs ( )ik m n

P p
×

=  can be established in SNIS setting. 
In this MDM problem with SNIS information, we can develop a MDM approach by the q-indeterminate weighted 

correlation coefficients of SNISs, along with the decision makers’ risk attitudes, such as the small risk (q = 0), the moder-
ate risk (q = 0.5), and the large risk (q = 1), and give the following decision steps:
Step 1: The ideal solution/alternative * * * *

1 2{ , ,..., }nP p p p=  is yielded from the decision matrix P by the following formula 
*
kp  (k = 1, 2, …, n):

* * * *, , max( ),min( ),min( )U L L
k k k k ik ik ik ik ik iki ii

p a b c I I I= = a + d b +r g + h  for I ∈ [IL, IU].                                    (10)

Step 2: By using Eqn (8) or Eqn (9) regarding one of decision makers’ risk attitudes, such as the small risk for q = 0, the 
moderate risk for q = 0.5, and the large risk for q = 1, the q-indeterminate weighted correlation coefficient between Pi 
(i = 1, 2, …, m) and P* is given by the following formula:
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*
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(11)
or

*
2 ( , )q

iW P P =

{ }
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1 1 1 1 1 1 1 1 1
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∑

∑ ∑
.

 
 
  

(12)

Step 3: Ranking order of the alternatives and the best one are given regarding the values of the q-indeterminate weighted 
correlation coefficient corresponding to one of decision makers’ risk attitudes.
Step 4: End.

4. MDM example with SNIS information

This section presents a MDM example regarding the selection problem of open pit slope design schemes to indicate the 
practicability and flexibility of the proposed MDM method with decision makers’ risk attitudes in SNIS setting.

Open pit slope design for an open pit mine is a critical problem in the process of mine design and development. Then, 
an optimal excavation configuration is provided in the context of safety, ore recovery and financial return (Read & Stacey, 
2009). However, the open pit slope stability, the economic benefit, and the environmental requirements of mining should 
be considered as important factors by mining owners. To choose a suitable slope design scheme (alternative) for an open 
pit mine, assume that a set of four potential design schemes (alternatives) P = {P1, P2, P3, P4} is given for the open pit 
mine, which must be satisfactorily evaluated by the three critical factors (criteria): the safe factor (R1), the economical 
factor (R2), and the environmental factor (R3). Regarding the importance of the three critical factors, the weight vector 
of the three criteria is given by V = (0.3, 0.4, 0.3). 

Then, a group of experts/decision makers is invited to satisfactorily evaluate the four alternatives over the three 
criteria by the truth NN ( ) [0,1]ik ik ikA I I= a + d ⊆ , the indeterminacy NN ( ) [0,1]ik ik ikB I I= b +r ⊆  , and the fal-
sity NN ( ) [0,1]ik ik ikC I I= g + h ⊆  for the specified indeterminacy I ∈ [0, 1.5] in the simplified neutrosophic in-
determinate MDM problem, and then their valuation values can be constructed as SNINs ( ), ( ), ( ) , ,ik ik ik ik ik ik ik ik ik ikp A I B I C I I I I= = a + d b +r g + h ( ), ( ), ( ) , ,ik ik ik ik ik ik ik ik ik ikp A I B I C I I I I= = a + d b +r g + h  (k = 1, 2, 3; i = 1, 2, 3, 4) and the following decision matrix of SNISs: 

1
2
3
4

0.7 0.2 ,0.1 0.3 ,0.1 0.1 (0.7 0.2 ,0.2 0.1 ,0.2 0.2 0.6 0.2 ,0.2 0.2 ,0.2 0.2
0.8 0.1 ,0.1 0.2 ,0.1 0.3 0.7 0.2 ,0.2 0.1 ,0.3 0.1 0.7 0.1 ,0.2 0.2 ,0.1 0.1
0.7 0.1

P I I I I I I I I I
P I I I I I I I I IP P I
P

< + + + > + + + > < + + + > 
  < + + + > < + + + > < + + + >

= =  < + 
  

,0.2 0.1 ,0.1 0.2 0.8 0.1 ,0.2 0.1 ,0.1 0.2 0.7 0.2 ,0.3 0.1 ,0.2 0.1
0.8 0.1 ,0.1 0.2 ,0.2 0.1 0.7 0.1 ,0.1 0.2 ,0.2 0.1 0.7 0.1 ,0.2 0.1 ,0.2 0.2

I I I I I I I I
I I I I I I I I I

 
 
 + + > < + + + > < + + + > 
< + + + > < + + + > < + + + >  

.

In this case, the proposed approach is applied to the indeterminate MDM problem with SNISs for I ∈ [0, 1.5] and 
depicted by the following calculation procedures.

Firstly, the ideal solution/alternative * * * *
1 2 3{ , , }P p p p=  is yielded by using Eqn (10) for the decision matrix P as follows:

* * * *
1 2 3{ , , } { 1,0.1,0.1 , 1,0.1,0.1 , 1,0.2,0.1 }P p p p= = < > < > < > .

Then, the values of the q-indeterminate weighted correlation coefficient between SNISs Pi and P* (i = 1, 2, 3, 4) are 
calculated by Eqn (11) or (12) regarding to the small risk for q = 0 or the moderate risk for q = 0.5 or the large risk for 
q = 1 of the decision makers in the indeterminate range of I ∈ [IL, IU] = [0, 1.5] and tabulated in Tables 1 and 2.

In Tables 1 and 2, the ranking orders of alternatives and the best slope design schemes regarding W1
q(Pi, P*) and 

W2
q(Pi, P*) along with the small risk (q = 0) or the moderate risk (q = 0.5) or the large risk (q = 1) of the decision makers 

denominate their difference. However, the ranking orders regarding W1
q(Pi, P*) indicate small sensitivity with respect to 
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the three risk attitudes of the decision makers and the best one is always P4, while the ranking orders and the best one 
regarding W2

q(Pi, P*) indicate large sensitivity with respect to the three risk attitudes of the decision makers. Clearly, 
either the different q-indeterminate weighted correlation coefficients or the different risk attitudes of the decision makers 
can affect the ranking orders of alternatives. Then, the final decision result depends on one of decision makers’ three risk 
attitudes in the indeterminacy I ∈ [0, 1.5], which shows the flexibility and practicability of the proposed MDM method 
in SNIS setting. 

Especially, existing MDM methods using the weighted correlation coefficients of SvNSs (Ye, 2013a, 2013b) are only 
the special cases of the proposed MDM method using the q-indeterminate weighted correlation coefficients of SNISs 
when q is only a specified value. In the MDM process, furthermore, existing MDM methods (Ye, 2013a, 2013b) cannot 
indicate decision makers’ risk attitudes due to a lack of changeable interval values (NNs) in SvNSs, while the proposed 
MDM method can indicate decision makers’ risk attitudes with q-indeterminate SvNSs in the setting of SNISs and dem-
onstrate the advantage of flexible decision-making in the indeterminate MDM process. Therefore, existing MDM methods 
only give unique decision result without decision makers’ risk attitudes and also cannot handle such an indeterminate 
MDM problem with decision makers’ risk attitudes, such as the small risk for q = 0, the moderate risk for q = 0.5, and 
the large risk for q = 1, in SNIS setting. It is obvious that the proposed MDM method is superior to existing ones (Ye, 
2013a, 2013b). 

Conclusions

Regarding the indeterminacy of simplified neutrosophic information in indeterminate decision-making setting, this study 
presented SNIS to express the hybrid information of both SNS and NN, which is depicted by the truth, falsity and inde-
terminacy NNs in indeterminate and inconsistent situations. Then based on the de-neutrosophication technology using 
the parameterized SvNSs of SNISs, we introduced the q-indeterminate correlation coefficients of SNISs with a parameter 
q ∈ [0, 1]. Next, a simplified neutrosophic indeterminate MDM method using the q-indeterminate correlation coefficients 
of SNISs was established corresponding to decision makers’ risk attitudes, such as the small risk for q = 0, the moderate 
risk for q = 0.5, and the large risk for q = 1, to carry out MDM problems in SNIS setting. Eventually, the proposed MDM 
method was applied to a MDM example of selecting a satisfactory slope design scheme for an open pit mine in SNIS 
setting to indicate the practicability and flexibility of the proposed MDM method. Regarding the decision results, we 
discussed how different q-indeterminate correlation coefficients with various risk attitudes of decision makers affect the 
ranking order of alternatives and the best one. Then, the main advantage of this study is the flexibility and practicability 
of the proposed MDM method in indeterminate MDM problems. In the future work, this study will be further extended 
to image processing, clustering analysis, and pattern recognition under SNIS environment.
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Table 1. Decision results regarding W1
q(Pi, P*) along with the small risk (q = 0) or the moderate risk (q = 0.5)  

or the large risk (q = 1) of the decision makers 

q W1
q(Pi, P*) Ranking order The best one

q = 0 0.9772, 0.9748, 0.9796, 0.9836 P4 > P3 > P1> P2 P4

q = 0.5 0.9346, 0.9398, 0.9359, 0.9516 P4 > P2 > P3> P1 P4

q = 1 0.8920, 0.9010, 0.8948, 0.9123 P4 > P2 > P3> P1 P4

Table 2. Decision results regarding W2
q(Pi, P*) along with the small risk (q = 0) or the moderate risk (q = 0.5)  

or the large risk (q = 1) of the decision makers 

q W2
q(Pi, P*) Ranking order The best one

q = 0 0.6900, 0.7493, 0.7629, 0.7473 P3 > P2 > P4> P1 P3

q = 0.5 0.8715, 0.9308, 0.9275, 0.9288 P2 > P4 > P3> P1 P2

q = 1 0.7556, 0.7299, 0.7112, 0.7497 P1 > P4 > P2> P3 P1
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