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Abstract. Composite steel-concrete columns utilise the advantages of both materials, by combining high strength and 
ductility of steel with the compressive strength of the concrete. But the wide adaptation of composite structures is lim-
ited, mainly because of the lack of cheap and easy to construct connections, as many of which require costly and time-
consuming on-site welding, when circular concrete filled steel tubes (CFST) are adopted. New connections, like those in-
corporating the use of blind bolts and curved end-plates, may represent a valuable alternative. Such joints can be adapted 
to circular CFST to eliminate on-site welding, but they require the creation of new curved T-stub components. This paper 
proposes an analytical model for the evaluation of bolt forces in the curved T-stubs within the elastic range. The model is 
then validated against experimental results of joints between circular CFST columns and steel beams, with both preloaded 
and snug tightened bolts. Analytical model shows good agreement with experimental data, but needs further development 
to take into account the prying forces.

Keywords: curved end plate, analytical model, composite steel-concrete, CFST, beam-to-column connection, experimental 
investigation. 

Introduction

Steel-concrete composite structures offer high strength, 
stiffness and superior ductility. But they are still widely 
unused and considered to be an exceptional, costly solu-
tion. Particularly, this can be seen in the case of circular 
composite columns which exhibit greater compressive 
strength, as a circular shell provides better confinement 
for the concrete, while concrete restrains the local buck-
ling of the steel. The main cause of this is the lack of eco-
nomical connections adapted to the circular shape of the 
column; and therefore, most connections require on-site 
welding.

In the present paper, bolted connections with curved 
end plates and blind bolts are studied as a valuable al-
ternative. Such connections were firstly developed by 
Gardner and Goldsworthy (1999). They examined works 
of Alostaz and Schneider (1996), in which weldable de-
formed bars were used to redistribute flange forces into 
the concrete core, and come up with the idea of a curved 

flange plated joint. This joint was bolted to the circular 
column by means of blind bolts, that allowed to eliminate 
on-site welding. Further study of Yao et al. (2008) showed 
that, in the curved T-stubs with three bolts in the row, 
the forces between the external and internal bolts distrib-
ute unevenly – internal bolts fail prematurely. Oktavianus 
et al. (2014) showed that, by increasing the bolt inclination 
angle α (Figure 1c), stiffness and resistance of the curved 
T-stub decrease. It also became clear through these works 
that the T-stub approach recommended in Eurocode 3 
Part 1-8 (European Committee for Standardization, 2005) 
for flat end-plate could not be directly extended to curved 
T-stubs, but that blind bolting could be more easily ac-
commodated. In this regard, Oktavianus et al. (2017) have 
developed a component model for pull-out behaviour of 
headed anchored blind bolts, which could be used to pre-
dict the strength of individual anchor bolts. Furthermore, 
Wang et al. (2009) tested not only joints with the extended 
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curved end plates, but also with flushed ones. Results from 
these tests were later used in a parametric study (Wang & 
Zhang, 2017) which showed that bending resistance de-
pends on the bolt preloading force.

This paper presents an analytical model for the pre-
diction of the bolt forces in the curved T-stubs within 
the elastic range. For its validation, two connections with 
different initial bolt preloading forces were tested. Results 
show a good agreement, but the model still requires fur-
ther development to take prying forces into account. 

1. Behaviour of curved T-stub in tension

One of the most general ways to model the stiffness and 
the design resistance of joints is to use the component 
method. The fundamental idea of this method is that a 
joint can be represented by a set of individual springs 
(components). For conventional bolted joints between 
H or I profiles under bending moment, one of the most 
important components is the T-stub in tension which is 
used to evaluate not only the strength of the bolts, but also 
the strength of the end-plate in bending, as both failure 
modes are anyway associated to the development of pry-
ing forces.

On the contrary, curved end plate with the inclined 
bolts (Figure 1a) is a shell-like statically unsolvable sys-
tem, which is under two-dimensional bending. As a result, 
bolts can experience not only the prying action, but also 
can be prone to shear. Such a system is too complex to be 
analysed in general terms and hence, to derive the equa-
tions, few simplifications were made:

 – Prying forces are first assumed to be negligeable as a 
result of the “curvature effect” of the T-stub (Figure 
1b). The validity of this assumption will be discussed 
later in the paper;

 – With the account of symmetry, only a half of the T-
stub is analysed;

 – Three-dimensional shell is modelled as a two-dimen-
sional arched-beam, which is then loaded with the 
generalized force 2F (Figure 1c);

 – Inclined bolts are replaced by a set of elastic spring 
supports respectively representing their axial Kn (also 
called “normal”) and shear Kt (also called “trans-
verse”) stiffnesses;

 – In the assumed absence of prying forces, the parts 
of the T-stub located “outside the bolts” are not at 
all subjected to forces; these parts are therefore not 
represented in Figure 1c.

Equations were derived for the two cases: rigid end 
plate and flexible arch. Arch flexibility results in additional 
thrust forces which decrease bolt axial forces and increase 
shear ones.

1.1. Rigid end plate

In the case the arch is considered as rigid (what may be 
assumed for rather thick plates), the main variables are the 
stiffness and the inclination angle of the supports (Figure 
1c). The horizontal thrust force H (Figure 2a) is here equal 
to zero and the equilibrium of the spring reactions writes:

cos sin .n tF F F= α + α  (1)

By using Hooke’s law, one can find the deformation of 
each spring and express it through Δ – overall displace-
ment of the T-stub (Figure 2b):
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where: Kn  – stiffness of normal spring; Kt  – stiffness of 
transverse spring.

Then, from formulae (2) and (3):
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Finally, by combining the equilibrium (1) and (4), one 
can derive a formula for the prediction of the axial force 
in the bolts in the case of rigid T-tubs:
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But also, the shear force:
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Figure 1. Simplification of the T-stub: a – curved T-stub; b – arched-beam; c – arch on spring supports

a) b) c)

Figure 2. General calculation scheme for: a – equilibrium;  
b – physical equations

a) b)
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Depending on the Kn/Kt ratio, three boundary cases 
with constant α are identified (Figure 3), which represent 
three different support conditions.

When the transverse stiffness of the bolt is negligi-

ble in comparison to the normal stiffness i.e. 0t

n

K
K

 
→ 

  
,  

then the bolt axial force is 1/cos(α) times greater than the 
applied external force, while the shear force is equal to 
zero. This happens because internal horizontal H force is 
needed (Figure 4a) for this system to remain in equilib-
rium and not to slide down. In another case, when the 

bolts are rigid i.e. 1t

n

K
K

 
→ 

 
, then they can be substituted 

by pinned support and the external force will be vectori-
ally decomposed into shear and tension (Figure 4b). And 
lastly, when the normal stiffness of the bolt is negligibly 

small i.e. t

n

K
K

 
→∞ 

 
, then the bolts are subjected to a pure 

shear force which is 1/sin(α) times greater than the ap-
plied external one (Figure 4c). 

1.2. Flexible arch

When the curved end plate is flexible, then its own stiff-
ness influences the T-stub response and needs therefore to 
be accounted for. In this case, the overall displacement of 
the supports will be affected by the horizontal transition 
ΔH (Figure 5), which increases shear and decreases axial 
force:
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Mathematically speaking, the equilibrium equation 
remains unchanged and only the physical equation ex-
pressing the compatibility of the displacements at the bolt 
location needs to be modified:
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The equations providing the reaction forces in flexible 
curved T-tubs are then the following ones:
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Figure 3. Effect of transverse stiffness on the: a – axial force in the bolt; b – shear force in the bolt

a) b)

Figure 4. Support reactions: a – horizontally sliding support; b – pinned support; c – vertically sliding support

a) b) c)
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1.3. Simplification

In Eqns (10) and (11) the main unknown is the horizontal 
displacement ΔH. It depends on the geometry of the shell 
and its support conditions. In order to find ΔH, the T-stub 
of Figure 1c can be simplified with the alternative model, 
in which a set of inclined springs is replaced by one hor-
izontally sliding support (Figure 6). To do so, resultant 
stiffness K and support displacement u should be found.

The resultant stiffness K of the inclined springs may 
be derived by applying horizontal force H to the support 
(Figure 7):
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Moreover, to properly represent a set of inclined 
springs, sliding supports should be loaded with the dis-
placement u (Figure 8):
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It is caused by the external force F and it is propor-
tional to the vertical displacement ΔV. Due to this dis-
placement, bolts are additionally loaded with shear.

2. Experimental evaluation

The test program was developed to explore the influence 
of the initial bolt preloading force on the behaviour of the 
joint. For this purpose, two connections between a circu-
lar concrete filled column and steel beams with the differ-
ent bolt preloading forces were tested. The test setups and 
the geometry of the connection are respectively presented 
in Figure 9 and Figure 10. Properties of the materials used 
in the specimens were obtained experimentally and are 
presented in Table 1 and Table 2.

Curved end plates were made from a seamless CHS 
219×10 pipe, which was cut into four equal pieces; this 
tube was different from the one used to the column. Be-
cause of this, the curvatures of the end plate and of the 
circular column were not matching, and firm contact 
between them could not be achieved. The average throat 
thickness of the fillet weld joining the end plates with the 
IPE 270 beams was 4.44 mm. The beams were connect-
ed to a cold formed CHS 219×6 column with four high 
strength M12×35 HV bolts. The inclination angle of bolts 
was 23° and the distance to the edge – 38 mm (Figure 10).  
In the last step, after assembly, columns were filled with 
concrete.

Forces in the high strength HV M12×35 10.9 bolts 
were measured with the imbedded BTMC-05-D10 axial 
strain gages. These strain gages were glued in ∅1 mm 
holes at the depth of 17 mm (from the bolt head). Before 
testing, each bolt was calibrated in the tensile machine by 
gripping bolt in special holders (Figure 9a). Bolts in the 
tension zone of specimen 1B were prestressed to 0.7fub 
(59 kN), while they were snug tightened to 1.5 kN in 
specimen 4B.

Connection was loaded in successive steps  – at the 
first step, an initial 500 kN force in the column was intro-
duced and maintained; then, at the second step, equal and 
opposite moments were induced by manually controlled 
hydraulic cylinders (Figure 10). Moreover, moments were 
applied in two cycles – the first cycle was meant for “exer-
cise”, so that bolts could take their proper position in the 
bolt holes, as much as to eliminate other minor out-of-
matching. Ends of the column were fixed and the ends of 
the beams were not restrained.

Figure 5. Support displacement in the case of a flexible T-stub

Figure 6. Simplified arch-beam model

Figure 7. Calculation scheme of the resultant stiffness K

Figure 8. Calculation scheme of the displacement load u
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Figure 9. Testing rigs: a – bolt calibration setup; b – test stand

Table 1. Mechanical and physical properties of the steel and fasteners

Index End-plate steel P355N (4 tests) Steel of CHS S235 (4 tests) High-strength bolts M12×35 10.9 HV  
(4 tests)

Average Standard deviation Average Standard deviation Average Standard deviation
Yield strength 389.8 MPa 4.30 MPa 318.8 MPa 21.52 MPa – –
Ultimate strength 551.9 MPa 2.83 MPa 419.6 MPa 11.28 MPa 1147 MPa 14.31 MPa
Modulus of elasticity 280.2 GPa 16.10 GPa 151.6 GPa 5.63 GPa – –

Table 2. Mechanical and physical properties of the 10×10×10 cm concrete cubes

№ Specimen
Compressive cube strength, MPa Density, kg/m3

Average Standard deviation Average Standard deviation
1 IB (8 tests) 39.7 1.9 2318 12.9
2 IVB (8 tests) 30.6 1.2 2351 17.6

a) b)

Figure 10. Geometry of the connection
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Vertical displacements of the beams were measured 
with two linear variable differential transformers (LVDT), 
which were placed on the bottom flange near the loading 
points. Horizontal displacements of the end plates in ten-
sion zone were measured by placing LVTDs in the middle 
of the bolt spacing and at the sides of the end plate (Fig-
ure 11). As the contact of the end plate and the column 
was not firm, the gaps between them were measured with 
the feeler gages (Figure 12). Moment-rotation curves are 
shown in Figure 13. 

The ultimate bending resistance of the joints with ini-
tial preload is the same as for snug tightened connections, 
but elastic bending resistance is much higher (Figure 13). 
All connections failed due to punching shear (Figure 14a). 
Unscrewed bolts from tension zone were heavily bend be-
cause of displacement u (Figure 8) associated with the de-
formations ΔV (Figure 16b).

2.1. Verification of design equations

For the verification of the equations, experimental bolt 
forces and acting force on the T-stub are needed. If the 
bolt forces can be directly measured by strain gages, the 
tension force acting on the T-stub component depends 
on the lever arm of internal forces z, which adds an ad-
ditional layer of discrepancy. In previous study (Mudrov 
et al., 2021), the finite element analysis was implemented 
to determine the size of a lever arm. It was found that le-
ver arm depends on the initial imperfections and that it is 
not constant, as the centre of compression tends to move 
outwards due to rotation of the joint. But, most impor-
tant, it was found that the lever arm does not depend on 
the magnitude of the preloading force. As such, the aver-
age value of the numerically determined lever arm was 
taken (Figure 15). External force Fext. acting on the curved 

Figure 11. Placement of LVDTs in the tension zone of the joint

Figure 12. Gaps between the end-plate and the column (numbered according to Figure 10):  
a – connection 1B (preloaded bolts); b – connection 4B (snug tightened bolts)

a)

b)
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T-stub in tension component was so calculated with the 
expression:

( )0
.

– 0.5
,ext

F L D
F

z
⋅

=  (14)

where: F – applied load; L – distance from loading points 
to the axis of the column; D0 – outer diameter of column; 
z – lever arm of joint.

Tightening of the M12 bolts was carried out with the 
regular wrench using the extension. Without an extension, 
the full-strength torque resulted only in a 30 kN preload-
ing force (0.36fub). In the process of preloading, two strain 
gages in bolts 2 and 4 were damaged. Furthermore, first 
loading cycle resulted in slips which caused relaxation of 
initial preloading force: in bolt 3, the preload decreased 
from 55.7 kN to 50.6 kN (–9.2%) and in bolt 1, the force 
decreased from 59.9 kN to 44.4 kN (–25.9%).

At the initial loading phase, ΔH deformations of the 
end plate were negligibly small (Figure 16a) and, because 
of this, the theoretical model for the case of rigid end 
plates was used. In Figure 16a, deformations of the joint 

4B(R) are not shown, as they were faulty. Theoretical bolt 
forces were determined with Eqn (5) in which the normal 
stiffness Kn was calculated by cumulating the stiffness k10 
of the bolt in tension and the stiffness ktw of the tube wall 
under transverse tension:

1

10

1 .1
n

tw
K

k k

−
 

= +  
 

 (15)

Stiffness of the bolt in tension was determined accord-
ing to EC-3 (European Committee for Standardization, 
2005) provisions. In the case of snug tightened connec-
tion, because there was no contact between the end plate 
and the column (Figure 12b), prying forces could not de-
velop and therefore, the 1.6 factor from EC-3 was omitted, 
and stiffness of the bolt was calculated with:

10 ,s
b

b

A
k E

L
=  (16)

where: As – bolt tensile stress area; Lb – bolt elongation length 
(bolt grip length); Eb – modulus of elasticity of the bolt.

Figure 13. Moment rotation curves

Figure 14. Failure mode: a – punching shear of the column wall; b – deformed bolts (top row – bolts from compression zone; 
bottom row – bolts from tension zone)

a) b)
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This absence of contact explains in fact why the model 
“without prying forces” presented in Section 1 of the pa-
per can be used here to predict the results of the tests de-
scribed in Section 2.

Stiffness of the tube wall ktw under transverse ten-
sion was calculated with a formula from Oktavianus et al. 
(2017):

( )
42

2
0

,
6 1–

tw tw ws
tw

hole

E t d
k

dD

 π
=   n  

 (17)

where: Etw – modulus of elasticity of the steel tube; ttw – 
thickness of the tube; n – Poisson’s ratio of the steel tube; 
D0 – outer diameter of steel tube wall; dws – diameter of 
the nut; dhole – diameter of the bolt hole.

Transverse stiffness, in the case of the connection with 
the preloaded bolts, can be considered as infinite (Kt = ∞).  
For the case of snug tightened bolts, EC-3 provisions were 
used: 1

11 12. 12.
.1 1 1

t
tp tw

K
k k k

−
 
 = + +
 
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The stiffness of the bolt in shear equals:
2

11
8  

,
16 mm

ubd f
k =  (19)

where: d – nominal bolt diameter; fub – bolt ultimate ten-
sile strength.

The stiffness of the bolt which is bearing on the end 
plate is defined as:

12. .12  ,  tp b tp u tpk k k d f=  (20)

where: 0.25 / 0.5 1.25b bk e d= + ≤ ; eb – distance from the 
bolt to the free edge of the end plate in ΔH direction; 

1.5 /16 mm 2.5tp pk t= ≤ ; tp – the thickness of the end plate; 
fu.tp – ultimate tensile strength of the end plate.

And finally, the stiffness of the bolt which is bearing 
on the tube wall is:

12 .12 1.25 ,  tw tw u twk k d f= ⋅  (21)

where:  1.5 /16 2.5tw twk t mm= ≤ ; ttw  – tube wall thick-
ness; fu.tw – ultimate tensile strength of the tube.

Comparison of experimentally obtained bolt forces 
and theoretical model is presented in Figure 17, in which 
limit values of individual fastener resistances were calcu-
lated with nominal values of yield strength and the ulti-
mate tensile strength according to EC-3 (European Com-
mittee for Standardization, 2005).

In Figure 17 dotted lines denote points of the graph 
at which external applied force per bolt is equal to the 
axial bolt force. Theoretical bolt force was expressed with 
Eqn (5) as a function of external load. This function is a 
straight line, with the slope of 1.056, which means that 
the theoretical bolt force is 1.056 times greater than the 
external load.

Figure 15. Position of the centre of compression (Mudrov et al., 2021)

Figure 16. Displacement of the end plate in the tension zone of the joint: a – ΔH; b – ΔV 

a) b)
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Looking at Figures 17c and 17d, in which bolts were 
snug tighten, it can be seen that joints experienced out-of-
plane bending, as forces in adjacent bolts were not equal. 
To eliminate this out-of-plane moment, the average value 
of the force in adjacent bolts was taken. As it was pre-
dicted, experimental bolt force was greater than applied 
load. Further corelation-regression analysis of these aver-
age lines showed, that the slope of the regression line was 
1.134 for the left joint and 1.180 for the right with corela-
tion of 0.999 in both cases. As such, experimental slopes 
are only 9% higher than predicted.

Unfortunately, due to damaged strain gages in bolts 2 
and 4, joints with preloaded bolts (Figures 17a and 17b) 
cannot be properly analysed. It was predicted, that before 
the slip increase in axial bolt force would be zero, and after 
the slip and separation, behaviour of joint with preloaded 
bolts would be similar to snug tightened joint, which was 
confirmed. 

Conclusions

This paper proposed an analytical model for the evalu-
ation of bolt forces in the curved T-stubs with rigid or 
flexible end plates, but within the elastic range. Moreo-
ver, simplifications for hand calculations were suggested. 
Analytical formulas were compared against experimental 
results of joints between a circular concrete filled steel col-
umn and steel beams with both preloaded and snug tight-
ened bolts subjected to bending. Experiments confirmed 
that increase in preloading force results in increased elas-
tic bending resistance, while ultimate bending resistance 

remains not affected. After preloading has disappeared, 
such connections behave as slip resistant, but slip due to 
unfirm contact can result in significant loss of initial pre-
loading force (more than 25%). This suggests that more 
researches are needed in the extend of bolt force relaxa-
tion. The proposed analytical model shows good agree-
ment with experimental data, but it requires further de-
velopment to account for the prying forces, because they 
were neglected in this study, due to the initial unfit of the 
connected columns and curved T-stubs.
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