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Abstract. Breakout is a shear failure due to compression that forms around the borehole due to stress concentration. In 
this paper, the breakout theory model is investigated by combining the equilibrium elasticity equations of stress around 
the borehole with two Hoek-Brown and Fairhurst generalized fracture criteria, both of which are based on the Griffith cri-
terion. This theory model provides an explicit equation for the breakout failure width, but the depth of failure is obtained 
by solving a quartic equation. According to the results and in general, in situ stresses and rock strength characteristics are 
effective in developing the breakout failure area, As the ratio of in-situ stresses increases, the breakout area becomes deeper 
and wider. Because in the shear zone, the failure envelope of the Fairhurst criterion is lower than the Hoek-Brown failure 
criterion, the Fairhurst criterion provides more depth for breakout than the Hoek-Brown criterion. However, due to the 
same compressive strength of the rock in these two criteria, the same failure width for breakout is obtained from these two 
criteria. Also, the results obtained for the depth of failure from the theoretical model based on the Fairhurst criterion are 
in good agreement with the laboratory results on Westerly granite.

Keywords: borehole breakout, damage zone, Hoek-Brown failure criterion, Fairhurst generalized fracture criterion, in situ 
stress, Westerly granite.

Introduction

Drilling a borehole in the ground disrupts the distribution 
of initial stresses around it. Secondary stresses or induced 
stresses around the borehole can be high enough to cause 
intense stress concentration. Depending on the amount 
of in-situ stresses in some places around the borehole, 
secondary stresses exceed the compressive and tensile 
strength of the rock, causing failure in the rock. A failure 
known as a borehole breakout occurs as a result of the 
concentration of compressive stress around the borehole 
and can occur through a tensile or shear mechanism. In 
a vertical bore in the strike-slip faulting stress regime, 
that is, the state in which h v Hs < s < s , Shear failure oc-
curs parallel to the axis of the borehole and in its classic 
form as a wide breakout. In this case, in the horizontal 
planes perpendicular to the axis of the vertical borehole, 

the breakout failure zone is formed along the minor in 
situ stress (Carr, 1974; Bell & Gough, 1979; Zoback et al., 
1985). This form of failure has also been confirmed by 
laboratory studies (Mastin, 1984; Haimson & Herrick, 
1985, 1986). Therefore, borehole breakout can be used 
as an indicator to study the direction of in situ stresses 
(Bell & Gough, 1979; Hickman & Zoback, 2004; Shamir 
& Zoback, 1992). Breakout in large form causes borehole 
instability, but just as hydraulic fracturing is effective in 
evaluating in situ stresses (Lakirouhani et al., 2016), the 
geometric characteristics of breakout can also be useful 
in estimating the direction and values of in situ stresses 
in the earth’s crust (Gough & Bell, 1982; Zoback et  al., 
1985; Herrick & Haimson, 1994; Brudy et al., 1997; Song 
& Haimson, 1997; Zoback et al., 2003). Nearly 21% of the 
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stress orientation indices in the World Stress Map data-
base were identified from borehole breakouts (Reinecker 
et al., 2005; Huber et al., 1997). Lin et al. (2020) also re-
cently developed a machine learning technique for esti-
mating horizontal in situ stresses using vertical borehole 
breakout information.

Borehole breakout was seen in the Witwatersrand gold 
mine in South Africa about 50 years ago (Leeman, 1964a, 
1964b, 1964c). Afterward, it was observed in oil wells (Cox, 
1972). Then Carr (1974) showed that breakouts occur 
along minor in situ stresses. This was confirmed by Bell and 
Gough (1979) and Zoback et al. (1985). Bell and Gough 
(1979) observed a systematic correlation between the 
borehole breakout direction and the direction of the minor 
regional in situ stress in Alberta, Canada. Although some 
researchers found that borehole breakout shape and depth 
in vertical boreholes are dependent upon the minimum 
and maximum in-situ stresses, but some other researchers 
proposed that the in situ stresses could also be estimated 
through borehole breakout shape (Martin et  al., 1994). 

Gough and Bell (1982) showed that the breakout is 
formed by two tangential shear fractures on the borehole 
wall, each of which has an angle of 4 2π −f  with respect 
to the major principal stress direction, where f represents 
the internal friction angle of the rock.

Zoback et  al. (1985) showed that the ratio of in situ 
stresses on a plane perpendicular to the borehole axis may 
be determined by breakout geometry, but it is not possible 
to accurately estimate their values.

It was also shown that the breakout formed in the shape 
of a “dog ear” in crystalline rocks and limestones and low 
porosity sandstones, could be through a tensile (Lee & 
Haimson, 1993; Okland & Cook, 1998) or shear mechanism 
(Haimson & Song, 1993; Syarifuddin & Busono, 1999).

As the microstructure of the rock has a great impact 
on its strength and physical properties (Lakirouhani et al., 
2020), various laboratory studies have shown that mineral 
composition, and grain shape and porosity are effective 
in the form of breakout failure. For this reason, three dif-
ferent forms of failure have been observed for breakout: 
spiral-shaped (van den Hoek, 2001), V-shaped (Haimson 
& Lee, 2004), and slot-shaped (Haimson, 2007).

The theoretical-numerical analysis of progressive V-
shaped breakout is also investigated using the finite/dis-
crete element method (Wu et  al., 2017) and boundary 
element method (Cheng et  al., 2019). Abdelghany et  al. 
(2021) used the concept of depth of damage to study bore-
hole stability in the Gulf of Suez.

Using the three criteria of Mohr-Coulomb, Mogi-
Coulomb, and modified Lade, Yousefian et al. (2020) de-
termined the optimal drilling direction with the help of 
the concept of failure zone. Delonca and Vallejos (2020) 
proposed a generalized failure criterion to investigate the 
scale effect on failure around the borehole.

Setiawan and Zimmerman (2018) combined the Mogi-
Coulomb criterion with Jaeger plane of weakness theory 
to analyze the effects of strength anisotropy on borehole 
instability and breakout. 

Shalev et  al. (2021) by laboratory experiments and 
three-dimensional numerical models on granite and ar-
cose showed that models based on strength and stress 
alone are not sufficient to investigate the borehole stabil-
ity and breakout.

1. Definition of the problem

The purpose of this paper is the theoretical analysis of 
breakout failure around a borehole in a homogeneous and 
isotropic elastic medium with Hoek-Brown and Fairhurst 
criteria. The Fairhurst criterion is a generalized of the 
Griffith failure criterion, and the basis of the Hoek-Brown 
criterion is also the Griffith criterion. But as can be seen 
below, one of the important differences between these two 
criteria is in predicting the tensile strength of rock.

In this article, theoretical models are two-dimension-
al and assuming a strike-slip faulting stress regime in 
the ground that is h v Hs < s < s . The stress distribution 
around the borehole is based on the Kirsch relationships 
given in the next section. By combining Hoek-Brown and 
Fairhurst failure criteria with Kirsch relations, the theo-
retical model of breakout geometry around the borehole 
has been developed.

In the next section, Carrara marble specifications have 
been used to evaluate the results and compare the two 
failure models with each other. For this purpose, first the 
failure envelope of both criteria is drawn based on the 
laboratory specifications of this rock and then the area of 
failure around the borehole is drawn and compared based 
on both criteria. In the other part of the paper, due to 
the existence of breakout laboratory results for Westerly 
granite, the results obtained from the theoretical model 
with Westerly granite specifications are compared with the 
laboratory results, which is followed by the conclusion in 
the final section.

2. Distribution of stress around  
the borehole and breakout

A borehole with radius a in an elastic, homogeneous and 
isotropic environment under non-isotropic stresses of sH, 
sh is considered (Figure 1). The stresses around the bore-
hole according to the Kirsch relations are obtained as fol-
lows (Jaeger et al., 2009; Abbas et al., 2019):
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In these relations a is the radius of the borehole and r 
is the distance of the point at which the stresses are cal-
culated from the center of the borehole. q is the angle at 
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which the stress is calculated, with the direction of the 
minor in situ stress. sH and sh are major and minor in 
situ stresses, respectively.

Around the borehole and along the minor in situ 
stress, a compressive stress concentration occurs which 
leads to the formation of a breakout failure zone. This area 
is shown in Figure 1 in yellow. In this paper, the depth of 
this area along the minor in situ stress is determined by 
rd and its width by qd.

3. Theoretical model of breakout failure based  
on Fairhurst generalized fracture criterion

Based on Brazilian tensile strength tests, Fairhurst (1964) 
presented the generalized Griffiths criterion as a function 
with two relations (Hoek & Martin, 2014):
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where s1 and s3 are maximum and minimum principal 
stresses, respectively and st is tensile strength of rock and 

is assumed to be negative. This criterion can also be writ-
ten in the simplified form below:

( )2 2
1 3 1 3( ) 2t tA ABs −s = −s s +s − s ,  (4) 

where 22( 1)A w= −  and 2 (( 1) / 2) 1B w= − − .
This criterion in the main stresses space and in the 

( )nt −s  space is shown in the Figure 2.
Therefore, the failure function in this criterion is de-

fined as follows:
( )2 2

1 3 1 3( ) 2 0t tF A AB= s −s + s s +s + s = .  (5)

As shown in Figure 1, the failure zone has two charac-
teristics, first, the width of the breakout represented by qd 
and second, the depth of the failure zone along the minor 
in situ stress or rd. In this section, the goal is to obtain 
these two characteristics.

To get the width of the breakout in the borehole 
wall, i.e. qd, first, the coordinate of point C in Figure 1, 

i.e. ,
2
da
q 

 
 

 is substituted in the Kirsch relations (1) to 

obtain the stresses at this point. Stress values are obtained 
as follows:
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Given that shear stress at this point is zero, 1 qqs = s  
and 3 0rrs = s =  by setting these two values in the failure 
function of Eqn (5), the following quadratic equation is 
obtained for sqq:
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where qd is the width of the breakout in the borehole wall.

Figure 1. Schematic of breakout failure around the borehole

C

D
rd sh

sH

qd
q

a

Figure 2. Fairhurst failure function in s1 – s3 and t – sn coordinates

s  = s  3 t

st s3

A

s  = w(w – 2)s1 t

sc
B

s1

st

2 2t  = (w – 1) s (s  + s )t t n

to = (n + 1)   – 12
1

st

sc = n 

w = (n + 1)2
1

tan(f) = 
2
1 ((n + 1)   – 1)2

1f

sc sn

tost



Journal of Civil Engineering and Management, 2021, 27(5): 346–354 349

To obtain the depth of failure in the direction of the 
minor in situ stress, it is sufficient to set the coordinates 
of point D in Figure 1, i.e. ( , 0)dr , in the Kirsch relations 
(1) to obtain the stresses as follows:
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Again, because the shear stress at this point is zero, 
1 qqs = s  and 3 rrs = s , by setting these stresses in the 

breakdown function of Eqn (5), the following quartic re-
lation is obtained for the ( )2da rρ = :
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The solution of this equation is done by Newton-Raph-
son method in MATLAB software.

4. Theoretical model of breakout failure  
based on Hoek-Brown failure criterion

Hoek-Brown failure relationship using the Griffith crite-
rion is also expressed as follows (Hoek & Brown, 1980; 
Hoek, 1983):

( ) 05
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where sc is the uniaxial compressive strength of the in-
tact rock and mi is material empirical constant which is 
dimensionless. Failure function, F, for the Hoek-Brown 
criteria to estimate the shear fracture is defined as: 
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To calculate the width of the breakout in the borehole 
wall, similar to the procedure performed for the Fairhurst 
criterion, here the principal stresses obtained from Eqn 
(6) are substituted in the failure function presented in Eqn 
(13). The following simple relation is obtained:
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Solving this equation leads to the following expression 
for the width of breakout:
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By setting the coordinates of point D of Eqn (10), in 
the failure function of Eqn (13), the following quartic 

equation is obtained for ( )2da rρ = , which is solved by 
Newton-Raphson method in MATLAB software to find 
the depth of the failure region along the minor in situ 
stress:
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5. Results and discussion

To investigate the results in this part of the article, Car-
rara marble has been selected. Marble rock samples were 
relatively homogeneous and isotropic and had very low 
porosity. The average grain size in the samples was 250 μm  
(Ramsey & Chester, 2004).

Figure 3 shows the results of confined tensile and tri-
axial compression tests on marble samples performed by 
Ramsey and Chester (2004). In this figure, the envelopes 
of Hoek-Brown and Fairhurst generalized failure criteria 
fitting on the laboratory results are also shown. As can 
be seen in Figure 1, in terms of absolute magnitude, the 
Hoek-Brown criterion suggests higher tensile strength for 
the specimens, which is almost twice what is shown in the 
tension cutoff of the Fairhurst criterion.

Each failure envelope divides the coordinate space into 
three regions; below the curve, exactly on the curve and 
above the curve. If the stress state at a point around the 
borehole due to the disturbance of the initial stress state 
located above the failure curve, the rock has failed at that 
point. Depending on the position of the point relative to 
the failure curve, the failure can be tensile or shear. And if 
the stress state is at a point exactly on the failure envelope, 
it means that that point is on the threshold of damage. 
And the points below the curve remain intact.

Now, by solving the theoretical relations obtained for 
both criteria and using the programs written in MAT-
LAB software, the results are analyzed. Figure 4 shows 
the changes in the width of the breakout in the borehole 
wall versus the ratio of in situ stresses. As can be seen, 
with increasing the ratio of in situ stresses, the width of 
the breakout increases. Also, both criteria in relation to 
the width of the breakout failure zone are well compat-
ible with each other. By comparing Eqns (9) and (15), it 
is observed that the failure width relationship is the same 
in both criteria. As it is seen failure width depends on the 
ratio of in-situ stresses and compressive strength of the 
rock, and since according to Table 1 the values of uniaxial 
compressive strength for both criteria are close to each 
other, the diagrams in Figure 4 overlap.
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Figure 5 shows the changes in the depth of the break-
out failure zone along the minimum in situ stress versus 
the ratio of in-situ stresses. The depth of breakout in this 
diagram is normalized by the borehole radius. It is ob-
served that with increasing the ratio of in situ stresses, the 
depth of breakout has increased. Also, unlike the previ-
ous Figure here, the Fairhurst criterion predicts a greater 
depth of breakout than the Hoek-Brown criterion, which 
increases the difference between the two criteria by in-
creasing the ratio of in situ stresses.

Since the pressure inside the borehole is zero, the rock 
in the borehole wall is in uniaxial compressive state and 
its failure is controlled by uniaxial compressive strength, 
and since, according to Figure 3, the same uniaxial com-
pressive strength of both criteria for Carrara marble is 
obtained, both of which offer the same breakout width.

But by moving away from the borehole wall, the rock 
changes from a uniaxial stress to a three axial stress. That 

is, according to the graphs in Figure 3, the shear controls 
the failure in the rock. Because in the shear section, the 
Hoek-Brown criterion shows higher shear strength for the 
Carrara marble, for a certain in-situ stress ratio, a smaller 
breakout failure depth is obtained from this criterion com-
pared to the Fairhurst criterion, and as the in situ stress 
ratio increases, the difference between the two criteria in-
creases.

Figure 6 shows the changes in the ratio of in-situ 
stresses versus failure depths for different values of failure 
widths for the Hoek-Brown and Fairhurst criteria. These 
graphs are basically the sum of the previous two figures. It 
is observed that in the case of stress ratios close to one, i.e. 
in the case of isotropic in situ stresses, no damage occurs 
around the borehole. However, as the stress ratio increases, 
the failure depth increases and the failure depth changes 
for larger failure widths are greater. Also, as mentioned 
earlier, for a given ratio of in situ stress and failure width, 
the Fairhurst criterion predicts greater failure depth.

Figure 7 shows the failure zone boundary for a minor 
in situ stress with a constant value of sh = 10 MPa and 
different values of major in situ stresses for the Carrara 
marble rock and for both failure criteria. As can be seen 
for higher values of major in situ stresses, the depth of 
breakout failure at the corners is greater than the depth 
of breakout failure along the minor in situ stress. In these 
cases, although the failure width obtained on the basis of 
the two criteria is the same, the Fairhurst criterion shows 
greater breakout depth. It is noteworthy that along with 

Table 1. Mechanical properties obtained by fitting the points 
obtained from confined tensile and triaxial compression tests 
on marble samples on failure curves (Hoek & Martin, 2014)

Fairhurst criterion Hoek-Brown criterion
sc (MPa) st (MPa) sc / |st| sc (MPa) st (MPa) mi

128.5 –7.74 16.6 129 –15.6 8.25

Figure 3. Failure envelopes based on Hoek-Brown and 
Fairhurst criteria for Carrara marble
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the breakout, the tensile failure zone is also observed 
along the major in situ stress. According to the Hoek-
Brown failure criterion, the tensile failure zone occurs for 
major principal stresses greater than 140 MPa and accord-
ing to the Fairhurst criterion, the area of tensile failure 
occurs at major principal stresses greater than 100 MPa. 
In other words, because the Fairhurst failure criterion 
provides a lower tensile strength for the Carrara marble 
rock, therefore, for a certain amount of in situ stresses, the 
tensile failure area obtained from the Fairhurst criterion 
is larger than the tensile failure area obtained from the 
Hoek-Brown criterion.

6. Comparison with laboratory results  
on Westerly granite

In this part of the paper, the depth of failure obtained from 
laboratory results (Song, 1998) is compared with the re-
sults obtained from theoretical solution in this paper with 
two criteria, Hoek-Brown and Fairhurst. The specimens 
tested in the experiments were Westerly granite. Westerly 
granite is a crystalline rock that is often used in laboratory 
studies and has the composition of Table 2 in terms of 
mineral type. The granite tested in experimental studies 
has been assumed to be homogeneous, isotropic and elas-
tic and is therefore suitable for comparing the results with 
the theoretical solution results presented in this paper. The 
mechanical properties of Westerly granite are obtained us-
ing Brazilian tensile strength tests and uniaxial compres-
sive strength tests according to Table 3. These parameters 
have been used in the theoretical models of this section.

Figure 8 and Figure 9 show the changes in normalized 
failure depth versus major in situ stress and for two dif-

ferent values of minor in situ stress. As can be seen, the 
theoretical analysis based on the Fairhurst criterion is in 
good agreement with the results of laboratory model on 
Westerly granite. Figure 10 shows breakout cross-sectional 
shape obtained from the Song’s laboratory studies.

Figure 7. Curves defining the breakout failure area  
(sh = 10 MPa = cte)
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Figure 8. Normalized breakout failure depth versus major  
in situ stress sh = 20 MPa

Figure 9. Normalized breakout failure depth versus major  
in situ stress sh = 50 MPa

Table 2. Westerly granite mineral compounds (Feininger, 1968)

Mineral type Volume in percentage
Quartz 27.5
Microcline 34.4
Plagioclase 32.4
Muscovite 1.3
Biotite 3.2
Opaque accessories 0.8
Other accessories 0.4

Table 3. Mechanical properties of Westerly granite (Song, 1998)

symbolValueProperty 

sc187Uniaxial compressive 
strength (MPa)

st 8.25Brazilian tensile  
strength (MPa)

mi ≈ sc / |st| (Cai, 2010)22.66Hoek-Brown constant 
coefficient 
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Conclusions

In this paper, the theoretical model of breakout failure 
around the borehole was obtained based on the two crite-
ria of Fairhurst and Hoek-Brown.

According to the results, it was observed that:
 – In general, if the in situ stresses around the borehole 
are isotropic, no failure is observed around the bore-
hole, and as the ratio of in situ stresses increases, the 
failure width in the borehole wall and the depth of 
failure along the minor in situ stress increase.

 – As the ratio of in situ stresses increases, the failure 
area around the borehole expands so that the depth 
of failure at the corners becomes deeper than the 
depth of failure along the minor in situ stress.

 – The width of breakout in the borehole wall obtained 
from the two criteria of Fairhurst and Hoek-Brown 
for different ratios of in situ stresses, are well com-
patible with each other, although the depth of failure 
along the minor in situ stress obtained from Fairhurst 
criterion is greater than the depth of failure obtained 
from the Hoek-Brown criteria for Carrara marble, 
and with increasing the ratio of in situ stresses, the 
difference between the values obtained from the two 
criteria increases.

 – As the in situ stress ratio increases, tensile fracture is 
also observed along the major in situ stress, and since 
the Fairhurst criterion suggests less tensile strength 
than the Hoek-Brown criterion, for a given in situ 
stress ratio, the tensile failure region obtained from 
the Fairhurst criterion is wider and deeper than the 
failure area obtained from the Hoek-Brown criteria 
for Carrara marble.

 – By comparing the laboratory results on Westerly 
granite with the results of the theoretical model in 
this paper, a good agreement was observed for the 
breakout depth.
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