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Abstract. Addressing the multi-dimensional challenges to promote pavement sustainability requires the development of an 
optimization approach by simultaneously taking into account future pavement conditions for pavement maintenance with 
the capability to search and determine optimal pavement maintenance strategies. Thus, this research presents an integrated 
approach based on the Markov chain and Particle swarm optimization algorithm which aims to consider the predicted 
pavement condition and optimize the pavement maintenance strategies during operation when applied in the maintenance 
management of a road pavement section. A case study is conducted for testing the capability of the proposed integrated 
approach based on two maintenance perspectives. For case 1, maintenance activities mainly occur in TM20, TM31, and 
TM41, with the maximum maintenance mileage reaching 88.49 miles, 50.89 miles, and 20.91 miles, respectively. For case 2, 
the largest annual maintenance cost in the first year is $15.16 million with four types of maintenance activities. Thereafter, 
the maintenance activities are performed at TM10, TM31, and TM41, respectively. The results obtained, compared with the 
linear program, show the integrated approach is effective and reliable for determining the maintenance strategy that can be 
employed to promote pavement sustainability.

Keywords: pavement maintenance management, maintenance strategy, pavement sustainability, Markov chain, Particle 
swarm optimization.

Introduction

The condition of road pavement is vulnerable to the im-
pact of uncertain environmental factors and traffic loads, 
resulting in pavement deterioration over time (Chou & 
Le, 2011; Elhadidy et  al., 2015; Neal & Pro, 2020; Pan-
tuso et al., 2019). The deteriorating pavement is prone to 
cause severe structural damage and shorten the service 
life (U.S. Department of Transportation, Federal Highway 
Administration, 2020; Biondini & Frangopol, 2016; Roads 
& Bridges, 2020; Kim et al., 2019). Timely and appropriate 
maintenance is required to ensure pavement safety and ex-
tend service life (Barone & Frangopol, 2014). Considering 
the limited maintenance budget, costly maintenance activ-
ities, and overall high-quality conditions with sustaining 
and improving economic growth, maintenance strategies 
are urgently needed.

Optimized maintenance strategies, which have gar-
nered significant attention by researchers, have the ability 

to produce a time-based pavement maintenance program 
to promote pavement sustainability. The optimized main-
tenance strategies could be conducted by the optimiza-
tion algorithm, which can provide the most appropriate 
intervention with respect to several constraints (Santos 
et  al., 2019; Yepes et  al., 2016). However, the pavement 
conditions would be subject to substantial uncertainty, 
which may cause deviations in maintenance strategies 
to be inconsistent with the conditions that occur on the 
pavement. Thus, full consideration should be given to the 
existence of road pavement uncertainty when determining 
maintenance strategy.

A road deterioration model or road failure model to 
address the posed challenges has garnered significant at-
tention, such as the random variable deterioration model 
(Pandey et al., 2009) and spatial variability models (Lea 
& Harvey, 2015). Though the literature has shown that 
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these models leveraged for predicting future pavement 
conditions is effective, its applicability to road pavement 
deterioration has not been fully validated due to the small 
number of cases. A popular and widely applied approach, 
the Markov Chain (MC), has been developed to address 
the uncertainty issue for predicting future pavement con-
ditions. Widely existing methods applied the MC to pre-
dict future pavement conditions by the state transition 
probability matrix (TPM) (Pérez-Acebo et al., 2018; Saha 
et al., 2017; Tabatabaee & Ziyadi, 2013). Those include the 
research conducted by Mandiartha et al. (2017), which ap-
plied the MC to model the road pavement deterioration 
process. Further contributions within the road pavement 
deterioration can be referred to Gao and Zhang (2013), 
Lethanh and Adey (2013), Surendrakumar et al. (2013), 
Noortwijk and Frangopol (2004). These studies indicate 
that MC is perfectly suitable for application in the un-
certain road pavement deterioration process over the life 
cycle. The MC-based models can be the appropriate repre-
sentation of the road pavement deterioration process over 
its entire life-cycle by accounting for the impact of uncer-
tainty (Lethanh et  al., 2015). Meanwhile, the MC-based 
models could be revised to account for proper modeling 
of the road pavement system when additional information 
regarding the actual road pavement deterioration is avail-
able (Chootinan et al., 2006). However, at the maintenance 
planning phase, many alternative strategies could be avail-
able with prior knowledge of the road pavement condi-
tions. It seems almost impractical to enumerate all sce-
narios, because there is plenty of scenario combinations.

This research, therefore, presents an integrated ap-
proach to determine maintenance strategies for stakehold-
ers to promote pavement sustainability in road mainte-
nance management with MC and an efficient optimization 
algorithm considering several constraints, such as limited 
maintenance budget and overall high-quality conditions. 
MC, which has the capability to predict the pavement con-
ditions by the state TPM over the life cycle, is used to ana-
lyze future pavement conditions. Particle swarm optimiza-
tion (PSO), a random search algorithm based on group 
cooperation developed by simulating the foraging behav-
ior of birds (Gopalakrishnan, 2013), is used to search the 
optimal solutions in plenty of scenario combinations by 
leveraging its advantages on multi-objective optimization. 
The integrated approach MC-PSO is designed to be an 
efficient multi-objective optimization decision-making 
tool for stakeholders to effectively formulate an optimal 
maintenance strategy.

The organization of this research is as follows. Section 
1 presents a literature review about the maintenance opti-
mization management. Section 2 describes the theoretical 
background and the main features of the proposed optimi-
zation system. The research objective is described in Sec-
tion 3; the mathematical formulations of two maintenance 
perspectives aim to maximize the pavement performance 
and minimize the maintenance cost, respectively. Section 
4 proposes the methodology and describes the MC, PSO, 
MC and PSO integration as well as the MC-PSO solution 

procedure. Section 5 presents the numerical case study 
conducted using the proposed integrated approach. The 
discussions are presented in Section 6. The last section 
draws conclusions.

1. Literature review

Sufficient pavement maintenance activities by the manage-
ment of the road agency are of crucial importance for pro-
moting pavement sustainability (Santos et al., 2017, 2018; 
Vyas et al., 2019). In general, the maintenance activities 
are primarily applied to project-level and network-level 
pavements (Chootinan et al., 2006), all of which are ap-
plicable to the maintenance optimization problem.

Project-level pavement maintenance in this context 
means detailed maintenance for a project, generally con-
sidering the material, environment, and cost. Lamptey 
et  al. (2008) focused on the preventive maintenance 
schedule optimization by selecting the best combination 
of preventive maintenance treatments and timings, the 
presented method applied in a case study demonstrated 
that it was feasible for developing rational and consistent 
preventive maintenance schedules in the interval resur-
facing events. Yu et al. (2013) integrated life cycle assess-
ment and life cycle cost analysis to optimize the pave-
ment maintenance plans in the pavement maintenance 
field; the results showed that the developed method was 
effective in reducing both the energy consumption and 
greenhouse gas emission for conducting the maintenance 
plans. Further, Yu et al. (2015) proposed a multi-objective 
optimization model integrating three elements (pavement 
performance, cost, and environment) to optimize the as-
phalt pavement maintenance plans at the project level; the 
results showed that the model was helpful to optimize the 
asphalt pavement maintenance plans owing to the quan-
titatively interactive relationship of the three elements. 
However, at the project level, the challenge remains to de-
velop a long-term maintenance strategy owing to a project 
being only part of the road network; consequently, only 
conducting a project-level maintenance strategy would 
be prone to the neglect of the integrity of the entire road 
network, so a maintenance strategy for the road network 
is typically needed.

The network-level pavement maintenance, which 
commonly considers pavement maintenance from the 
perspective of the overall road network, is an important 
application of the pavement maintenance field. In prac-
tice, the network-level pavement maintenance activities 
are usually constrained by many aspects, such as pursued 
maintenance targets and limited maintenance budget 
(Torres-Machi et al., 2017), consequently posing a difficult 
problem for road managers. Therefore, finding a suitable 
and reliable approach for assisting managers to develop 
network-level pavement maintenance strategies is an ur-
gent need. Over the past few years, mathematical methods 
have garnered significant attention. The studies on fuzzy 
logic (Moazami et al., 2011; Singh et al., 2018) and linear 
program (Jesus et  al., 2011; Ramachandran et  al., 2019) 
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provide effective methods for pavement maintenance 
strategies. The fuzzy logic was proposed by Moazami et al. 
(2011) to develop a prioritization model integrated with 
the analytical hierarchy process to prioritize maintenance 
alternatives; the results demonstrated that the model could 
enable managers to prioritize maintenance of damaged 
areas based on their conditions and to achieve the effec-
tiveness of budget al.ocation. Likewise, Singh et al. (2018) 
presented two approaches of fuzzy mathematical analysis, 
Fuzzy Analytical Hierarchy Process (FAHP) and Fuzzy 
Weighted Average (FWA), to conduct strategic planning 
for maintenance and rehabilitation of pavements. The 
two approaches were applied to prioritize the pavement 
stretches; the results indicated that the comparative appli-
cation of the two approaches could effectively obtain rea-
sonable decisions. Another mathematical method linear 
program was used in the studies by Jesus et al. (2011) and 
Ramachandran et  al. (2019) to obtain optimal solutions 
for allocating highway maintenance budget and resources 
respectively for pavement maintenance. Undeniably, these 
methods performed well in providing maintenance strate-
gies. However, they could become prohibitively computa-
tionally demanding and complex as the problem size or 
dimension increases.

Recently, optimization program algorithms have been 
developed for determining maintenance strategies. The 
optimization program algorithm Genetic algorithm (GA) 
has been widely applied to address maintenance strategy 
problems. Morcous and Lounis (2005) and Chootinan 
et al. (2006) used GA to search optimal maintenance al-
ternatives that consider minimizing the life-cycle cost of 
an infrastructure network, and the results showed that 
the proposed method could provide a Pareto-optimal so-
lution of minimizing the life-cycle cost while keeping the 
network condition above a predefined threshold value. 
In other works, Bosurgi and Trifirò (2005) conducted 
research on pavement maintenance management using 
artificial neural networks and GA, the obtained results 
highlighted the approach was very effective. Yang et  al. 
(2015) applied GA to build a new pavement management 
system for optimal pavement maintenance and rehabilita-
tion strategy according to the optimization aims of mini-
mizing maintenance cost and maximizing the pavement 
condition. The results indicated that the proposed method 
was a valuable tool to help managers make decisions. Un-
deniably, the simulation-based GA methods have the ca-
pability to accomplish multi-year planning of pavement 
maintenance activities for a specific situation. However, 
the need to encode and decode programs in the applica-
tion process of GA can easily cause barriers that limit the 
widespread application of GA.

To obtain an appropriate multi-objective optimiza-
tion method, researchers have made unremitting efforts. 
The improved non-dominated sorting genetic algorithm 
(NSGA-II) has been applied to achieve multi-objective 
optimization analysis (Khavandi Khiavi & Mohammadi, 
2018; Konak et al., 2006). However, the optimization effect 

of the algorithm is not good when solving high-dimen-
sional and multi-objective problems. In another work, an 
improved artificial bee colony algorithm was proposed to 
address the pavement resurfacing optimization problem 
(Panda & Swamy, 2018). However, this algorithm is prone 
to fall into a local optimum and the convergence rate is 
slow in the later evolution. Furthermore, the applicability 
of these methods to maintenance strategy needs to be fur-
ther explored. In various optimization methods, PSO has 
been widely considered. PSO is an efficient search method 
to obtain the optimal solution. Tayebi et al. (2014) demon-
strated that when conducting the programming of pave-
ment maintenance activities, PSO has the advantages in 
convergence and accuracy compared with GA. In previous 
studies, PSO has been successfully applied to address chal-
lenges in several fields, such as nondestructive evaluation 
of the pavement system (Gopalakrishnan, 2010), sustain-
able engineering design (Chou & Le, 2014). More impor-
tantly, several studies have focused on pavement mainte-
nance management (Ahmed et al., 2019a, 2019b; Chang, 
2013; Suresh & Kumarappan, 2013). These remarkably 
successful applications of PSO motivate the authors to fur-
ther examine its performance in determining maintenance 
strategies. Therefore, we apply the PSO in this research to 
achieve reliable and practical maintenance strategies.

2. Multi-objective optimization  
for maintenance under uncertainty

2.1. Multi-objective optimization  
solution for maintenance

Multi-objective optimization is commonly used to deal 
with more than one objective of a real-life problem (Alo-
thaimeen & Arditi, 2019). Multi-objective optimization is 
a field of multi-criteria decision-making, which is a math-
ematical problem involving the simultaneous optimization 
of multiple objective functions. Multi-objective optimiza-
tion has been applied in many scientific fields, as well as 
engineering, economy, and logistics. In general, competi-
tion and incompatibility between objectives make finding 
an optimal solution satisfying all constraints an important 
task. The optimal solution for the multi-objective problem 
is also called Pareto-optimal solution (Figueredo et  al., 
2020).

For multi-objective optimization considering mainte-
nance problems, the objective function can be defined as:

 =   
 ∈

⊆

1 2( )  ( ), ( ), , ( )min 
,

s. t.                                     
   

T
n
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f x f x f x f x

x X
X R

  (1)

where 1 2( ), ( ), , ( )nf x f x f x  represent n objective func-
tions for the objective of minimizing them; X represents 
variable feasible region; ⊆  mX R  is the constraint set of de-
cision variables.
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In light of the Pareto-optimal solution extended to 
solution of the multi-objective optimization, a solution 
∈*  ,x X  if ∀ ∈  ,x X  <*( )  ( )f x f x , then *x  is called the ab-

solute optimal solution of the multi-objective optimiza-
tion. If not existing ∈ x X , making < *( )  ( )f x f x , then *x
is called the Pareto-optimal solution (Yuan et al., 2017).

2.2. Optimization-based decision-support system 
for pavement maintenance management

The optimization-based road pavement maintenance strat-
egy system consists of the following six modules: (a) data 
statistics module; (b) prediction module; (c) simulation 
module; (d) decision-support module; (e) results report 
module; and (f) data management module. These modules 
are integrated as shown in Figure 1. The data collection 
module is used as the initial data input port based on the 
data survey. The prediction module uses the TPM of the 
MC to predict future pavement conditions. The simulation 
module hosts the PSO to be applied based on objectives 
and constraints to simulate feasible solutions for finding 
the multi-objective optimization solution and selecting 
the best optimal solution (i.e. Pareto-optimal solution). 
In this research, the objectives are from two maintenance 
perspectives: maximizing the pavement performance and 
minimizing the maintenance cost, and the Pareto-optimal 
solution is the best maintenance activities that can be per-
formed with the constraints. A detailed description of the 
results with the optimal maintenance strategy and pave-
ment’s function quality report is finally presented through 
the results report module. In addition, the existence of a 
data management module is responsible for implement-
ing data storage, realizing data transfer, and processing 
between each module.

3. Research objective

The research objective is to conduct pavement manage-
ment to aid pavement stakeholders to develop optimal 
maintenance strategies utilizing the model for enhanc-
ing pavement sustainability and considering not only the 
limitation of the maintenance requirements incurred by 
the road agencies, but also satisfying the benefit of stake-
holders. To determine whether or not the models are a 
good fit, the following assumptions are made in the pro-
posed maintenance model: (a) predicted pavement condi-
tions can reflect the actual pavement conditions; (b) the 
unit maintenance costs for each pavement state in each 
year discounted to the start time remain the same; (c) the 
deterioration period of each pavement state remains the 
same, and the pavement state can only deteriorate to a 
worse pavement state, not moving to a better pavement 
state unless maintenance measures are taken; (d) mainte-
nance activities are periodically performed according to 
maintenance strategies. The suitable model constructed in 
this research includes the following steps: (a) identifica-
tion of decision variables; the decision variables are de-
signed to represent all feasible maintenance activities to be 
performed in each pavement state per year; (b) establish-
ment of the objective function; the objective function is 
an important part of the optimal approach and is of inter-
est to stakeholders; (c) establishment of constraint set; the 
constraint set to be considered is to ensure the solution 
satisfying the requirements of logic, road pavement miles, 
road pavement quality condition, and budget limit.

Notwithstanding any pavement management practices 
and requirements of each road agency, the optimization 
model for achieving objectives (two maintenance perspec-

Figure 1. Flowchart of the computational platform for optimum maintenance strategy
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tives) presented in this research can be mathematically ex-
pressed as follows:
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where t
iS  is the road pavement mileage in state i in year 

t, and the initial road pavement mileage in different states 
is computed based on Combined Condition Index (CCI) 
values;  s

iw  and ijw  represent the weights of pavement in 
state i, which define priorities for each pavement condi-
tion when transferring the maintenance mileage from 
state i to state j, respectively; T is the maintenance horizon 
as required by the road agency; n is the number of pave-
ment state;  t

ijTM , called maintenance activity, is the trans-
ferred maintenance mileage from state i to state j in year t; 
R is the constant term; t

iSD  is the road pavement mileage 
after deterioration in state i in year t, which is determined 
by the road pavement mileage of different states in the 
previous year and the transfer probability in TPM; TPM is 
the transition probability matrix of the Markov chain for 
predicting the future pavement conditions; _ plus

t
iTM  rep-

resents increased mileage to road pavement state i through 
maintenance in the year t; _ minus

t
iTM  represents reduced 

mileage from road state i by maintenance in the year t; 
total
tB  is the total maintenance budget incurred by the road 

agencies for conducting maintenance activities in year t; 
total
tC  is the total maintenance cost in year t; t

ijC  repre-
sents the cost per mile of maintaining the road pavement 
condition from state i to state j in year t; ini

ijC  represents 
the initial cost per mile of maintaining the road pavement 
from state i to state j; d represents the discount rate.

Eqn (2) expresses the minimization of the pavement 
condition in different states through the priority adjust-

ment by weights. To minimize maintenance cost, the ob-
jective function is expressed in Eqn (3). Constraints (4) 
corresponding to the objective equation express the road 
pavement mileage in state i in year t as a set of functions of 
the road pavement mileage after deterioration ( t

iSD ), the 
increased mileage ( _ plus

t
iTM ), and the reduced mileage 

( _ minus
t
iTM ). Constraints (5) and (6) corresponding to 

constraints (3) express the transferred maintenance mile-
age related to the state i. Constraints (7) show the equal 
relationship between the increased mileage ( _ plus

t
iTM

 
) 

and the reduced mileage ( _ minus
t
iTM ) over all pavement 

states in year t, in other words, the transfer mileage is the 
increased mileage in the state i, and in another state, it 
is the reduced mileage. Constraints (8) express the road 
pavement mileage after deterioration ( t

iSD ) related to 
the previous year’s road pavement mileage ( –1tS ) and the 
transfer probability in TPM. Constraints (9) indicate the 
limit of the reduced mileage ( -minus

t
iTM ), the maximum 

of which cannot exceed the road pavement mileage af-
ter the deterioration in state i ( t

iSD ). Constraints (10) 
represent the budget limit that can be imposed on road 
pavement maintenance activities. Constraints (11) cor-
responding to constraints (10) express the time value of 
unit maintenance cost. Constraints (12) represent logical 
non-negativity constraints.

4. Methodology

4.1. Markov Chain (MC) approach

The Markov chain (MC) is a commonly used probabilistic 
model for pavement performance prediction, which treats 
pavement condition indicators (e.g., crack index, ride in-
dex, and rut index) as random variables and thus can ex-
plain the uncertainty associated with pavement deteriora-
tion. MC is a discrete-time stochastic process that involves 
using transition probabilities to predict future pavement 
conditions by the state transition over time sequence (Tee 
et  al., 2018). Transition probabilities describe the prob-
abilities that a road pavement section will stay in its exist-
ing state or transit to another state at the beginning of the 
following year. One of the characteristics of the MC is that 
the probability of a state transition at any given time de-
pends only on its current state. Thus, suppose the state se-
quence is + +

 

0 1 1 2, , , ,  , ,t t tS S S S S , the state +1tS  of time 
+1t  is only related to state St of time t. The mathematical 

expression satisfies the equation as follows:

( ) ( )+ +=

1 0 1 –1 1Pr | , , , , ,   Pr | t t t t t tS S S S S S S S .  (13)

Then { }+ +=  

0 1 1 2, , , , , ,t t tS S S S S S  is MC. The MC 
can be computed based on the transition probability be-
tween any two states. The transition probability of a road 
pavement section can be expressed as follows:

( )+= = =1Pr   |  t t
ijp S j S i  subject to ∀ ∈ ∈ , , i j SS t T ,  (14)

where the pij is the transition probability of a road pave-
ment section from state i at the beginning of year t to state 
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j at the beginning of year t + 1, which satisfies ≥  0 ijp
 
and 

=∑ 1 ij
j

p . SS is the state space; and T is the maintenance 

horizon.
The most important aspect in using transition prob-

abilities for analyzing the future pavement conditions 
subject to initial pavement conditions is to apply TPM 
(Osorio-Lird et  al., 2018). A TPM represents the set of 
state transition probabilities of pavement conditions to 
be experienced, which is uncertain in nature and highly 
influenced by various factors (Moreira et al., 2018). The 
TPM can be expressed as:

� �
� �
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� �� �
� �

…
…
…
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…

00 01 0
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1

,

n
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n n n n

n
p p p
p p p

TPM

n p p p

  

(15)

where n is the number of pavement states. To the left and 
top of the transition probability matrix in Eqn (15) are the 
pavement states.

Different TPMs can be used for different road pave-
ment conditions. The most common way to determine 
TPM is based on historical data. On the other hand, an 
alternative feasible method to determine TPM is based on 
the rich experience and knowledge of engineering prac-
titioners to estimate the deterioration period of adjacent 
pavement states, and then compute the transition prob-
ability of the pavement condition moving to the state j 
from the given state i. The transition probability of road 
pavement can be expressed as:

+ +=

+
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  (16)

where +( 1)
D
m mt  and +( 1)

D
j jt  represent the deterioration pe-

riod of adjacent pavement states.

4.2. Particle swarm optimization (PSO)

PSO is a population-based optimization tool for solving 
various complex problems (Eberhart & Kennedy, 1995; 
Feng et al., 2018). For the problem of the present research, 
the PSO is applied to search the optimal strategy to main-
tain the road pavement for sustainable service under vari-
ous constraints. Each particle of the PSO represents a fea-
sible maintenance activity. PSO simulates the movement 
of those particles to search the optimal position in search 
space. The particles have velocities that can be dynami-
cally adjusted according to their own flight experience and 
the flight experience of their companions to change their 
position in the search space and memory of its previous 
best position as personal best (pbest) in the search space. 
The PSO can keep the best value and position in particles 
of the swarm during the simulate process, which is called 

as gbest. Each particle moves toward its best previous po-
sition and toward the best particle in the whole swarm.

Suppose that in search space, the velocity and posi-
tion of the i-th particle for the next iteration k+1 can be 
expressed as follows:

( )+ = + × + × × + × ×1 1 2 2( 1) ( 1) ( ) ( – ( )) ( ( )– ( ))i i i i i iv k w k v k c r pbestx k x k c r gbestx k x k
( )+ = + × + × × + × ×1 1 2 2( 1) ( 1) ( ) ( – ( )) ( ( )– ( ))i i i i i iv k w k v k c r pbestx k x k c r gbestx k x k ,                       (17)

+ = + +( 1) ( ) ( 1)i i ix k x k v k ,  (18)

where +( 1)iv k  is the updated velocity in i-th particle at 
iteration k+1, +( 1)ix k  is the updated position in i-th par-
ticle at iteration k + 1. c1 and c2 are two acceleration coef-
ficients called learning factors, namely cognitive learning 
factor and social learning factor, respectively; their rea-
sonable values are assigned to 2.5 respectively according 
to the study (Feng et  al., 2018); r1 and r2 are uniformly 
disturbed random numbers within 0 and 1; ()iv  and ()ix  
are the velocity and position of i-th particle in search 
space, respectively. +( 1)w k  is the inertia weight, which 
describes the inertia of velocity influencing the k + 1-th 
iteration. The +( 1)w k  can be expressed as:

+
+ = ×ini ini end

1( 1) –( – )
max_iteration

kw k w w w ,  (19)

where iniw  is the initial inertia weight and endw  is the end 
inertia weight when iterating to the maximum evolution 
algebra. Their reasonable values are assigned as 1.3 and 
0.1, respectively, according to studies (Feng et  al., 2018; 
Wang et al., 2017). A generic PSO is depicted in Figure 2.

4.3. Markov Chain (MC) and Particle swarm 
optimization (PSO) integration

After establishing the MC and PSO models, the simulated 
MC-PSO model is integrated to find the Pareto-optimal 
solution for pavement maintenance (see Figure 3). The 
developed MC model first calculates the transition prob-
ability based on the surveyed deterioration periods, then 
forming the TPM, the road pavement mileage after de-
terioration can be computed based on the TPM and the 
surveyed pavement initial states, where are then input into 
the PSO model. In the PSO model, the particles of PSO 
representing the maintenance activities are initiated from 
possible maintenance mileage using uniform random 

Figure 2. PSO optimization diagram
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selection. When the simulation results meet al. the con-
straints introduced in Section 3, one solution is obtained, 
which will update the swarm’s global and local best infor-
mation to continue searching the Pareto-optimal solution. 
In the maintenance horizon, the pavement data is iterated 
once a year to find the Pareto-optimal solution for pave-
ment maintenance.

The MC-PSO integration executes two different types 
of loops. The first is where the particles of PSO search the 
Pareto-optimal solution obtained at the end of the loop 
procedure under constraints; the second is to find the 
Pareto-optimal solution in different years. By this integra-
tion, the multi-objective optimal solution alongside the 
pavement conditions can be quickly converged to support 
pavement management.

4.4. The formulation for implementation

The procedure of the developed integrated approach was 
programmed as a prototype in Python code running on 
the PyCharm® programming software as shown in Algo-
rithm 1 (Table 1). First, the road pavement section for 
maintenance is selected, and then to obtain the state dis-
tribution of the road pavement section by engineer prac-
titioners based on the experience and knowledge, and to 

get familiar with maintenance requirements from the road 
agencies. The initial information related to the road pave-
ment section was programmed in Python code, such as 
the initial road pavement conditions, unit maintenance 
costs in different states and maintenance horizon, etc. 
Correspondingly, the transition probability of the road 
pavement section together with the parameters of PSO 
are provided. Then, the MC-PSO algorithm is run to ob-
tain feasible solutions for searching for the Pareto-optimal 
solution (Table 1).

5. Numerical case study

5.1. General description

To illustrate the effectiveness of the proposed integrated 
approach in this research, a case study is applied on a real-
life application in the study (Akyildiz, 2008; Jesus et al., 
2011) based on Virginia Department of Transportation 
(VDOT) highway planning district containing 500 lane-
miles of I-81 and I-581 four-lane interstate highways in 
Salem District with a maintenance horizon of 15 years. 
The I-81 interstate highway reaches Tennessee in the 
south and New York in the north, its auxiliary highway 
I-581 connects Virginia. The pavement condition data 
were collected by VDOT in the early years of the 21st 
century (Akyildiz, 2008). The road pavement states are 
      0, 1, 2, 3, 4  = Excellent, Good, Fair, Poor, Very poor  ; 
the initial road pavement mileage in different states is 

=      00 01 02 03 04, , , , 75,1 75,1 50, 75, 25S S S S S  ; the deteriora-
tion periods of adjacent pavement states are   =    01 12 23 34, , , 3, 5, 3, 4D D D Dt t t t

 
  =    01 12 23 34, , , 3, 5, 3, 4D D D Dt t t t ; the target mileage for different states each year 

are   =    0 1 2 3 4, , , , 125, 200,1 00, 50, 25tg tg tg tg tgS S S S S . There are 
7 types of maintenance activities (see Figure 4), and the 
unit maintenance cost of each maintenance activity is 
different. The unit maintenance costs of different main-
tenance activities and their combinations are ranked as 
follows: + + +10 21 20 21 10 31 31 10 30 41 41 10 40, , , , , , , ,  , CM CM CM CM CM CM CM CM CM CM CM CM CM 

+ + +10 21 20 21 10 31 31 10 30 41 41 10 40, , , , , , , ,  , CM CM CM CM CM CM CM CM CM CM CM CM CM .

5.2. Results summary

According to the proposed integrated approach, the tran-
sition probabilities in the TPM of the MC are first com-
puted for predicting the future pavement conditions fol-
lowed by simulating the maintenance activities to obtain 
the Pareto-optimal solution for determining maintenance 
strategies. The MC-PSO model written in Python 3.5 code 
running on the PyCharm® programming software was 
performed on a workstation with an Intel(R) Core(TM) 
i7-7700HQ CPU @2.80Hz, 2.81GHz, and 16.0G RAM, on 
the Windows 10 Home operating system.

The appropriate parameter selection of PSO is the 
guarantee to obtain the optimal solution efficiently and 
effectively considering the computing loads. Based on the 
determination of learning factors and inertia weights, the 
simulation iteration of PSO is an important parameter for 

Figure 3. MC-PSO function integration
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optimization. The simulation results obtained with differ-
ent iterations are shown in Figure 5. When there are more 
than 1500 iterations, the simulation accuracy of case 1 and 
case 2 tends to be stable, both reaching 100%. The simula-
tion time required for 2000 iterations of case 1 and case 2 
is 743 s and 645 s, respectively, and each additional 1000 

iterations of case 1 and case 2 requires an average increase 
of about 262 s and 315s, respectively. Therefore, fully con-
sidering the simulation accuracy, simulation time, and 
simulation results stability, 2000 iterations can be selected 
as a reasonable number.

Table 1. Algorithm

Algorithm 1. Pseudocode for automatic calculation procedure of the integrated method.

Preparation:
1 Determine the road pavement section for maintenance;
2 Identify the state distribution of the road pavement section;
3 Obtain the maintenance requirements from the road agencies;

Initialization:
4 Identify pavement maintenance requirements parameters, check and adjust parameters if necessary, i.e. 0

iS , ini
ijC , total

tC , T and d;
5 Set the TPM of the MC;
6 Initialize the PSO parameters, i.e., wini, wend, dimension, number of particles, max_iteration;
7 Set the range of constraints for each particle’s phase initialize position and the initialize velocity;

MC-PSO:
8 For t in T do
9      Calculate new road mileage after deterioration in state i;

10      For each particle i do
11             For each dimension d do
12                 Initialize position and initialize velocity;
13            End
14      End
15      Iteration k = 1 do
16      For each particle i do
17            For each dimension d do

18                 Calculate weight according to the equation = ×ini ini end( ) –( – )
max_ iteration

kw k w w w ;

19                 Calculate velocity according to the equation                                                                                                                                                                                                                                                                                               
                      ( )+ = × + × × + × ×1 1 2 2( 1) ( ) ( ) ( – ( )) ( ( )– ( ))i i i i i iv k w k v k c r pbestx k x k c r gbestx k x k ;

20                 Calculate position according to the equation + = + +( 1) ( ) ( 1)i i ix k x k v k ;
21            End
22            Calculate the fitness value; calculate the maintenance cost;
23            Check the maintenance cost;
24            Evaluate fitness value, maintenance cost and maintenance mileage;
25             update swarm gbest and particle pbest positions;
26      End
27      update gbest and particle pbest;
28      k = k + 1;
29 End
30 Save gbest.

Figure 4. Illustration of the maintenance activities
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5.2.1. Calculation of the probability transition matrix
To predict the future pavement conditions, the TPM of the 
MC is used. The set of the transition probabilities gener-
ated by Eqn (16) are represented as a transition probability 
matrix according to the Eqn (15) and is shown below in 
Eqn (20).

��
��
��
��� ��
��
�� ��
��

State      0       1         2        3        4
0 0.67 0.26 0.05 0.02 2
1 0 0.80 0.13 0.05 0.02
2 0 0 0.67 0.25 0.08 .
3 0 0 0 0.75 0.25
4 0 0 0 0 1

TPM   (20)

These values in the matrix represent the annual dete-
rioration rate of the road pavement under the impact of 
uncertain environmental factors and traffic loads, mean-
while, it also describes the trend distribution of road pave-
ment states.

5.2.2. Case 1: maximizing pavement performance  
with the budget limit
From the perspective of the user, the consideration of 
maximizing pavement performance with the budget limit 
is taken for granted. PSO model is consequently pro-
grammed by considering Eqn (2) and constraints. After 
the calculation of the MC, the PSO model is used to simu-
late the feasible solutions for searching the Pareto-optimal 
solution. For maximizing the pavement performance with 
the budget limit (i.e., minimizing the road pavement mile-
age in the states Fair, Poor, and Very poor), any budget 
will be prioritized to maximize the road pavement perfor-
mance with priority given to maintaining state Excellent, 
followed by state Good.

The simulation process of the PSO is conducted for 
searching the Pareto-optimal solution. The values are 
tracked during the simulation process. One example of 
the 11th year is shown in Figure 6. As can be seen, in the 
process of searching the global optimal particle position, 

Figure 6. Simulation process of searching Pareto-optimal solution with budget limit
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the values initially fluctuate significantly and then gradu-
ally stabilize. The particle swarm had several obvious opti-
mization changes, which reflects the particle swarm jumps 
out of the local optimum trap at these iterations, such as 
the 10th, 31th, and 212th iterations. After the 860th it-
eration, the values on the particle swarm for achieving 
the objective tend to be stable, indicating that the Pareto-
optimal solution is found, with values of 0, 49.96, 0, 0, 0, 
19,33, 15.50, respectively.

Figure 7 shows the maintenance horizon-based Pa-
reto maintenance strategies. To maximize the pavement 
performance with the budget limit, there are three types 
of maintenance activities: the maintenance activity from 
Fair state pavement into Excellent state pavement (TM20); 
the maintenance activity from Poor state pavement into 
Good state pavement (TM31) and the maintenance activity 
from Very poor state pavement into Good state pavement 
(TM41). As can be seen in Figure 7, the total budget in 
the first year is devoted to maintain the pavement in the 
state Fair and make it to state Excellent, with a mainte-
nance mileage of 88.49 miles. With the reduction of the 
mileage of the Fair state pavement, the remaining budget 
is spent on maintaining Poor and Very poor state pave-
ment in the second and third years, respectively, to make 
them into Good state pavement. It is worth noting that 
Figure 8 shows the mileage held in each state each year, 
which can further reveal the maintenance activities per-
formed during the maintenance horizon. Obviously, the 
maintained mileage of the Fair state pavement after the 
second year is the mileage of the pavement in state Fair 
after the deterioration in that year. Likewise, the mainte-
nance activity for Poor state condition is to maintain all 
the deteriorated mileage in state Poor after the third year. 
In addition to supporting maintenance activities TM20 
and TM31 in the third year, the budget supports main-
tenance activity TM41, which accounts for a budget ra-
tio of 0.28:0.61:0.11 (see Figure 9), respectively. The zero 
inventory of Fair and Poor state pavement directly leads 
to a peak of maintenance mileage in maintenance activity 
TM41 in the fourth year due to higher budget being allo-
cated for maintenance activity TM41. From Figure 8, there 
is a peak of pavement inventory in state Excellent in the 
second year, the explanation for which is due to the fact 
that the pavement mileage transferred from state Fair to 
state Excellent (53.47 miles) is greater than that of deterio-
ration in state Excellent (45.78 miles), which is similar to 
the peak of pavement inventory in state Very poor in the 
third year. After the fourth year, the mileage of Excellent 
and Good state pavement every year is increased by the 
maintenance activities driven by budget, which leads to 
the annual maintenance mileage of deteriorated Fair and 
Poor state pavement also increasing year by year. These 
indirectly affect the maintenance mileage of the Very poor 
state pavement decreasing year by year owing to the re-
duction of the remaining maintenance budget for main-
taining the Very poor state pavement.

The mileage of Excellent and Good state pavement in-
creases gradually, while the mileage of the Fair, Poor, and 
Very poor state pavement decreases, which is beneficial 

for users to have better experience and comfort. More im-
portantly, the reduction of bad road pavement can reduce 
the occurrence of traffic accidents.

In summary, the PSO performs well in terms of maxi-
mizing pavement performance while simultaneously con-
sidering the budget limit, which achieves good simulation 
results in searching the Pareto-optimal solution with the 
maintenance horizon after predicting the future pavement 
conditions by MC.

Figure 7. Maintenance mileage of different maintenance 
activities with maintenance horizon

Figure 8. Mileage in different pavement states with 
maintenance horizon

Figure 9. Proportion distribution of maintenance cost  
in the third year
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5.2.3. Case 2: minimizing the maintenance  
costs with maintenance targets
From the perspective of the contractor, consideration of 
reaching the maintenance targets at the lowest cost is 
taken for granted under the supervision of managers. To 
minimize the maintenance costs with maintenance targets, 
the PSO model is programmed by considering Eqn (3), 
target mileage, and excluding constraints (10). Figure 10 
as one example of the 8th year shows the tracked and re-
corded simulation process of the PSO for searching for the 
Pareto-optimal solution. In the initial simulation phase, 
the values obviously fluctuated more seriously, and then 
TM21, TM40, and TM20 gradually evolve to 0. After the 
878th iteration, the values on the objectives tend to be 
stable, indicating that Pareto-optimal solution is found 
with values of 41.25, 0, 0, 0, 0, 24.68, 24.40, respectively.

Figures 11 and 12 show the maintenance mileage and 
maintenance cost respectively. Considering the main-
tenance targets, the road pavement undergoes relatively 
large maintenance in the first year. Maintenance activities 
take place in TM10, TM20, TM31 and TM41, with mainte-
nance mileage of 47.25 miles, 27 miles, 54 miles, and 34.25 
miles, respectively (see Figure 11). Correspondingly, the 

maintenance costs of different maintenance activities in 
the first year is very high, reaching $1,392,199, $1,830,735, 
0, 0, 0, $5,497,632, and $6,443,623.75, respectively (see 
Figure 12). After the first year, the road pavement mile-
age stayed in different states has reached the maintenance 
targets, except for states Good and Fair. The reason for 
state Fair is that the decreased mileage is greater than the 
increased mileage from the second year to the ninth year, 
which makes the mileages decrease, while the mileage in 
the state Good increases slightly due to consideration of 
the maintenance cost minimization. From Figure 12, it is 
evident that maintenance cost increases slightly every year 
after the first year. The explanations for the condition are 
that not only does the increase in the mileage for mainte-
nance to Good state pavement lead to an increase in the 
maintenance cost, but the unit maintenance cost increases 
year by year.

In general, despite the constraints of maintenance tar-
gets with the maintenance horizon, the results show that 
the PSO performs well and all the Pareto-optimal solu-
tions are successfully found. It can be concluded that the 
approach is practical in real situations for determining 
pavement maintenance strategies.

Figure 10. Simulation process of searching Pareto-optimal solution with maintenance targets
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6. Discussions

The proposed approach integrates the Markov chain for 
predicting the future pavement conditions and particle 
swarm optimization algorithm for searching the Pareto-
optimal solution to determine maintenance strategies. This 
allows the straightforward improvement of the pavement 
performance through maintenance based on the Pareto-
optimal solution for promoting pavement sustainability. 
In the case proposed in this research, the PSO model is 
applied to the pavement maintenance field based on pave-
ment condition predicted by the Markov chain, and then 
the optimal pavement maintenance strategies from two 
maintenance perspectives for 15 years are provided. To 
examine the results obtained by the proposed integrated 
approach, a comparative study is carried out using the tra-
ditional technique linear program. From the results of the 
two methods, all the results are the same for these two 
cases, which demonstrates that the proposed integrated 
approach is effective, reliable, and credible for determining 
pavement maintenance strategies.

Figures 13 and 14 show the total present maintenance 
costs and mileage of two cases, respectively. It is evident 
that the total present maintenance cost in case 1 is signifi-
cantly less than that of the case 2 over the maintenance 
horizon. The present maintenance cost of case 2 exceeds 
the present maintenance cost of case 1 by 11.99%. How-

ever, under the incentive of high cost, the total mileage 
of the Good and Excellent state pavement from the case 
2 is lower than that from the case 1 except for the first 
year as shown in Figure 14. One reason for the condi-
tion is that part of the cost goes toward maintaining the 
Good state pavement to the Excellent state pavement for 
reaching maintenance targets as shown in Figure 12. Al-
though the total present maintenance cost of the case 1 is 
slightly lower while the pavement mileage in states Good 
or Excellent is more, it is noteworthy that the mileage of 
the first nine years in state Very poor is always quite large 
as shown in Figure 8, which may present potential risks.

Figure 12. Cost of different maintenance activities with maintenance horizon (C represents the total annual maintenance cost)

Figure 13. Total present maintenance costs of two cases

Figure 11. Mileage distribution with maintenance horizon
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Regarding the road users, contractors, and road agency, 
the proposed integrated approach is beneficial regardless 
of the dynamic and uncertain problem under considered. 
The advantage of the integrated approach is demonstrated 
by the fact that using the integrated approach, the capabil-
ity to automatically determine the optimal maintenance 
strategy is performed at the given constrains, while ad-
dressing the problem, and the future pavement condi-
tions can be predicted according to its past performance 
in the field operation scenario. This is a better trade-off 
between maintenance targets and maintenance budget can 
be achieved, which, in turn, results in remarkable gains 
of assisting pavement stakeholders to improve productiv-
ity for effective long-term pavement maintenance. On the 
other hand, there are still some shortcomings in the inte-
grated approach, and some improvements need to be car-
ried out in the future to address the following challenges: 
(a) the surveys of the initial road pavement mileage in 
different states rely on the rich experience and knowledge 
of engineering practitioners, to perform the task is labor-
intensive, time-consuming, inefficient and non-objective. 
Therefore, an automated survey of the road pavement 
mileage in different states needs to be developed; (b) fixed 
transition probability and discount rate cannot fully reflect 
the real-life situation, an adjustable scheme needs to be 
developed that integrates periodic road pavement survey 
to prevent the prediction errors of the road pavement con-
dition to achieve a more effective and reliable pavement 
maintenance strategy. Furthermore, other objective main-
tenance strategies can be developed in addition to those 
proposed in this research by the integrated approach, such 
as the maintenance strategy with the minimum mainte-
nance cost to maximize pavement performance.

Conclusions

This research proposes an integrated approach based on 
Markov chain and particle swarm optimization algorithm 
to predict future pavement conditions that consider the 
uncertainty followed by optimizing the pavement main-
tenance strategies for maintenance to promote pavement 
sustainability according to the requirements and limita-
tions of road agencies. The integrated approach can in-

clude the transfer probability of the pavement state, which 
is represented as the pavement deterioration impacted by 
uncertain environmental factors and traffic loads during 
road operation. Moreover, it enables pavement perfor-
mance or maintenance cost as the optimized objective by 
employing the PSO to search for the Pareto-optimal solu-
tion for a road pavement section based on a set of gener-
ated potentially optimal pavement maintenance solutions, 
all while satisfying multiple constraints through identify-
ing decision variables.

To verify the performance of the proposed integrated 
approach, a case study based on 500 lane-miles of inter-
state highways with a maintenance horizon of 15 years 
is carried out. From the results, the dynamic long-term 
changes in pavement mileage, allocated cost, and main-
tenance mileage are revealed for decision-making by two 
cases. A comparison with the linear program demon-
strates that the integrated approach is reliable, credible, 
and practical in real situations for determining pavement 
maintenance strategy.

In summary, the proposed integrated approach pres-
ents an effective and reliable solution to determine the 
pavement maintenance strategy that can be employed 
to promote pavement sustainability. Nevertheless, some 
limitations need to be addressed. In future research, at-
tention should be paid to the correction of the transition 
probability through periodic road inspection to reduce the 
road pavement prediction error. Additionally, more cases 
need to be tested to extend the application of the proposed 
integrated approach.
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