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Abstract. Slender steel frame structures are characterised by a number of imperfections which may reduce their load 
carrying capacity drastically. This article studies the effects of these imperfections on the load carrying capacity of a 
single storey steel plane frame using global sensitivity analysis and geometrically nonlinear (second-order) elastic finite 
element analysis. Imperfections are considered as random variables. Statistical load carrying capacities needed for the 
evaluation of sensitivity analysis are processed using classical statistical methods upon the emulation of Latin Hyper-
cube Sampling simulation methods. The main interaction effects of random imperfections on the load carrying capac-
ity are identified using global sensitivity analysis. It is illustrated that the effects of imperfections on the load carrying 
capacity varies dramatically depending on the height of the columns and the boundary conditions of the end conditions 
of the columns. 
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Introduction

The reliability of frame structures is generally affected 
by a number of imperfections. In global frame analysis, 
the pattern of initial imperfections is often chosen to be 
the worst case scenario to maximize their destabilizing 
effects under the applied loads (Shayan et al. 2014). 

The great significance of initial imperfections for the 
reliability of slender steel structures has led to the propos-
al of a number of approaches of their modelling, and to 
the development of numerous computational models that 
are focused on the nonlinear behaviour, displacements 
and load carrying behaviour (Bažant, Cedolin 1991). 
Chan and Zhou (1995) proposed a method which con-
siders the effects of initial imperfections on the element 
stiffness matrix of the column. Xu and Wang (2008) per-
formed parametric studies on the effects of initial imper-
fections and out-of-plumb on the lateral stability of un-
braced plane frames. Shayan et al. (2014) used advanced 
nonlinear analysis to investigate the influence of random 
geometric imperfections as a linear combination of scaled 
eigenmodes on the strength of steel frames. Nagyová and 
Ravinger (2012) showed the possibility of identifying ini-
tial imperfection of column using nonlinear analysis of 
the natural frequency. Dario Aristizabal-Ochoa (2013, 
2015) studied the effects of initial imperfections on sta-
bility, and carried out geometrically nonlinear analysis of 

columns and frames with semi-rigid connections. Zhang 
et al. (2010) investigated the effects of random imperfec-
tions on the ultimate strength of multi-storey steel scaf-
fold frames. Agüero et al. (2015) studied the nonlinear 
effect of imperfections on the load carrying capacity of 
frames, and proposed the application of the strain energy 
method to the estimation of the worst imperfection direc-
tions with consideration to external load.

In reality, all initial imperfections are random, and a 
rational modelling of imperfections can only be achieved 
by using probabilistic methods (Shayan et al. 2014). The 
application of probabilistic methods to the evaluation 
of reliability of frames presents a new set of problems, 
particularly in identifying the statistical characteristics 
of initial geometric imperfections (Kala 2011a). Suffi-
cient information from experiments is usually available 
for the imperfections of standardized and mass-produced 
single columns (Melcher et al. 2004; Kala et al. 2009). 
The modelling of geometric imperfections is much more 
complicated for a frame (Kala 2011a, 2011b) than for a 
single column (Kala 2009, 2015) because the collection 
of statistical data of imperfections carried out on ample 
frame samples is practically impossible.

Sensitivity analysis is used to study the effects of 
random imperfections on the load carrying capacity of 
the frame depicted in Figure 1. Imperfections are respon-
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sible for the failure of real frames far below the buckling 
load of an idealized perfect frame. Sensitivity analysis is 
the process of determining how changes in model input 
imperfections or assumptions (including boundary condi-
tions) affect the model outputs (Saltelli et al. 2004). The 
frame was solved with two variants of column end condi-
tions, see Figure 2.

The effects of initial random imperfections on the 
load carrying capacity, which was obtained using the geo-
metrically nonlinear analysis with beam elements (Kala 
2012), were studied using sensitivity analysis. Sensitivity 
coefficients were evaluated in dependence on the frame 
height h, which was considered as the analysis parameter.

Fig. 1. Steel frame geometry

Fig. 2. Steel frame column end variants

1. Initial imperfection

System geometric imperfections were introduced into the 
structural models as scaled eigenmodes obtained a priori 
from an elastic buckling analysis, see Figure 3. The am-
plitude e0 of the assumed eigenmode can be calibrated 
according to empirical maximum imperfection values de-
termined by experimental tests or numerical sensitivity 
studies. The amplitude e0 must not exceed the tolerance 
limits usually specified in standards as out-of-plumb or 
out-of-vertical imperfections.

Tolerance limits indicate the degree of safety and 
reliability which we require for the structure to be con-
structed. European standard (EN 1090-2:2008+A1:2011 
2011) considers the tolerance interval ±h/500 for e0, 
which in current practice is the commonly considered 
tolerance, based on traditional practice across Europe 
and beyond (Dario Aristizabal-Ochoa 2013, 2015; Ken-

nedy et al. 1993). It was assumed that the amplitude e0 
would be found in the interval ±h/500 with 95% probabil-
ity (Kala 2011a; Melcher et al. 2004). Gauss probability 
density function with mean value of zero (ideally verti-
cal column) and corresponding standard deviation h/1000 
was considered for random variable e0 (Kala 2008), see 
Figure 3. These statistical characteristics are in relatively 
good concordance with research results (Beaulieu, Adams 
1977), where the out-of-plumb of 916 columns was meas-
ured in two horizontal directions and reported the mean 
as almost zero and the standard deviation as 0.00162.

The first eigenmode shape of buckling usually suf-
fices for the modelling of imperfections in computation-
al models aimed at the static analysis of frames (Kala, 
Puklický 2009). A more detailed analysis can be carried 
out by modelling the initial out-of-plumb and bow imper-
fections of the columns as four random variables (Kala 
2011b).

Both columns and the cross beam of the steel plane 
frame are made from standardized hot-rolled European 
members IPE 270 and IPE 360, see Figure 4. h is cross 
section height, b is cross section width, tw is web thick-
ness, tf is flange thickness. Figure 4 depicts the nominal 
geometric characteristics of IPE members, which how-
ever, in production can only be adhered to approximately 
with a certain precision. Measurements of the imperfec-
tions of the IPE sections were obtained from long-term 
experimental research (Melcher et al. 2004; Kala et al. 
2009). Cross section geometrical characteristics are used 
to calculate the cross sectional area and the second mo-
ment of area around axis y; these are the input parameters 
for the computational model.

The yield strength, ultimate tensile strength, ductil-
ity data and geometrical characteristics of hot-rolled steel 

Fig. 3. Buckling of Frame 1 and Frame 2

Fig. 4. Nominal geometry of cross-section of IPE
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beams are the most important material characteristics 
which have been studied experimentally during long-term 
research work (Melcher et al. 2004; Kala et al. 2009).

IPE beams are produced from steel S235, where 
S235 is the designation of European structural steel, 
whose nominal yield strength listed in standard (EN 1993-
1-1:2005 2005) is 235 MPa. 235 MPa should approxi-
mately correspond to five percent quantile, which should 
guarantee sufficient reliability of design (EN 1993-1-
1:2005 2005). Statistical characteristics of yield strength 
fy of steel grade S235 were determined from 596 samples 
taken from one third of the flange. The mean value was 
297.3 MPa, and standard deviation 16.8 MPa, see Ta-
ble 1. The measured values (Melcher et al. 2004) were, 
with satisfactorily high probability, higher than the stand-
ard characteristic value 235 MPa given in the standard 
(EN 1993-1-1:2005). Statistical characteristics of Young’s 
modulus E were considered according to Soares (1988).

Table 1. Input random imperfections

No. Member Symbol Mean value Std. Deviation
1.
2.
3.
4.
5.
6.

Left
Column

h1
b1
tw1
tf1
fy1
E1

*
*
*
*
**
*

270.27 mm
135.82 mm
6.963 mm
10.129 mm
297.3 MPa
210 GPa

1.196 mm
1.341 mm
0.276 mm
0.467 mm
16.8 MPa
12.6 GPa

7.
8.
9.
10.
11.
12.

Cross
Beam

h0
b0
tw0
tf0
fy0
E0

*
*
*
*
**
*

360.36 mm
172.29 mm
8.44 mm
12.61 mm
297.3 MPa
210 GPa

1.595 mm
1.689 mm
0.335 mm
0.582 mm
16.8 MPa
12.6 GPa

13.
14.
15.
16.
17.
18.

Right
Column

h2
b2
tw2
tf2
fy2
E2

*
*
*
*
**
*

270.27 mm
135.82 mm
6.963 mm
10.129 mm
297.3 MPa
210 GPa

1.196 mm
1.341 mm
0.276 mm
0.467 mm
16.8 MPa
12.6 GPa

19. System e0 ** 0 h/1000
Note: * Histogram, ** Gauss density function.

Table 1 lists the mean values and standard deviations 
of the histograms of initial geometric and material imper-
fections of steel frames 1 and 2. Statistical correlations 
among imperfections listed in Table 1 are considered with 
the value of zero.

2. Computational model

The geometrically nonlinear computational finite element 
model developed by the author of the presented article 
was utilized (Kala 2012). Meshing of the frame geom-
etry was carried out using beam elements. The columns 
were meshed with 20 elements each. The cross beam 
was meshed by 10 elements. The stiffness matrix of the 
beam element and the nonlinear step by step solution 
were published in detail in Kala (2012). Analysis is per-
formed on the basis of perfect elasticity of the material. 

Furthermore, shear deformations are neglected. The load 
carrying capacity was obtained using the combination of 
the nonlinear Euler incremental method with the New-
ton–Raphson method.

Criterion (i) for the load carrying capacity is giv-
en by the load during which plasticization of the flange 
starts. Criterion (ii) for the load carrying capacity is given 
by the load that corresponds to the reduction of tangential 
toughness determinant to zero. Criterion (ii) is applied 
sporadically, when the Monte Carlo realizations e0 are 
arbitrarily small and, at the same time, the realizations of 
yield stress of both left and right column are extremely 
high. The ultimate one-parametric loading is given as the 
minimum of load carrying capacities (i) and (ii) (Kala 
2012). 

3. Sensitivity analysis

Sensitivity analysis problems are different in nature, 
hence different techniques have been proposed for their 
solutions (see, e.g. Saltelli et al. 2004). Regarding issues 
of reliability in the building industry, sensitivity analysis 
is a significant part of reliability analysis of geotechni-
cal tasks (Marčić et al. 2013), masonry systems (Sousa 
et al. 2015), concrete structures (Yang 2007), and steel 
structures (Kala 2011b; Kamiński, Świta 2014). Sensitiv-
ity analysis can be also a significant component of multi-
criteria decision-making techniques for sustainable build-
ing assessment (Siozinyte, Antucheviciene 2013; Prasad 
et al. 2015; Antucheviciene et al. 2015).

The consistent concept of sensitivity analysis as a 
tool for the analysis of the effects of arbitrary subgroups 
of input factors (doubles, triples, etc.) on a monitored 
output was elaborated by mathematician Ilja M. Sobol’ 
(Sobol’ 1993, 2001). Sensitivity analysis of the load car-
rying capacity (random output Y) to input imperfections 
(random inputs Xi) was performed according to Eqns (1), 
(2) and (4) in the presented study.

Sobol’s first order sensitivity indices may be ex-
pressed as (Saltelli et al. 2004):

 
( )( )
( )

i
i

V E Y X
S

V Y
= . (1)

Si is a measure of the first order (e.g. additive) effect, i.e. 
the main effect, of Xi on the model output Y. The sum 
of all Si is equal to 1 for additive models, and less that 
1 for non-additive models. The difference 1 ii S−∑  is 
an indicator of the presence of interactions in the model. 

The interaction term between factors Xi, Xj is ex-
pressed by index Sij: 

 
( )( )

( )
,i j

ij i j

V E Y X X
S S S

V Y
= − − . (2)

Sij measures the second order (two-way) effect of Xi, 
Xj on the model output Y. It describes the part of the  
response of Y to Xi, Xj that cannot be expressed as a su-
perposition of effects separately due to Xi and Xj.
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Sensitivity indices of other higher orders can be 
expressed analogously (Saltelli et al. 2004). Interaction 
terms reaching the order k may exist for a computational 
model with M factors (i.e. Saltelli et al. 2004):

 123...... 1i ij ijk M
i i j i i j i k j

S S S S
> > >

+ + + + =∑ ∑∑ ∑∑∑ . (3)

It is neither common nor practical to evaluate all 2M–1 
sensitivity indices in Eqn (3). Let us remark that Eqn (3) 
has 524287 indices due to nineteen imperfections in Ta-
ble 1. However, the values of the sensitivity indices of 
the third and higher orders are very small. It is therefore 
possible and sufficient to evaluate only Eqns (1), (2) and 
the total order sensitivity indices STi (Eqn (4)). The total 
order sensitivity index STi measures the total effect of a 
factor, including its first order effect and interactions of 
any order (Saltelli et al. 2004):

 
( )( )
( )

( )( )
( )

~ ~1 i i
Ti

V E Y X E V Y X
S

V Y V Y
= − = , (4)

where: ( )~iV Y X  – the conditional variance of out-
put random variable evaluated for input random varia-
ble Xi and fixed variables (X1, X2,…, Xi–1, Xi+1,…, XM); 

( )( )~iE V Y X  – the arithmetical mean of this variance 
which is evaluated for (non-fixed) input random variables 
(X1, X2,…, Xi–1, Xi+1,…, XM). The difference STi – Si ex-
presses the degree of involvement of Xi in interactions 
with other input factors.

A highly efficient sampling method, Latin Hyper-
cube Sampling (LHS) (McKey et al. 1979; Iman, Cono-
ver 1980), was applied to generate input random vari-
ables. The output Y is the random load carrying capacity. 
The load carrying capacity was obtained with an accuracy 
of 0.1 percent in each simulation run.

The procedure of calculation of the LHS method 
can be explained practically on the evaluation of the 
first order sensitivity indices (Eqn (1)). Afterwards K 
realizations of vector X~i (apart from the ith one), i.e.  
X~i(j, 1),…, X~i(j, K) were generated for each realization 
Xi(j), j = 1,…, N. Let us remark that K can, but need not, 
be equal to N. Furthermore ( )iE Y X  is determined for 
every single j:

 ( ) ( ) ( )~
1

1 ( ), ( , )
K

i i i
k

E Y X m j f X j X j k
K =

≈ = ∑ . (5)

The value ( )( )iV E Y X  can be approximately deter-
mined from the relation:

 ( )( ) ( )( )2
1

1
1

N

i
j

V E Y X m j m
N =

≈ −
− ∑ , (6)

where m  is an assessment of arithmetical mean:

 ( )
1

1 N

j
m m j

N =
= ∑ . (7)

N = K = 10000 simulation runs of the LHS were used 
in the presented study. The variance V(Y) was evaluated 

from one million runs of the LHS method with considera-
tion of the variability of all imperfections from Table 1. 
Indices Sij and STi were calculated using the same numeri-
cal means in a similar manner as the sensitivity index Si.

4. Sensitivity analysis results

Sensitivity analysis results of both frames are displayed 
using pie charts. 360° represents the sum of 1 (Eqn (3)). 
All first-order (Eqn (1)) and second–order (Eqn (2)) sen-
sitivity indices were evaluated. The sum of other higher-
order indices were then calculated as the difference ob-
tained upon subtraction from Eqn (1), see black slice of 
the pie chart (Fig. 5).

Fig. 5. Sensitivity analysis – Frame 1 and/or 2, h = 0 m

If h = 0 m, then results of the sensitivity analyses 
are the same for both frames and may be represented us-
ing one pie chart (see Fig. 5). It may be remarked that 
the same results of sensitivity analysis are obtained for 
a frame with columns subjected to tension as it was ob-
tained for h = 0.

It is apparent from the chart in Figure 5 that the 
first-order effects are crucial, the second-order effects are 
secondary. The load carrying capacity is most influenced 
by the yield strength of the left column, right column 
and their mutual interactions. The sum of all Si and Sij 
less than one indicates that the effects of third and higher 
orders due to interactions are also present.

The presence of higher order interactions could 
dramatically complicate the determination of the effec-
tive approximate response function for the assessment of 
structural reliability (Bucher, Most 2008). The response 
surface method is based on the substitution of the limit 
state function with an approximation – the response sur-
face. The function values of this approximation are de-
termined more easily (Bucher, Most 2008). First or sec-
ond order polynomials are commonly selected for these 
functions. The main motivation for the utilization of the  
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approximate response function is decrease in computa-
tional costs of structural reliability analysis. In this re-
gard, the results of Sobol’s sensitivity analysis can be of 
great value for the compilation of the approximate re-
sponse function.

Results of the sensitivity analyses of the frames for 
h = 3 m are displayed in Figures 6 and 7. The variability 
of the load carrying capacity of Frame 1 is most sensi-
tive to the yield strength of the left fy1 or right fy2 col-
umn and their interaction effect fy1–fy2 expressed by index  
S5,17 = 0.08, see Figure 6. The variability of the load car-
rying capacity of Frame 2 is most sensitive to imperfec-
tion e0, see Figure 7. It is apparent from the pie charts that 
the interaction effects are more significant for Frame 1. 
Interaction effects of both frames are mainly related to 
the yield strength; it is also evident from the analysis of 
the total effect (Eqn (4)), see Figures 8 and 9. The result 
S19 ≈ ST19 shows that the involvement of imperfection e0 
in interactions with other imperfections is very little. The 
variability of the load carrying capacity of the frames is 
practically unaffected by the variability of material and 
geometrical characteristics of the cross beam.

Sensitivity indices of crucial imperfections are plot-
ted in dependence on the height of the frames h, see Fig-
ures 10 and 11. The frame height was considered as the 
analysis parameter with a step of 0.1 m. All sensitivity 
indices (Eqn (1)) and (Eqn (2)) were evaluated in each 
step. The varying effect of the amplitude of system im-
perfection e0 on the load carrying capacity of the frames 
is evident. For Frame 1, e0 has a maximal effect on the 
load carrying capacity when h = 9.09 m. The influence of 
other imperfections in this case is totally covered by e0. 
The top of the sensitivity index e0 was obtained by the 
approximation of three points at the peak of the curve in 
Figure 10 by a quadratic parabola. 

The results in Figure 10 provide new information 
which may be used for the determination of probabil-
ity of failure in the probabilistic assessment of reliability. 
If h < 9.09 m, then the influence of yield strength and 
thickness of the flanges of the columns increases with 
decreasing frame height. On the contrary, if h > 9.09 m, 
then the influence of Young’s modulus and thickness of 
the flanges of the columns increase with increasing frame 
height. Higher–order interaction effects associated with 
the yield strengths of the columns are maximal if h→0.

 Fig. 6. Sensitivity analysis – Frame 1, h = 3 m

Fig. 7. Sensitivity analysis – Frame 2, h = 3 m

Fig. 8. Total sensitivity analysis – Frame 1, h = 3 m

Fig. 9. Total sensitivity analysis – Frame 2, h = 3 m
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Conclusions

Sensitivity analysis results of the load carrying capaci-
ties of two symmetric portal frames are published in this 
article. The obtained results of the sensitivity analyses 
point out the imperfections the variability of which can 
have an effect on the reliability of the structure. It has 
been demonstrated that the effects of imperfections on 
the load carrying capacity vary dramatically according 
to the boundary conditions of the end conditions of the 
columns.

In the case of hinged column ends (Frame 2), the 
sensitivity of the load carrying capacity to the variability 
of the amplitude of initial system imperfection e0 increas-
es with increasing frame height. With increasing height 

h, Frame 2 becomes increasingly unstable and becomes a 
mechanism. Perfect Frame 2 becomes a mechanism when 
h→∞, see Figure 12. Real Frame 2 becomes very sensi-
tive to the amplitude of system geometric imperfection e0 
if h > 5. For h > 5, material and geometric characteris-
tics, apart from the amplitude of system imperfection e0, 
have no effect on the load carrying capacity. This is an 
important finding for ensuring the safety and reliability 
of such systems.

If the column ends are fixed (Frame 1), then the in-
crease in the frame height increases the sensitivity of the 
load carrying capacity to the variability of the amplitude 
of initial system imperfections e0 till h = 9.09 m. When 
h = 9.09 m then the sensitivity of the load carrying capac-
ity to e0 is maximal. If h > 9.09 m, then the sensitivity of 
the load carrying capacity to e0 decreases with increasing 
h. If the frame height (column slenderness) increases fur-
ther, then the load carrying capacity approaches the Euler 
buckling load. Euler buckling load of perfect Frame 1 is 
a function of Young’s modulus, geometric characteristics 
of the cross sections and buckling lengths of the columns, 
but is not a function of e0 or the yield strength fy, which 
is reflected in the changes in values of the relevant sen-
sitivity coefficients.

If h→0, the sensitivity analysis results of Frame 1 
and Frame 2 are the same. The load carrying capacities 
of the frames are most sensitive to the variability of yield 
strengths fy1 and fy2 of the columns. Interaction fy1-fy2 
also significantly influences the load carrying capacity, if 
h = 0, then S5,17 = 0.1. Interaction fy1-fy2 means that the 
extreme values of the load carrying capacity are clearly 
associated with certain combinations of inputs fy1, fy2 of 
the model in a manner not expressed by the first-order 
effects S5 and S17. Identification of interaction effects can 
be very useful for the proposal of simple and effective 
approximate response functions (Bucher, Most 2008). It 
has been illustrated in the presented article that interac-
tion occurs only among certain imperfections, while it 
can be completely neglected for other imperfections. This 
makes it possible to consider only the absolutely neces-
sary number of interaction terms in the approximate re-
sponse functions, which can then be effectively utilized 
for the realization of a high number of simulation runs of 
the Monte Carlo method.

Model complexity can be constrained by eliminating 
imperfections when sensitivity analyses show that they 
do not significantly affect the load carrying capacity and 
when there is no reason to consider their random variabil-
ity. This applies to the imperfection of the cross beam the 
variability of which does not influence the load carrying 
capacity and can be considered in stochastic models as 
deterministic (non-random).
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