
JOURNAL OF CIVIL ENGINEERING AND MANAGEMENT

ISSN 1392-3730 / eISSN 1822-3605

2016 Volume 22(3): 373–381

doi:10.3846/13923730.2014.897968

MULTIOBJECTIVE OPTIMIZATION MODEL FOR SCHEDULING  
OF CONSTRUCTION PROJECTS UNDER EXTREME WEATHER

Ahmed B. SENOUCI, Saleh A. MUBARAK
Department of Civil and Architectural Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

Received 03 Dec 2012; accepted 14 May 2013

Abstract. Extreme weather significantly impacts construction schedules and costs and can be a source of schedule de-
lays and budget overruns. A multi-objective optimization model, presented herein for the scheduling of construction 
projects under extreme weather conditions, can generate optimal/near optimal schedules that minimize the time and cost 
of construction projects in extreme weather regions. The model computations are organized as follows: (1) a scheduling 
module for developing practical schedules for construction projects, (2) a cost module for computing total project cost, 
and (3) a multi-objective module for determining optimal/near optimal trade-offs between project time and cost. Two 
practical examples of the effects of extreme weather on construction time and direct cost are provided, the first of which 
shows the impact of extreme weather on construction time and cost, and the second of which demonstrates the ability of 
the model to generate and visually present the optimal trade-offs between the duration and costs of construction projects 
under extreme weather conditions. 
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Introduction

Extreme weather conditions significantly affect project 
schedules and costs and may reduce workers’ productiv-
ity tremendously. In addition, government regulations, 
such as those imposed by the State of Qatar (e.g. for-
bidding outdoor work between 11 am and 3 pm in the 
hot and humid summer weather), may cause a mandatory 
reduction in workers’ hours. In turn, these reductions in 
labor productivity and working hours may cause addi-
tional construction delays and costs.

The effect of weather conditions on project sched-
uling has been researched in the past. Thomas and Yiak-
oumis (1987) developed a factor model to evaluate the 
productivity of labor-intensive construction activities. 
The National Cooperative Highway Research Program 
(NCHRP 1978) studied the effects of various weather 
conditions on different highway construction operations. 
The study results indicated that 45% of all construc-
tion activities are affected to some degree by weather, 
resulting in additional costs of up to billions of dollars 
annually. Moselhi et al. (1997) presented an automated 
support system for estimating the combined effects of 
reduced labor productivity and work stoppage caused by 
adverse weather conditions on construction sites. South 
Dakota DOT (SDDOT 1997) used available construction 
and weather records to determine the expected number 

of working days and delays caused by extreme weather 
conditions. McDonald (2000) examined weather-related 
delay claims and their potential resolutions for construc-
tion projects. El-Rayes and Moselhi (2001) developed a 
decision support system to quantify the impact of rainfall 
on the productivity and duration of highway construc-
tion operations. Moselhi and Khan (2012) identified, an-
alyzed, and ranked the parameters that affect jobsite daily 
labor productivity to assist jobsite personnel in planning 
and comparing their daily targetsand in fine-tuning their 
daily resource allocation. Apipattanavis et al. (2012) 
proposed an integrated framework to identify weather 
attributes that cause construction delays and to quantify 
weather threshold values.

Significant research has been conducted on con-
struction schedule optimization. Several models have 
been developed using a variety of approaches, includ-
ing linear programming, integer programming, dynamic 
programming, neural networks, genetic algorithms, ant 
colony optimizations and particle swarm optimizations. 
These models can be classified on the basis of their op-
timization objectives: (1) minimize the cost and time of 
construction projects using a time-cost trade-off analysis 
(Leu, Yang 1999; Senouci, Adeli 2001; Senouci, Eldin 
2004; Senouci, Al-Derham 2008; Blaszczyk, Nowak 
2009; Kalhor et al. 2011; Jaskowski, Sobotka 2012);  
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(2) minimize the cost and time of construction projects 
and maximize their quality using a time-cost-quality 
trade-off analysis (El-Rayes, Kandil 2005; Afshar et al. 
2007; Diao et al. 2011); and (3) minimize the time and 
maximize profits of construction projects using a time-
profit trade-off analysis (Senouci, El-Rayes 2009; Fathi, 
Afshar 2010; Elazouni, Abido 2011; Jiang et al. 2011). 
Although these studies have significantly contributed to 
this valuable research area, little or no reported research 
has focused on the scheduling of construction projects in 
extreme weather regions.

In this study, a multi-objective optimization model 
was developed for the scheduling of construction projects 
in extreme weather regions. The model can be used to 
evaluate the effects of weather conditions on construction 
duration and cost. In addition, it can generate scheduling 
plans that provide optimal trade-offs between project du-
ration and cost.

1. Model formulation 
1.1. Decision variables
The present model is designed to consider all relevant 
decision variables that have an impact on the schedul-
ing of construction projects in extreme weather regions. 
These decision variables include: (1) construction meth-
ods, which represents the availability of different type of 
materials and/or methods that can be utilized; (2) crew 
configurations and sizes that represents the possibility of 
utilizing single or multiple crews on each activity as well 
as the size of the utilized crew and/or equipment; (3) 
crew overtime policy, which represents available over-
time hours and night time shifts; and (4) project start 
date. In order to control the complexity of the optimiza-
tion model, the present model combines the first three 
major decision variables into a single variable called 
crew formation while the last major decision variable is 
represented by another variable called project start date 
variable.

Each crew formation option has an expected daily 
productivity and cost rates. The starting date variable 
takes integer values from 1 to 365, which cover all cal-
endar days of the year. A value of 1 of the project start 
date variable corresponds to the second day of January 
while a value of 365 corresponds to the thirty first of 
December. 

1.2. Search space
The major challenge confronting construction planners 
in this problem is to select an optimal project start date 
(Ndays = 1, 2, …, 365) for the project and an optimal 
crew formation option from the available set of feasible 
alternatives (Cn = 1, 2, …, NCrew(n)) for each project 
activity (n = 1, 2, …, NAct). The present model is de-
signed to help planners in this challenging task of search-
ing large solution spaces in order to identify optimal pro-
ject start date and activity crew formations that minimize 
both the project time and total cost of the project.

2. Model implementation

The model optimization computations are organized into: 
(1) a scheduling module that develops practical sched-
ules for construction projects; (2) a total cost estimat-
ing module that computes the direct, indirect, and total 
costs of construction projects; and (3) a multi-objective 
genetic algorithm module that determines optimal trade-
offs between project time and total cost. The following 
sections present a detailed description of these three ma-
jor modules.

2.1. Scheduling module
2.1.1. Weather-adjusted activity durations
The project start date defines the time frames when all 
activities are executed. Starting the project close to or 
during extreme weather will result in increased activ-
ity durations because of the loss of productivity due to 
extreme weather conditions. In order to account for the 
impact of the extreme weather on the durations of pro-
ject activities, the calendar year is divided into time seg-
ments (months for simplicity herein). Productivity and 
cost multipliers are assigned for each activity at each 
time segment in respect to the base numbers. 

The duration of activity n using crew formation Cn 
during time segment i is adjusted for extreme weather 
conditions using the following equation:

 

( , )
( , , )  

( , )
,n

n
BD n C

AD n C i
PM n i

=  (1)

where: AD(n,Cn,i) – weather-adjusted duration of activ-
ity n using crew formation Cn during time segment i; 
BD(n,Cn,i) – base duration of activity n using crew for-
mation Cn; PM(n,i) – productivity multiplier for activity 
n during time segment i; NAct – number of activities; and 
NCrew(n) – number of crew formations for activity n.

When an activity is executed during two or more 
time segments, the productivity multiplier is computed 
as the average value of all the productivity multipliers 
during the duration of that activity.

2.1.2. Activity start and finish times
CPM computations are used to determine the start time 
(STime(n, Cn)) and the finish time (FTime(n, Cn)) of activ-
ity n using crew formation Cn. The precedence relation-
ships between succeeding activities, namely, finish-start, 
start-start, finish-finish, and start-finish are used herein to 
compute activity start times. 

2.2. Total cost estimating module
2.2.1. Weather-adjusted activity direct cost
Cost multipliers are assigned for each activity at each 
time segment to account for the impact of the extreme 
weather. Cost multipliers reflect the changes in the costs 
of labor, equipment, and materials due to extreme weath-
er conditions. Therefore, for more accurate results, the 
cost multiplier should be broken into three multipliers, 
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namely, labor, equipment, and material. However, for the 
sake of simplicity, only one cost multiplier is used.

Changes in labor productivity due to extreme 
weather conditions will impact both activity duration 
and direct cost. To illustrate let us consider an excava-
tion activity. The crew assigned to the activity has a base 
productivity of 500 m3/day, a base direct cost of $1,200/
day, and a base unit direct cost of $2.40/m3 (i.e. 2.40 = 
1,2000/500). Let us now assume that the labor productiv-
ity of the activity has decreased due to extreme weather 
to a value of 400 m3/day. Now, if the crew is still paid the 
same amount, that is, $1,200/day, the unit direct cost be-
comes $3.00/m3 (i.e. 3.00 = 1,200/400). The increase (or 
decrease) in the direct cost is due to labor productivity. 

The direct cost for activity n using crew formation 
Cn during time segment i is adjusted for weather condi-
tions using the following equation:

 ( , , ) ( , )* ( , ),n nAC n C i CM n i BC n C=  (2)

where: AC(n,Cn,i) – weather-adjusted direct cost of ac-
tivity n using crew formation Cn during time segment i; 
BC(n,Cn) – base cost of activity n using crew formation 
Cn; and CM(n, i) – cost multiplier for activity n during 
time segment i.

2.2.2. Project direct, indirect, and total costs 
The total project cost is the sum of project direct and 
indirect costs. The indirect cost, which represents the 
overhead costs, is assumed to be a linear function of the 
project time. The project direct cost is equal to the sum of 
the weather-adjusted direct cost of all project activities. 

2.3. Multi-objective genetic algorithm module
The objective of this module is to search for optimal/
near-optimal trade-offs between project time and total 
cost using a multi-objective genetic algorithm model. 
Genetic algorithms are search and optimization tools that 
assist decision makers in identifying optimal or near-op-
timal solutions for problems with large search spaces. 
They are inspired by the mechanics of evolution and they 
adopt the survival of the fittest and the structured ex-
change of genetic materials among population members 
over successive generations as a basic mechanism for 
the search process (Goldberg 1989). The present model 
is implemented in three major phases: (1) Initialization 
phase that generates an initial set of S possible solutions 
for the problem; (2) Fitness evaluation phase that cal-
culates the time and total profit of each generated solu-
tion; and (3) Population generation phase that seeks to 
improve the fitness of solutions over successive genera-
tions. The detailed computation procedure in these three 
phases is explained in the following sections.

Phase 1: Initialization
The main purpose of this phase is to generate an 

initial set of S possible solutions that will evolve in sub-
sequent generations to a set of optimal/near optimal solu-

tions. The initialization phase in this model is performed 
in two main steps:
1. Read project and genetic algorithm parameters needed 

to initialize the search process. The project parameters 
include number of project activities, number of crew 
formations for each activity, number of time segments, 
productivity and cost multipliers for each activity in 
each time segment, activity base time and base direct 
cost for each crew formation, lag/lead time between 
successive activities and their precedence relation-
ships, initial indirect cost, and indirect cost slope. The 
required genetic algorithm parameters for this ini-
tialization phase include string size, number of gen-
erations, population size, mutation rate, and crossover 
rate. The string size is determined by the model, con-
sidering the total number of activities in the analyzed 
project. The number of generations G and population 
size S are identified based on the selected string size 
in order to improve the quality of the solution. Simi-
larly, the mutation and crossover rates are determined 
considering the population size and the method of se-
lection employed by the algorithm. 

2. Generate a set of random solutions (s = 1 to S) 
for the initial population P1 in the first generation  
(g = 1). Each solution represents an initial set of activ-
ity crew formations and a project start date variable. 
This set of possible solutions is then evolved in the 
following two phases in order to generate a set of op-
timal crew formations and project start date variables 
that establishes an optimal trade-off between project 
time and total cost.

Phase 2: Fitness functions evaluation 
The main purpose of this phase is to evaluate the 

time and total cost for each possible solution s in gener-
ation g in order to determine the fitness of the solution. 
This fitness determines the likelihood of survival and 
reproduction of each solution in following generations. 
As such, this phase evaluates the two identified fitness 
functions for each solution using the following two steps:
1. Calculate the project time for solution s in generation 

g using the earlier described procedure in the schedul-
ing module.

2. Calculate the project total cost for solution s in genera-
tion g using the earlier described procedure in the total 
cost estimating module.

Phase 3: New population generation 
The purpose of this phase is to create three types 

of population in each of the considered generations: par-
ent, child, and combined. For each generation g, a parent 
population Pg is used to generate a child population Cg 
in a manner similar to that used in traditional genetic 
algorithms (Goldberg 1989). The purpose of generating 
this child population is to introduce a new set of solu-
tions by rearranging and randomly changing parts of the 
solutions of the parent population. This child population 
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can then be combined with the parent population to cre-
ate an expanded set of possible solutions that forms the 
combined population Ng for generation g. This combined 
population Ng is used to facilitate the comparison among 
the initial solutions in the parent population and those 
generated in the child population. The best solutions in 
this combined population regardless of their origin are 
retained and passed to the following generation as a 
parent population (Zitzler, Thiele 1999; Deb 2001; Deb 
et al. 2001, 2002). The computational procedure in this 
phase is implemented in the following steps (Fig. 1):
1. Calculate Pareto optimal rank and crowding distance 

for each solution (s = 1 to S) in the parent population 
Pg. First, this is done by ranking the solutions in the 
population according to their Pareto optimal domina-

tion of other solutions, where a solution is identified 
as dominant if it is better than all other solutions in 
at least one optimization objective, and at the same 
time not worse in the remaining objectives. Second, 
this step calculates the crowding distance of each so-
lution, which represents the closeness of neighboring 
solutions to the solution considered. The crowding dis-
tance values help the algorithm spread the obtained so-
lutions over a wider Pareto front instead of converging 
to points that cover only a small part of the tradeoff 
surface (Deb et al. 2001). 

2. Create a new child population Cg using the genetic 
algorithm operations of selection, crossover, and mu-
tation. The selection operation chooses the individu-
als that will go through the reproduction process, by 

Fig. 1. Multi-objective genetic algorithm module
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favoring those with higher optimal ranks and wider 
crowding distances. The crossover operation, on the 
other hand, crosses each pair of the selected individ-
uals at a randomly determined point and swaps the 
variables coded in the springs at this point, resulting 
in two new individuals. The mutation operation ran-
domly changes the value of one of the variables in the 
string to induce innovation and to prevent premature 
convergence to local optima (Goldberg 1989). The fit-
ness of the generated child population is then analyzed 
using the earlier described steps of Phase 2 in order 
to obtain the values of project time and total cost for 
each solution. 

3. Combine child population Cg and parent population Pg 
to form a new combined population Ng of size 2S. This 
combined population acts as a vehicle for the elitism, 
where good solutions of the initial parent population 
are passed on to the following generation to avoid the 
loss of good solutions of the initial parent population 
once they are found (Deb et al. 2001). 

4. Calculate Pareto optimal rank and crowding distance 
for each solution (s = 1 to 2S) of the newly created 
combined population Ng. This step performs the same 
operations as Step 1 of this phase on the new com-
bined population Ng.

5. Sort the new combined population Ng using the niched 
comparison rule. This sorting rule selects solutions 
with higher Pareto optimal ranks and breaks ties be-
tween solutions with the same rank by favoring solu-
tions with higher crowding distances.

6. Keep the top S solutions from the combined popula-
tion Ng to form the parent population Pg + 1 of the next 
generation. This parent population is then returned to 
Step 1 of this phase for generating a new child popu-
lation. This iterative execution of the second and third 
phases of the model continues until the specified num-
ber of generations is completed.

3. Illustrative examples
3.1. Example #1
An example consisting of one excavation activity is used 
herein to illustrate the impact of extreme weather con-
ditions on project direct, indirect, and total costs. The 
activity consists of excavating 30,000 m3 with a crew 
productivity of 600 m3/day. The direct cost of the activity 
is estimated at $570,000 (i.e. $19/m3). The indirect cost 
is estimated at $1,200/day. 

A study was conducted to investigate the impact 
of the project start date on the project costs (i.e. direct, 
indirect, and total costs). It consisted of computing the 
total cost by moving forward the start date from January 
2, 2012 to December 31, 2012 using four-week incre-
ments. As shown in Figure 2 and Table 1, the variation 
between the project total costs and the project start date 

Table 1. Project costs results

Project start  
date delay (days)

Project start
date

Project finish
date

Project duration
(days)

Project direct
cost ($)

Project indirect
cost ($)

Project total 
cost ($)

0 2013-01-07 2013-03-15 48 556320 57600 613920
28 2013-02-04 2013-04-12 47 533520 56400 589920
56 2013-03-04 2013-05-10 47 518130 56400 574530
84 2013-04-01 2013-06-07 51 536370 61200 597570
112 2013-04-29 2013-07-05 56 573990 67200 641190
140 2013-05-27 2013-08-02 62 612180 74400 686580
168 2013-06-24 2013-08-30 67 649800 80400 730200
196 2013-07-22 2013-09-27 64 652080 76800 728880
224 2013-08-19 2013-10-25 56 614460 67200 681660
252 2013-09-16 2013-11-22 49 562020 58800 620820
280 2013-10-14 2013-12-20 47 536940 56400 593340
308 2013-11-11 2014-01-17 48 541500 57600 599100
336 2013-12-09 2014-02-14 50 560880 60000 620880
364 2014-01-06 2014-03-14 48 557460 57600 615060

Fig. 2. Project costs versus project start date delay
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follows a cyclic trend (i.e. decreasing, increasing, and 
then decreasing trends along the year). The results allow 
construction schedulers to select an optimum project start 
date that yields the minimum project total cost for the 
construction project.

3.2. Example #2
A second project is analyzed herein to illustrate the ca-
pabilities of the developed model in generating optimal 
tradeoffs between the time and total cost of construction 
projects in extreme weather regions. The example project 
includes 12 outdoor activities as shown in Figure 3.

The project is assumed to be located in the State 
of Qatar, where the weather is extremely hot and humid 
during the summer months. The precedence relationship 
between succeeding activities are finish-to-start with zero 
lag time. Each activity can be constructed using five al-
ternative crew formations, as shown in Table 2. Table 3 
shows estimates of monthly productivity and cost mul-
tipliers for a typical outdoor activity in an extreme hot 
and humid weather region. For simplicity, the produc-
tivity and cost multipliers are assumed constant for all 
outdoor activities. The daily indirect cost of the project 
is estimated at $2,500 per day with an initial indirect cost 
of $5,000. The present optimization model was used to 
search the space of possible solutions. The rate of cross-
over and mutation were set equal to their most commonly 
used values (i.e. 0.8 and 0.005, respectively). After a 
number of trial-and-error adjustments, a population size 
equal to 250 individuals and a number of generations 
equal to 1000 were found to meet the accuracy require-
ments of the example.

The model was able to significantly reduce the 
search space by precluding dominated solutions in the 
successive generations of the genetic algorithm, using 
the Pareto optimality principles. This led to the selection 
of 31 Pareto optimal (i.e. non-dominated) solutions for 
this example. Each of these solutions identifies an opti-
mal trade-off among project time and total cost. Table 
4 summarizes these optimal solutions and their impact 
on project performance. Figure 4 shows the time-cost 
trade-off curve of the project, where the horizontal axis 
represents project times and the vertical axis represents 
the project total costs.

Table 2. Activity durations and direct costs 
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1 1 3 60000 7 1 3 60000
2 6 50000 2 6 50000
3 9 40000 3 9 40000
4 12 30000 4 12 30000
5 15 20000 5 15 20000

2 1 6 70000 8 1 6 70000
2 9 60000 2 9 60000
3 12 50000 3 12 50000
4 15 40000 4 15 40000
5 18 30000 5 18 30000

3 1 9 80000 9 1 9 80000
2 12 70000 2 12 70000
3 15 60000 3 15 60000
4 18 50000 4 18 50000
5 21 40000 5 21 40000

4 1 12 90000 10 1 12 90000
2 15 80000 2 15 80000
3 18 70000 3 18 70000
4 21 60000 4 21 60000
5 24 50000 5 24 50000

5 1 15 100000 11 1 15 100000
2 18 90000 2 18 90000
3 21 80000 3 21 80000
4 24 70000 4 24 70000
5 27 60000 5 27 60000

6 1 18 110000 12 1 18 110000
2 21 100000 2 21 100000
3 24 90000 3 24 90000
4 27 80000 4 27 80000
5 30 70000 5 30 70000

Table 3. Productivity and cost multipliers estimates 

Month Productivity multiplier Cost multiplier
January 1.00 1.00
February 1.10 1.00
March 1.00 0.90
April 0.95 0.95
May 0.90 1.05
June 0.85 1.10
July 0.75 1.15
August 0.65 1.20

September 0.75 1.10

October 0.85 1.00

November 0.95 0.90
December 1.00 1.00

Fig. 3. Planning network
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This curve shows that the project time varies from 
63 to 130 working days with varying levels of total costs, 
as shown in Table 4 and Figure 4. For example, the short-
est project time of 63 days produces an overall total cost 
of $1,082,500 and is based on the project start date and 
the activity crew formations shown in Table 4. Similarly, 
the longest project time of 130 days leads to an overall 
total cost of $880000 and is based on the project start 
date and the activity crew formations shown in Table 4. 
The shortest and longest project schedules are summa-
rized in Table 5. The obtained results show that the proj-
ect start date has a significant impact on the project time 
and total cost. 

Starting the project on November 7, 2011 instead of 
February 23, 2011 has resulted in a substantial reduction 
of the project total cost (i.e. 19.5% reduction) and in a very 
large increase of the project time (i.e. 51.5% increase).  

Fig. 4. Time-Total cost tradeoff (Approximation of Pareto 
solution front)

Table 4. Pareto optimal/near optimal solutions 

Project
duration
(days)

Project
total cost

($)

Project
start time

(days)

Activity crew formations

Act#l Act#2 Act#3 Act#4 Act#5 Act#6 Act#7 Act# 8 Act#9 Act#10 Act#ll Act#12

63 1082500 Feb 23,2011 1 3 2 1 1 1 1 1 5 4 1 1
64 1075000 Feb 24,2011 1 3 2 1 1 2 1 1 5 4 1 1
66 1070000 Feb 25,2011 1 3 2 1 1 2 1 1 5 5 1 1
67 1052500 Feb 09,2011 1 3 3 1 1 3 1 2 5 4 1 1
69 1047500 Feb 11,2011 1 3 3 1 2 3 1 1 5 5 1 1
70 1030000 Feb 14,2011 1 3 2 1 1 4 1 3 5 5 1 1
72 1015000 Feb 09,2011 1 3 3 1 1 4 2 4 5 5 1 1
73 1007500 Feb 09,2011 1 3 3 1 4 5 2 1 5 5 1 1
75 1002500 Jan 11,2011 1 4 2 1 3 5 3 3 5 4 1 1
76 995000 Jan 13,2011 1 4 4 1 2 5 2 4 5 4 1 1
78 990000 Jan 13,2011 1 4 5 1 3 5 1 3 5 4 2 1
79 982500 Jan 13,2011 1 4 5 1 4 5 1 3 5 5 1 1
81 967500 Jan 11,2011 1 3 5 1 4 5 4 3 5 4 2 1
84 965000 Jan 04,2011 1 3 5 1 5 5 3 3 5 5 2 1
85 957500 Jan 04,2011 1 3 5 1 5 5 5 3 5 4 2 1
87 942500 Nov 09,2011 1 3 5 1 5 5 5 4 5 5 2 1
90 930000 Nov 03,2011 1 4 5 2 5 5 5 2 5 5 4 1
93 917500 Oct 31,2011 1 5 5 1 5 5 5 5 5 5 3 1
95 912500 Nov 08,2011 1 5 5 1 4 5 5 5 5 5 5 1
98 910000 Nov 04,2011 1 5 5 1 5 5 5 5 5 5 5 1
100 905000 Nov 08,2011 1 5 5 1 4 5 5 5 5 5 5 2
103 902500 Nov 02,2011 1 5 5 1 5 5 5 5 5 5 5 2
106 900000 Oct 31,2011 4 5 5 3 2 5 5 4 5 5 5 2
109 897500 Oct 31,2011 4 5 5 2 2 5 5 5 5 5 5 4
112 895000 Oct 31,2011 4 5 5 5 3 5 5 2 5 5 5 4
115 892500 Oct 31,2011 4 5 5 3 4 5 5 5 5 5 3 5
118 890000 Oct 31,2011 4 5 5 3 4 5 5 5 5 5 4 5
121 887500 Oct 31,2011 4 5 5 4 4 5 5 5 5 5 5 4
124 885000 Oct 31,2011 4 5 5 5 4 5 5 5 5 5 5 4
127 882500 Oct 31,2011 4 5 5 5 4 5 5 5 5 5 5 5
130 880000 Nov 07,2011 5 5 5 5 5 5 5 5 5 5 5 4
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Therefore, starting the project on November 7 with the 
crew formation shown at the bottom of Table 4, results 
in the least total cost but it extends its completion date 
not only because of delaying the start, but also for having 
normal (not accelerated) activity durations. Starting the 
project on February 23 with the crew formation shown 
at the top of Table 4, results in shortest duration but with 
a higher total cost. A possible remedy, if feasible, would 
be starting November 7 but the year before. Thus, we can 
save money and complete the project even early enough. 

Table 5. Project shortest and longest schedules 
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63 1,082,500

1 3 0 3
2 10 3 13
3 10 13 23
4 10 3 13
5 13 13 26
6 16 13 29
7 2 23 25
8 5 26 31
9 20 25 45
10 20 25 45
11 14 31 45
12 18 45 63

130 880,000

1 13 0 13
2 17 13 30
3 21 30 51
4 23 13 36
5 27 36 63
6 30 36 66
7 15 51 66
8 17 63 80
9 20 66 86
10 22 66 88
11 24 80 104
12 26 104 130

Summary and conclusions

A robust multi-objective optimization model was devel-
oped to support scheduling of construction projects in 
extreme weather regions. The model enables construc-
tion planners to generate optimal scheduling plans and 
the project start date that establish optimal trade-offs be-
tween project time and total cost for construction projects 
in extreme weather regions. Each of these plans identifies 
a start date for the project and an optimal crew forma-
tion for each activity in the project. An application ex-
ample was analyzed to illustrate the capabilities of the 

developed model in generating optimal trade-off solu-
tions between project time and total cost in a single run, 
where each provides the minimum project total cost that 
can be achieved for a given project time. The new tool 
is expected to be very useful to construction profession-
als for the scheduling of construction projects in extreme 
weather regions.
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