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Abstract. It is crucial for the owner of a construction project to select an appropriate project delivery system (PDS) during 
early decision-making stages of the project. Due to project uncertainty or a lack of project information, the parameters of 
a PDS are difficult to measure and quantify. Therefore, there are still major challenges to the objective selection of PDSs. 
This research proposes a novel systematic decision-making model to select the appropriate PDS by using the combination 
of case-based reasoning (CBR) and robust nonparametric production frontier method. The Bayesian-Structural Equation 
Modeling (SEM) supported Z-order-m method is interpreted into the case retrieves process of traditional CBR method in 
order to eliminate the deteriorative internal and external influence for PDS selection. The case study was based on ques-
tionnaire survey conducted in China and used to test the validation of the proposed model. The findings reveal that the 
systematic decision-making model can overcome some problems of the traditional methods and improve the accuracy of 
PDS selection. As a result, this research has both theoretical and practical implications for the construction industry.

Keywords: data envelopment analysis, multi-criteria decision-making, construction project, project delivery system, non-
parametric production frontier theory, case-based reasoning.

Introduction

Project delivery system (PDS) is one of the crucial fac-
tors that influence the success of a construction project. It 
stipulates the project owner’s management functions dur-
ing the project and reflects the roles, responsibilities and 
risks of project parties (American Society of Civil Engi-
neers, 2012). Once a PDS is selected, it cannot be changed 
during the implementation of a project. The management 
functions of a project owner can work in a more effective 
way only when the appropriate PDS and contract strategy 
are selected (Anderson & Oyetunji, 2003). Project per-
formance problems, such as schedule delay, cost overrun, 
and quality defect, are often attributed to an inappropriate 
selection of PDS at the beginning of a project (Mostafavi 
& Karamouz, 2010; Minchin et al., 2013; Khanzadi et al., 
2016). 

Due to the uncertain situation and multiple criteria to 
be considered, it is difficult for the owner of a construc-
tion project to select an appropriate PDS in the early stage 
of the project (Mafakheri et al., 2007). To solve this well-
defined problem, multi-criteria decision making meth-
ods, including analytical hierarchy process (AHP), multi-

attribute utility method, case-based reasoning (CBR), and 
data envelopment analysis (DEA), as well as other meth-
ods such as artificial neural network (ANN) and their var-
iants, are extensively applied to select the most appropriate 
PDS (Khanzadi et al., 2016). The literature on PDS selec-
tion methods is listed in Table 1. In fact, these previous 
researches evaluated different PDSs, relying mainly on the 
experts’ experience. Rather than the characteristics of the 
project itself, they specifically ignored the interference of 
external environment. 

AHP designed by Saaty (1972) streamlines a complex 
problem into a hierarchy structure and elicits the prefer-
ence by converting the subjective comparison of relative 
importance into the overall scores or weights. Several 
studies have been conducted using AHP to either select 
the PDS (Alhazmi & McCaffer, 2000; Oyetunji & Ander-
son, 2006) or analyse the indictor of PDS selection (Al 
Khalil, 2002; Mahdi & Alreshaid, 2005). To address the 
impreciseness or uncertainty in this decision problem, 
rough set (Mafakheri et al., 2007) and fuzzy set (Khanzadi 
et al., 2016) were combined with AHP in order to increase 
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the accuracy of selection. However, subjectivity still exists 
to a certain extent due to the preferred structure of AHP 
and the strong dependence on evaluation experts’ experi-
ence (Chang & Ive, 2002; Chen et al., 2010). 

To overcome the shortcomings of AHP, many scholars, 
such as Chan et al. (2001) and An et al. (2018), have tried 
to avoid the hierarchical structure of AHP and directly 
applied multi-attribute utility method to the selection of 
PDSs. The overall utility of different PDSs is calculated 
by multiplying the weights by the utility of the indicators. 
This method still relies on the experience of experts to 
determine the weight of the indicator, which make it chal-
lenging to ensure the validity and reliability of the whole 
selection model. The statistical approaches, including de-
scriptive statistics (Ojo et al., 2011), T-test (Minchin et al., 
2013), and principal component analysis (Qiang et  al., 

2015), were also utilized to make the selection through the 
objective description or comparison. However, it is diffi-
cult to capture the general statistical features of each PDS 
due to the properties of the construction project, which 
characterized in diversity of the project nature and client 
objectives (Luu et al., 2005). 

To avoid the subjective influence (e.g. assigning 
weights or values) and simplify calculations, DEA and 
ANN methods were involved separately or integrated into 
the process of PDS selection. As a nonparametric method 
to study the production efficiency of inputs and outputs 
(Charnes et al., 1978), various DEA model were adopted 
to measure the efficiency of different PDSs as the pre-pro-
cessing step (Lo et al., 2007; Chen et al., 2010, 2011; Shi 
et al., 2014). Based on the results, fuzzy logic (Shi et al., 
2014) or ANN (Chen et al., 2011) were respectively used 

Table 1. Methods of PDS selection

PDS selection 
method Detail Reference Shortcomings

AHP & 
improved 
methods

AHP and Parker’s judging alternative 
technique Alhazmi and McCaffer (2000)

Preferred structure and 
the strong dependence 
on evaluation experts’ 
experience

AHP Al Khalil (2002), Mahdi and Alreshaid 
(2005)

AHP and simple multi-attribute rating 
technique with swing weights Oyetunji and Anderson (2006)

Interval AHP and rough set Mafakheri et al. (2007)
Fuzzy AHP and Group decision making Khanzadi et al. (2016)

Multi-attribute 
utility methods 
& statistical 
methods

Multivariate analysis Chan et al. (2001) 

Multi-attribute utility 
methods: Strong dependence 
on evaluation experts’ 
experience to determine the 
weight of the indicator
Statistical methods:
The general statistical 
features of each PDS is hard 
to capture

Multi-attribute utility methods Cheung et al. (2001)

Fuzzy comprehensive evaluation Ng et al. (2002), Chan (2007), An et al. 
(2018)

Fuzzy technique for order preference by 
similarity to ideal solution (TOPSIS) Mostafavi and Karamouz (2010)

Descriptive statistics (Cost and Time 
overrun) Ojo et al. (2011)

Fuzzy similarity consensus Elbarkouky and Robinson Fayek (2011)
T-test; Mann-Whitney U-test Minchin et al. (2013)
Principal component analysis Qiang et al. (2015)
Simple multi-attribute rating technique 
(SMART) Marzouk & Elmesteckawi (2015)

Rough Set Liu et al. (2016)
General performance model Mesa et al. (2016)
Cloud Hierarchical Theory Martin et al. (2017)

CBR

Knowledge-based decision support 
system Kumaraswamy and Dissanayaka (2001) Easily affected by random 

noises, measurement errors, 
extreme points or abnormal 
values

CBR framework Ribeiro (2001) 
Fuzzy distance calculation Luu et al. (2003, 2005, 2006)

DEA

DEA Lo et al. (2007)

Ignoring the environmental 
factors and the intermediate 
process

Super-efficiency DEA Chen et al. (2010)
DEA bound variable Chen et al. (2011)
Fuzzy logic and DEA Shi et al. (2014)

ANN Artificial neural network (ANN)
Chen et al. (2011)
Gazder et al. (2018)
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to choose the appropriate PDS. In additional, without any 
prior knowledge, ANN could automatically generate iden-
tifying characteristics (output) from the learning data sets 
(input) that it processes. Taking advantage of this charac-
teristic, Gazder et al. (2018) unitized ANN independently 
to determine the PDS. However, these studies mainly fo-
cus on the input and output of the model, ignoring the 
environmental factors and the intermediate process that 
may have a big effect on the result. 

CBR is a method based on rule-based reasoning and is 
not dependent on the judgment of expert. CBR could offer 
a paradigm which is similar to the methods the decision 
maker adopts in problem solving. Through the technique, 
the PDS of a new project can be determined based on the 
PDS of previous similar project by calculating the similar-
ity between a new project (target case) and historic pro-
jects (source case) (Kumaraswamy & Dissanayaka, 2001; 
Ribeiro, 2001; Luu et al., 2005). However, these researchers 
mainly focus on the construction of indicator framework 
and similarity calculation; little attention has been given 
to the quality of cases themselves. If the cases are not 
screened and processed, especially when random noises, 
measurement errors, extreme points or abnormal values 
exist in the case base, the accuracy and precision of the 
solution will be deteriorated. 

Therefore, it is necessary to develop new methods 
or techniques to address the shortcomings of the exist-
ing methods. This research proposes a hybrid method 
combining CBR and the robust nonparametric produc-
tion frontier method to build a novel systematic decision-
making model of PDS selection. By utilizing the CBR 
techniques, the owner of a new project (target case) can 
retrieve the potential historic project (source cases) from 
a database according to the similarity of the PDS selection 
preference. The improved nonparametric production fron-
tier method, supported by Bayesian-Structural Equation 
Modeling (SEM), is subsequently used to measure the ef-
ficiency of each potential historic project and then finally 
determine the PDS for new project according to the PDS 
of the identified historic project with optimal efficiency. 
It is expected that the accuracy of PDS selection can be 
improved. This research has four objectives: (1) identify-
ing the indicators and criteria that influence PDS selection 
for case retrieval; (2) investigating the feasibility of adapt-
ing the nonparametric method for case reuse and revise;  
(3) building the systematic model of PDS selection; and 
(4) testing the validation of the proposed model through 
the case study. Each of them will be further discussed ac-
cordingly throughout the following sections.

1. Project performance and PDS selection criteria

1.1. The types of PDS

PDS is termed as the contractual arrangement of the 
design, procurement and construction (Khanzadi et  al., 
2016). Various PDS are available in construction industry, 
including Design-Bid-Build (DBB), Design-Build (DB), 
Engineering-Procurement-Construction (EPC), Design-

Build-Operate, Design-Build-Operate-Manage, etc. (Row-
linson & McDermott, 2005). The extended PDSs refer to 
those with the nature of financing, such as Design-Build-
Finance-Operate and Design-Build-Finance-Maintain 
(Merna & Al-Thani, 2018), and those with the nature of 
coordination/management, such as Construction Manage-
ment (CM) and Management Contracting (MC) (Hughes 
et al., 2015). 

1.2. Project performance indicators

PDS selection plays an important role in achieving pro-
ject success, and many construction studies have been 
conducted to analyze project performance indicators in 
different PDSs. Konchar and Sanvido (1998) conducted 
a performance analysis of 351 construction projects that 
adopt different PDSs (e.g. DB, DBB, and CM at risk) us-
ing a series of performance indicators. The majority of 
these indicators are objective and quantitative, such as 
cost growth, construction speed, progress growth, etc. 
Some quantitative performance indicators, such as the 
difficulty of equipment startup and the cost for operation 
and maintenance, are also included in Konchar and San-
vido (1998). Thomas et al. (2002) analyzed the impact of 
PDS selection on project performance in the aspects of 
cost, schedule, safety, rework and change. Ibbs et al. (2003) 
compared DBB and DB in terms of construction period, 
cost and production efficiency. Ling et al. (2004) and Ojo 
et  al. (2011) predicted time performance, cost perfor-
mance, quality performance and client satisfaction in DBB 
and DB projects. A. P. C. Chan and A. P. L. Chan (2004) 
pointed out that key performance indicators to measure 
project success include time, cost, quality, safety, com-
mercial value, stakeholder satisfaction, and environmental 
performance. Based on these studies, particularly Chan 
et al. (2002), Ling et al. (2004) and Chen et al. (2010), a 
framework of project performance is outlined in Table 2, 
in which cost, schedule, quality, safety, contract/business, 
and others are considered as six main performance catego-
ries. Each category consists of 1–4 performance indicators.

1.3. PDS selection criteria

PDS selection relies on criteria for decision-making. A con-
siderable number of construction researchers have made 
effort for the investigation of PDS selection criteria. For 
example, Oyetunji and Anderson (2006) provided a series 
of PDS selection criteria, including facilitating control of 
time growth, ensuring shortest reasonable schedule, facili-
tating control of cost growth, ensuring lowest reasonable 
cost, minimizing rate of expenditure, facilitating accurate 
early cost estimates, promoting early design and purchase 
of long lead materials and equipment, capitalizing on ex-
pected low levels of changes, etc. In this research, Table 3 
is adopted and modified from Chen et al. (2010) by add-
ing updated references, in which 20 PDS section criteria 
identified from a literature review constitute a framework 
and are grouped into five categories: schedule, cost, own-
ers and contractors, project, and external environment.  
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Table 2. Framework of project performance indicators

Performance category Performance indicator Performance category Performance indicator
Cost Cost performance

Contract/business

Risk control
Schedule Schedule performance Contract scope changes

Safety
Operational safety Interference with existing operation
Safety in construction Business requirements

Quality
Quality of the facility

Others
Health requirements

Plant reliability Confidentiality
Client satisfaction Environment protection

Table 3. Framework of PDS selection criteria

No. PDS selection criterion 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 Completion within original budget is crucial to 
project success √ √ √ √ √ √ √ √ √ √

2 Completion within original duration is crucial to 
project success √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

3 Project design/engineering is complex √ √ √ √ √ √ √ √ √ √ √ √ √ √ √
4 Project construction is complex √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

5 Owner assumes minimal financial risk on the 
project √ √ √ √ √ √ √ √ √ √ √

6 Owner’s cash flow for the project is constrained √ √ √ √ √

7
Owner critically requires early cost figures 
to facilitate financial planning and business 
decision

√ √ √ √ √ √ √ √ √ √ √ √

8 Early procurement of long lead equipment and/
or materials is crucial to project success √ √ √ √ √

9 An above/below normal level of changes is 
expected during project execution★ √ √ √ √ √ √ √ √ √ √ √ √ √

10 Confidentiality of business/engineering details  
of the project is crucial to project success √ √ √ √

11 Local conditions on project site are (not) 
favorable to project execution★ √ √ √ √ √

12 Owner desires a high/low degree of control/
influence during project execution★ √ √ √ √ √ √ √ √ √ √ √ √ √

13 Owner desires a substantial/minimal use of its 
own resources during project execution★ √ √ √ √ √

14 Project features are (not) well defined at the 
award of design and/or construction contracts★ √ √ √ √

15 Owner requires a single party to be held 
accountable for project performance √ √ √ √ √ √

16
Innovative, non-standard design and 
construction methods are required to meet 
project objectives

√ √ √ √ √

17 Project location is far from/near to owner’s 
resources★ √ √ √

18 Project scope is large/small★ √ √ √ √ √ √ √ √
19 Project value is high/low★ √ √ √ √ √ √ √

20 Site conditions may drive design and/or 
construction changes √ √ √ √ √

Note: “√” criterion referred to in the article; “★” split criterion.
Sources: 1. Alhazmi and McCaffer (2000); 2. Chan et al. (2001); 3. Tookey et al. (2001); 4. Cheung et al. (2001); 5. Ng et al. (2002);  
6. Chang and Ive (2002); 7. Luu et al. (2003); 8. Anderson and Oyetunji (2003); 9. Garvin (2003); 10. Mahdi and Alreshaid (2005);  
11. Luu et al. (2005); 12. Luu et al. (2006); 13. Oyetunji and Anderson (2006); 14. Mafakheri et al. (2007); 15. Ng and Cheung (2007); 
16. Rwelamila and Edries (2007); 17. Mostafavi and Karamouz (2010); 18. Liu et al. (2015); 19. Marzouk and Elmesteckawi (2015);  
20. Hosseini et al. (2016); 21. An et al. (2018).
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Quality and health/safety are essential requirements for 
any construction projects; however, it is difficult to select 
PDS based on quality and health/safety because their im-
portance for any project is equivalent. Therefore, they are 
not considered as two categories in the framework. 

2. The robust nonparametric production  
frontier method and CBR

2.1. Order-m and Z-order-m methods

As a nonparametric production frontier method that 
does not rely on restrictive hypothesis on the data source, 
DEA can measure the production efficiency of inputs and 
outputs that are continuous and has become increasingly 
favorable (Oh & Shin, 2015). However, the general DEA 
method should satisfy the assumption of convexity for 
the production possibility set p, namely if {(x1, y1),  (x2, 
y2)}∈ p, ∀a∈[0,1], then (x, y) = a(x1, y1) + (1 – a)(x2, y2) 
and (x, y)∈p, where (x1, y1) and (x2, y2) denote the input 
and output of DMU 1 (Case 1) and those of DMU 2 (Case 
2), respectively, where DMU stands for decision making 
unit (Kneip et  al., 1998). When input and output vari-
ables are discrete, however, this assumption is no longer 
valid. In addition, the DEA method may have a deviation 
to some extent in the parameter estimation. This makes 
the production frontier constructed from DEA highly sen-
sitive to the change of variable values (Simar & Wilson, 
1998). 

In comparison to the convex set of DEA that includes 
all data points (cases or projects), the partial produc-
tion possibility set of the order-m method proposed by 
Simar (2003) releases the requirement of convexity and 
excludes extreme points or abnormal values. This makes 
the order-m method more suitable for construction pro-
jects in which extreme points and abnormal values are 
inevitable. For a construction project represented by (x, 
y) where x and y denote its input and output respectively, 
when it is compared with m random cases rather than 
with all source cases in case base of construction projects, 
the order-m efficiency value can be steadier under excep-
tional circumstances, such as the schedule extension for a 
suspended contract or the schedule deduction for a ter-
minated contract.

Compared with the above internal influence of con-
struction project, the external environmental factors 
should also not be ignored since they may influence the 
production efficiency but are neither inputs nor outputs 
under the control of the producer (Daraio & Simar, 2005). 
However, both DEA and order-m method do not consider 
environmental factors. Based on the order-m method, Da-
raio and Simar (2005) further proposed the nonparamet-
ric production frontier method, namely Z-order-m, which 
could introduce the environmental factors and therefore 
become able to analyze the impact of environmental fac-
tors on production efficiency values. These robust non-
parametric production frontier methods, i.e. order-m and 
Z-order-m, were extensively used in different applications, 

including production risk (Serra & Lansink, 2014), waste-
water treatment plants (Guerrini et al., 2016) and health 
care (Gearhart & Michieka, 2018), etc.

2.2. Bayesian-structural equation modeling (SEM)

Regarding production frontier methods, a challenge of 
dimensionality may exist when there are a large number 
of inputs and outputs. Some studies, such as Sueyoshi 
and Goto (2009), have applied the principal component 
analysis approach to reduce the computational burden of 
multi-dimensional data when adopting non-parametric 
production frontier methods in the construction industry. 
Unlike principal component analysis that has no hypothe-
ses about the number of latent factors and the relationship 
between latent factors and observed variables, structural 
equation modeling (SEM) tests the structural relationship 
between latent factors and observed variables (Gupta & 
Kim, 2008; De Carvalho & Chima, 2014). SEM is divided 
into structure model and measurement model. It is inte-
grated with confirmatory factor analysis, path analysis and 
multiple linear regression analysis, among which confirm-
atory factor analysis and multiple linear regression analy-
sis can be used for dimension reduction (Timothy, 2015). 
Especially when there is only one dependent variable, un-
like multiple linear regression analysis, SEM is not neces-
sary to particularly follow the assumption of the observed 
variables that are independent of each other. 

2.3. A hybrid Z-order-m based CBR 

CBR is a paradigm of artificial intelligence and cognitive 
science. Essential processes to build a typical CBR system 
include: (1) case retrieve: retrieving the similar source 
cases in case base according to target case; (2) case reuse 
and revise: adapting to the target case by revising former 
solutions of the retrieved source cases if necessary; and 
(3) case retain: storing the target case as a new case for 
future retrievals (Aamodt & Plaza, 1994; Juan, 2009). The 
case retrieve is critical process of CBR method as its result 
will significantly affect the accuracy and performance of 
the entire CBR system, and it generally includes case rep-
resentation and similarity assessment (Zhao et al., 2017). 
Traditional information systems rely on accurate input 
in order to produce meaningful outputs (Brock & Khan, 
2017). In the context of a construction project, which are 
unrepeatable and mutually independent, the characteris-
tics and external environment of each project is diverse. In 
such heterogeneous environments, the calculation of simi-
larity of construction will be difficult and data-cleaning 
techniques are required to solve the “garbage in, garbage 
out” problem. Therefore, a two-stage decision support 
model is developed in this research by utilizing a hybrid 
Z-order-m based CBR method to select the optimal PDS. 
Within this model, the Z-order-m is integrated into the 
retrieve process of CBR, which can quantitatively exclude 
the influence of extreme points, abnormal values and ex-
ternal environment for the source case, and therefore en-
hance the robustness of CBR operation. 
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3. Methodology

This research attempts to integrate Z-order-m into the 
CBR method. As shown in Figure 1, the CBR method 
adopted in this research includes two steps, namely, case 
retrieve and case retain. And the case retrieve process is 
divided into three phases, including (1) case representa-
tion; (2) similarity calculation; and (3) Z-order-m. The 
three research phases are discussed in detail systematically 
in this section.

3.1. Case representation

Case representation is important in CBR as the rule-
based reasoning capability of CBR depends primarily on 
the structure and content of cases (El-Sappagh & Elmogy, 
2015). Cases can be diversely represented either in simple 

attributes vector, or complex object-oriented and tree rep-
resentations (Richter & Weber, 2013). The choice of a spe-
cific representation is predominantly determined by the 
information stored within a case. According to the analysis 
of previous studies on PDS selection in hereinabove, pro-
ject information, PDS selection criteria and project perfor-
mance indicators, all of which are collected by a question-
naire survey, can be adopted to represent the source case. 

The questionnaire in this research is divided into three 
parts. In the first part, a respondent is required to choose a 
completed project he/she has experienced and provide the 
background information of the project, including dura-
tion, budget and PDS type, some of which can be used as 
inputs of the Z-order-m method. The second part meas-
ures the performance of the project using the 14 indica-
tors shown in Table 2. Project performance is measured 

Figure 1. Structure of the proposed research based on the robust non-parametrical production frontier theory
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(1) Case representation 
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according to a five-point Likert scale from 1 (poor perfor-
mance or out of control) to 5 (good performance or well 
controlled). The performance indicators are used in Z-
order-m as outputs. The third part refers to PDS selection 
criteria in the project, including a total of 20 PDS selection 
criteria listed in Table 3. Eight PDS selection criteria (with 
“★”) may change in two directions. They can be split into 
pairs of forward and backward criteria. As a result, the 
total number of PDS selection criteria increase from 20 to 
28. In the third part, a respondent is required to rank PDS 
selection criteria according to their relative importance. 

3.2. Similarity calculation

Both the attributes of the PDS themselves and the time 
when the owner chooses the PDS determine that the PDS 
selection is mainly based on the PDS selection criteria 
rather than project performance indicators. Although the 
preference for the owner of each construction project is 
not exactly the same, there are still certain same patterns 
for a particular PDS, such as risk sharing, cash flow re-
quirements, etc. Therefore, case retrieve can be achieved 
by calculating the similarity of PDS selection criteria be-
tween the new project (target case) and the historic pro-
ject (source case). Since the PDS selection criteria is linear 
and simple in structure, the nearest neighbor approach, 
a popular case retrieve method is suitably used in such 
circumstance (de Mántaras & Plaza, 1997). The missing 
value can be filled in by the average value. Eqns (1) and (2) 
shows the calculation of similarity between construction 
projects for PDS selection when using the nearest neigh-
bor approach. 

( ) ( )
1

, , / ,
n

T S
i i

i

S T S sim f f n
=

=∑
 

(1)

where S(T, S) is the similarity between a target case T (a 
new project) and a source case S (a historic project) in 
the case base represented by the revised reference set, sim 
(fi

T, fi
S) denotes the similarity between Case T and Case S 

for Criterion i (i = 1 – n) of PDS selection, n is the total 
number of PDS selection criteria (n = 28), fi

T and fi
S stand 

for the values of Criterion i of PDS selection for Case T 
and Case S, respectively. Since each criterion of PDS selec-
tion has a rank number, fi

T = n-rank numberi
T and fi

S = 
n – rank numberi

S. If any criterion of PDS selection is not 
ranked during the questionnaire survey for any project, 0 
is assigned to f. Eqn (2) is used to determine sim (fi

T, fi
S):

( ), 1 / .T S T S
i i i isim f f f f n= − −

 
(2)

Both S(T, S) and sim (fi
T, fi

S) have a value range of 0–1. 
The larger the value is, the higher the similarity Case T 
and Case S have. The similarity value of 1 means complete 
matching between the two cases. On the other hand, the 
value of 0 refers to complete non-matching between them. 
As a result of similarity analysis, historic projects that have 
the highest similarity to a new project are retrieved from 
the case library to determine the appropriate type of PDS 
for the new project. 

3.3. Z-order-m

Construction projects are unrepeatable and mutually in-
dependent. From statistical perspective, outliers (extreme 
points/abnormal values), which are often seen in construc-
tion projects, have a detrimental role in establishing the 
production frontier with DEA. Under such circumstance, 
this order-m method can be treated as a better solution for 
PDS selection. Moreover, existing studies, such as Smith 
et al. (2014), show that construction projects are generally 
influenced by various environmental factors. Therefore, it 
is necessary to analyze the impact of environmental fac-
tors on the production efficiency of construction projects. 
The Z-order-m model is adopted in this research because 
it takes environmental factors into consideration. Conse-
quently, the source cases, which have optimal efficiency 
value in Z-order-m method, can be deemed as the cases 
that are not affected by either outliers or environmental 
factors. 

The Z-order-m method, in this model, is subsequently 
used to identify the source cases with optimal efficiency 
values. The potential cases of CBR for PDS selection con-
sists of all the source cases collected from the question-
naire survey. Based on the results of Z-order-m analysis, 
the source cases without optimal efficiency values are re-
moved and the remaining construction projects constitute 
the optimal source cases of CBR, whose PDS selection cri-
teria are useful to guide PDS selection decision making in 
a new project. 

3.4. Input and output variables of Z-order-m

The nonparametric production frontier methods, includ-
ing the Z-order-m model, need to find appropriate in-
put and output variables. According to Lo et  al. (2007), 
duration and budget can be used as the inputs that are 
necessary to complete a construction project. Similarly, 
Chen et al. (2011) considered project objectives in terms 
of duration and budget as well as personnel as input vari-
ables in a construction project. Duration and budget may 
vary significantly from one project to another, depend-
ing on project scale. At the beginning of a construction 
project, duration and budget are planned so that project 
parties can control time and cost performance during the 
project. On the other hand, the owner of a construction 
project generally sets maximum acceptable schedule and 
maximum acceptable cost. Rather than the direct use of 
duration and budget, this research defines the following 
acceptable schedule variance rate and acceptable cost vari-
ance rate as schedule and cost inputs. 

Maximum acceptable schedule  Planned durationAcceptable schedule variance rate 100%;
Planned durat

–
ion

= ×

 

Maximum acceptable schedule  Planned durationAcceptable schedule variance rate 100%;
Planned durat

–
ion

= ×

 
(3)

Maximum acceptable cost  Planned budgetAcceptable cost variance rate 100%.
Planned budg

–
et

= ×

Maximum acceptable cost  Planned budgetAcceptable cost variance rate 100%.
Planned budg

–
et

= ×
 

(4)
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The project performance indicators are adopted in 
this research as output variables. Table 2 shows a total 
of 14 performance indicators. If two inputs (see Eqns (3) 
and (4)) and 14 outputs are included in the Z-order-m 
model, there will be a 16-dimensional space. Since the 
number of inputs and outputs has a key role in determin-
ing the number of DMUs, the curse of dimensionality is 
a non-negligible challenge when using the nonparametric 
production frontier methods. To avoid large variances, 
which are caused by high dimensions, keeping a reason-
able dimensionality has to be considered in the Z-order-m 
model. Dyson et al. (2001) indicated that the number of 
observations must be at least two times of the product of 
the number of inputs and the number of outputs. Raab 
and Lichty (2002) proposed that the number of DMUs 
must be at least three times of the sum of the number 
of inputs and the number of outputs. Furthermore, Simar 
and Wilson (2008) revealed that, with respect to the num-
ber of inputs and outputs, the number of DMUs increases 
exponentially (not linearly) to maintain the same order of 
estimation error.

As the analysis in hereinabove, SEM can be used in 
this research to reduce the dimensionality of project per-
formance indicators. There are different estimation meth-
ods for SEM, e.g. the maximum likelihood method and 
the Bayesian estimation method. The maximum likeli-
hood method requires variables to follow a certain dis-
tribution, such as a uniform distribution or a trapeziform 
distribution. Unlike the maximum likelihood method, the 
Bayesian estimation method does not have any distribu-
tion requirements. In this research, project performance 
indicators are represented by ordinal variables. The dis-
tribution of project performance indicators is unknown. 
Therefore, this research adopts the Bayesian estimation 
method for SEM to reduce the dimensionality of project 
performance indicators.

The research tries to build a linear structural model, 
which reduces and aggregates the 14 performance indi-
cators into one variable, which is termed as Foutput. And 
Foutput can be used as the output variable for each DMU 
within the Z-order-m method. The value of convergence 
statistic (C.S.) is calculated to test the above-mentioned 
SEM model. According to Gelman et al. (2014), the model 
is acceptable if C.S. satisfies 1 ≤ C.S. ≤ 1.10. If the SEM 
model is effective, Eqn (5) is displayed below to calculate 
Foutput.

1

,
K

output k k
k

F x
=

= a∑  (5)

where ak is the regression coefficient obtained from the 
Bayesian estimation method for Performance Indicator k, 
xk is the score of each performance indicator in a project 
collected from the questionnaire survey, and K is the total 
number of project performance indicators (K = 14). As a 
result, Foutput indicates the aggregated output variable for 
the use of nonparametric production frontier methods, 
especially the Z-order-m method. 

3.5. Environmental variables of Z-order-m

Based on the order-m method that ignores external vari-
ables, the Z-order-m method takes environmental factors 
into account and therefore it is applied in this research 
to analyze the impact of environmental factors on the 
production frontier for PDS selection. Some construction 
studies, such as Konchar and Sanvido (1998) and Chan 
and Park (2005), consider intensity as an environmental 
factor when investigating project determinants. Intensity 
in these studies refers to unit cost divided by total time. 
It represents an environmental factor that influences the 
production process. This research replaces unit cost with 
project budget and defines the ratio of project budget to 
project duration as the environmental factor. The ratio 
represents a new intensity in the project environment. 
Based on the input, output and environmental variables, 
the efficiency value for each source case can be calculated 
according to the procedures proposed by Daraio and Si-
mar (2005). 

4. Case study

4.1.  Data collection

The questionnaire was distributed to 200 reputable or-
ganizations in the Chinese construction industry, such 
as construction contractors, project owners, management 
consultants, and suppliers of materials and equipment. 
The respondent who had a minimum of ten years of oc-
cupational experience were eligible for the survey. In total, 
99 responses were returned, among which 96 responses 
were valid for Parts 1 and 2 in the questionnaire while 
67 responses were valid for Part 3. This means that 29 
participants did not complete Part 3 and therefore their 
responses were excluded. As a result, there were 67 valid 
responses for all the three parts. Of the valid responses, 
more than 70% were from contractors while less than 
30% were from owners, consultants and suppliers. The 
analysis of the valid responses reports the application of 
different PDSs in the surveyed projects. The PDSs with 
more than 5% of responses are: DBB (including DBB + 
MC) (18.48%), DB/EPC (46.74%), Multi-stage DB/EPC 
(16.30%), and EP + C (8.70%). By comparison, DBB, DB, 
EPC and their derivative systems are more commonly 
used in the Chinese construction industry.

4.2. Reliability analysis and statistical  
perspective of questionnaire results 

Reliability analysis is used in this research to test the con-
sistency and stability for project performance indicators 
collected from the questionnaire survey. As a result of re-
liability analysis, the Cronbach’s Alpha coefficient based 
on original data is 0.719 > 0.7 while the Cronbach’s Al-
pha coefficient based on standardized data is 0.721 > 0.7. 
Both coefficients are greater than 0.7, indicating that the 
surveyed projects’ performance information is valid and 
credible for statistical analysis. As a result, PDS selection 
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Table 4. Ranking of PDS selection criteria

No. PDS selection criterion PDS 
1

PDS 
2

PDS 
3

PDS 
4

PDS 
5

PDS 
6

PDS 
7

1 Completion within original budget is crucial to project success 12 14 1 3 1 6 1
2 Owner’s cash flow for the project is constrained 5 2 3 8 3

3 Owner critically requires early cost figures to facilitate financial 
planning and business decision 19 15 21 12 20

4 Owner assumes minimal financial risk on the project 15 10 2 8 6 2 16

5 Owner requires a single party to be held accountable for project 
performance 3 19 3 1 5 1 2

6 Completion within original duration is crucial to project success 2 4 10 4 4 5 8
7 Project scope is large 16 11 12 11 9 9
8 Project scope is small 8 17 13 3 23
9 Project value is high 18 12 17 7 10 10

10 Project value is low 20 18 14 7 24

11 Owner desires a high degree of control/influence during project 
execution 14 8 18 9 13 5

12 Owner desires a low degree of control/influence during project 
execution 1 9 5 2 11 14

13 An above normal level of changes is expected during project 
execution 6 1 19 14 11

14 A below normal level of changes is expected during project execution 21 3 13 25 16 15 25

15 Project features are well defined at the award of design and/or 
construction contracts 10 2 5 11 15 16 4

16 Project features are not well defined at the award of design and/or 
construction contracts 9 7 15

17 Local conditions at project site are favorable to project execution 13 5 22 13 17 21
18 Local conditions at project site are not favorable to project execution 11 7 6 18 6
19 Site conditions may drive design and/or construction changes 17 9 8 16 12 4 19
20 Project design/engineering is complex 7 4 15 10 19 12
21 Project construction is complex 4 7 9 14 21 13

22 Innovative, non-standard design and construction methods are 
required to meet project objectives 24 11 6 24 8 22 17

23 Early procurement of long lead equipment and/or materials is crucial 
to project success 23 6 16 10 19 20 7

24 Confidentiality of business/engineering details of the project is 
crucial to project success 28 26 26

25 Project location is near to owner’s resources 25 12 28 18 23 18
26 Project location is far from to owner’s resources 26 13 14 27 24

27 Owner desires a substantial use of its own resources during project 
execution 27 16 20 25 22

28 Owner desires a minimal use of its own resources during project 
execution 22 15 23 17 26 27

Note: PDS 1: DBB; PDS 2: DBB (early procurement); PDS 3: DBB+CM (at agent); PDS 4: DB/EPC; PDS 5: CM (at risk); PDS 6: Multi-
stage DB/EPC; PDS 7: EP + C. 

criteria are ranked in this research through the analysis 
of questionnaire responses. The average ranking of PDS 
selection criteria is listed in Table 4 for the 67 valid ques-
tionnaire responses. 

4.3. The result of Bayesian-SEM
A total of 67 responses are valid for all the three parts 
in the questionnaire, which may not be sufficient for the 

16-dimensional space when using the Z-order-m model. 
For this reason, Bayesian-SEM is used in this research for 
dimension reduction. The test result of C.S. is 1.0240 after 
500 + 48562 iterations using Bayesian estimation method 
in AMOS. Consequently, the SEM model is deemed ef-
fective. The result can be seen in Table 5. Eqn (5) is then 
used to compress the 14 performance indicators into one 
aggregated output variable Foutput. 
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4.4. Analysis results of order-m model

As discussed above, acceptable schedule variance rate and 
acceptable cost variance rate are used in this research as 
two input variables. On the other hand, the aggregated 
project performance indicator Foutput is treated as an out-
put variable. To exclude the influence of outliers (extreme 
points, abnormal values), the input and output variables 
are firstly substituted into DEA and order-m models, to 
obtain the input-oriented efficiency values of each source 
case. The parameter m refers to the order in the order-m 
and Z-order-m models. The order m of the production 
frontier has an interpretation of benchmarking against m 
competitors (Daraio & Simar, 2007). According to Simar 
and Wilson (2008), the value of m is somewhat less than 
the size of the sample (the reference set) although there is 
no standard for the selection of m when using the order-
m and Z-order- m method. Since the sample size in this 
research is 67 and it is possible to assume that each case 
(each project) has more than 50% of competitors in the 
sample, m = 35 can be obtained. The results of input-ori-
ented efficiency values are presented in Table 6.

Table 6 demonstrates order-m ≥ DEA in terms of es-
timated input-oriented efficiency values. The production 
frontier of DEA envelops all the data points (i.e. DMUs), 
including extreme/abnormal data points. Compared to 
DEA, the production frontier of order-m envelops neither 
extreme points nor abnormal ones. Therefore, the order-m 
envelop area is the minimum between the two frontiers. 
The distance between a DMU and the order-m frontier is 
the shortest and therefore the order-m efficiency value is 
the greatest. By comparison, the order-m frontier is not 
only insensitive to outliers (extreme points/abnormal val-
ues) but also easy to explain the significance of reality.

4.5. Analysis results of Z-order-m model

Based on the analysis of order-m, this case study further 
explores the influence of environmental factor budget/

duration ratio. Daraio and Simar (2007) highlighted the 
importance of selecting bandwidth h of a kernel that is 
used to smooth the Z-order-m method. Based on the data-
oriented program adopted by Simar and Wilson (2008), h 
with the budget/duration ratio as the environmental factor 
is determined in this research. If h is 60, the estimated ef-
ficiency value deviates least (see Figure 2). 

As outlined in 3.3, the Z-order-m method introduces 
environmental factors based on the order-m method. Qz 
is the ratio of the estimated efficiency value with an en-
vironmental factor (Z-order-m) to that without an envi-
ronmental factor (order-m). Z is the value of the environ-
mental factor. The budget/duration ratio is adopted in this 
research as the environmental factor. Figure 3 describes 
the relationship between Qz and Z, showing that Qz de-
creases as Z increases. In other words, the efficiency under 
the environmental condition is always smaller than the 
unconditional efficiency. This is consistent with Simar and 
Wilson (2008), confirming its correctness in the construc-
tion research field. 

Based on the 67 valid questionnaire responses, the 
Z-order-m method is used in this research to calculate 
input-oriented and output-oriented efficiency values for 
each source case, considering the budget/duration ratio as 
an environmental factor. The results of input-oriented and 
output-oriented efficiency values are presented in Table 7. 
The projects with both input-oriented efficiency values ≥1 
and output-oriented efficiency values ≤1 can be regarded 
as optimal cases. PDS selection for optimal cases is also 
shown in Table 7. On the other hand, non-optimal cases 
for PDS selection are ignored because they have no con-
tributions to the updated CBR case base. 

The CBR method is chosen for PDS selection in the 
current study. The initial reference set of CBR is based on 
the 67 valid questionnaire responses. After removing the 
24 cases (projects) that fail to meet the requirements for 
both input-oriented efficiency values ≥1 and output-ori-
ented efficiency values ≤1, 43 remaining cases (projects) in 

Table 5. Results of Bayesian estimation

Performance indicator Regression 
coefficient S.E. S.D. C.S. Skewness Kurtosis Min Max

Cost performance 1.139 0.009 0.108 1.004 0.426 0.692 0.736 1.683
Schedule performance 1.785 0.031 0.264 1.007 0.592 0.657 1.085 3.115
Operational safety 0.857 0.007 0.134 1.001 0.590 1.144 0.362 1.534
Safety in construction –0.047 0.019 0.167 1.006 0.783 0.878 –0.575 0.782
Quality of the facility 0.021 0.011 0.139 1.003 –0.380 0.204 –0.646 0.490
Plant reliability 0.028 0.007 0.128 1.002 –0.080 0.904 –0.510 0.689
Client satisfaction 0.017 0.008 0.139 1.002 0.317 0.693 –0.589 0.585
Risk control 0.038 0.006 0.140 1.001 0.247 1.088 –0.474 0.748
Contract scope changes 0.001 0.004 0.120 1.001 0.128 0.757 –0.477 0.543
Interference with existing operation 0.020 0.007 0.135 1.001 0.494 1.234 –0.496 0.907
Business requirements –0.005 0.004 0.129 1.001 –0.050 0.497 –0.515 0.525
Health protection –0.015 0.005 0.125 1.001 0.122 0.794 –0.576 0.591
Confidentiality 0.023 0.006 0.121 1.001 –0.011 0.586 –0.454 0.480
Environment protection 0.029 0.014 0.135 1.005 –0.338 –0.219 –0.514 0.467
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Table 7 constitute the revised reference set of CBR, namely 
the revised case library, which covers six types of PDSs 
in construction projects: DBB, DBB (early procurement), 
DBB + CM (at agent), DB/EPC, Multi-stage DB/EPC and 
EP + C. When using the CBR method, the similarity be-
tween construction projects is calculated according to 
Eqns (1) and (2).

4.6. The Similarity assessment and accuracy  
of PDS selection model 

To validate the proposed hybrid Z-order-m based CBR 
model, this research presents a comparative analysis be-
tween the proposed method and the traditional CBR 
model without considering Z-order-m. The case base of 
traditional CBR includes all the initial 67 cases, whereas 
the case base for the hybrid Z-order-m based CBR model 
solely involves the optimal 43 cases. Each case in the two 
case bases is selected sequentially as the target case to 
calculate the similarity using Eqns (1) and (2) separately. 
Except for the target case itself, each target case is labelled 
with the PDS of the source case which has the greatest 
similarity with the target case. With the comparison be-
tween the labelled and the original type of each case, the 
accuracy of the model can be calculated. Through the it-
erative calculation using Python 3.7.5, the overall accuracy 
rates are 89.55% and 95.34% for the initial and updated 
case base, respectively (see Table 8). Based on Table 8, it 
can be found that for the PDS with small frequency (i.e. 
DBB (early procurement) and DBB + CM (at agent)), 
the performance for both case libraries is not ideal.  

Table 6. Input-oriented efficiency values of production frontier

Project No. order-m DEA Project No. order-m DEA Project No. order-m DEA
1 0.9769 0.6655 24 0.9756 0.7461 47 1.0213 0.8655 
2 0.9768 0.6783 25 0.8543 0.6540 48 0.8515 0.6510 
3 0.8641 0.4352 26 0.8748 0.5891 49 0.9001 0.6976 
4 1 0.7261 27 0.9186 0.5563 50 0.9678 0.7615 
5 0.8563 0.6301 28 0.5950 0.3312 51 0.8793 0.4428 
6 0.8692 0.4262 29 0.8708 0.3842 52 0.9716 0.5282 
7 1 1.0000 30 1.1710 0.5444 53 0.8685 0.5827 
8 0.8049 0.4377 31 0.8761 0.5602 54 0.7165 0.4589 
9 0.7639 0.4602 32 0.6865 0.5369 55 0.6785 0.2901 

10 1.1728 0.7596 33 0.9072 0.6923 56 1.0186 0.6327 
11 0.9732 0.3452 34 1.0550 0.4947 57 0.8520 0.6364 
12 0.9129 0.6851 35 0.8474 0.4804 58 0.8493 0.3779 
13 1 0.7942 36 0.8575 0.6303 59 0.8574 0.6283 
14 0.8917 0.5492 37 1.0099 0.8355 60 0.8618 0.6033 
15 0.7953 0.4012 38 0.8849 0.5346 61 0.8735 0.5511 
16 0.9223 0.6540 39 1.0237 0.7422 62 1.0043 0.7170 
17 0.9221 0.6300 40 0.8770 0.5478 63 1.0013 0.6486 
18 0.7651 0.5610 41 0.7923 0.5106 64 0.8432 0.6464 
19 0.6391 0.5094 42 0.8724 0.4948 65 0.7839 0.5140 
20 0.7335 0.4423 43 1 0.7919 66 0.9235 0.6371 
21 0.9911 0.7179 44 0.4241 0.2201 67 0.8636 0.5290 
22 0.9434 0.5002 45 0.8800 0.5190 
23 1 0.7553 46 1.0083 1.0000 

Figure 2. Determination of bandwidth when using Z-order-m

Figure 3. Effect of environmental factor  
on partial production frontier
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Table 8. The partial and overall accuracy rate for the PDS selection model

PDS
No.

PDS Accuracy rate of initial  
case base (67 cases)

Frequency Accuracy rate of updated  
case base (43 cases)

Frequency

1 DBB 80.00% 15 100.00% 9
2 DBB (early procurement) 0.00% 2 0.00% 1
3 DBB + CM (at agent) 0.00% 2 0.00% 1
4 DB/EPC 100.00% 30 100.00% 20
6 Multi-stage DB/EPC 100.00% 12 100.00% 9
7 EP + C 100.00% 6 100.00% 3

Overall 89.55% 67 95.34% 43

Table 7. Z-Order-m efficiency values with budget/duration ratio as environmental factor

Project
No.

Input-oriented 
efficiency

Output-oriented 
efficiency

PDS  

No.
Project

No.
Input-oriented 

efficiency
Output-oriented 

efficiency
PDS  

No.
1 1 1 7 35 1 1 1
2 1 1 7 36 1 1 1
3 1 1 1 37 1 1 6
4 1 1 1 38▲ 0.9885 1.2156

5▲ 1 1.0560 39 1 1 4

6▲ 0.8763 1.7414 40 1 1 6
7 1 1 1 41▲ 0.8999 1.1291
8 1 1 4 42 1 1 3

9▲ 0.9656 1.1828 43 1 1 4
10 1 1 4 44▲ 0.4737 1.4866

11▲ 0.8333 1.8846 45 1 1 4
12 1 1 6 46 1 1 1
13 1 1 6 47 1 1 4
14 1 1 4 48 1 1 7

15▲ 0.9418 1.4483 49 1 1 6
16 1 1 6 50 1 1 4
17 1 1 4 51 1 1 4

18▲ 0.9554 1.0120 52 1 1 6
19▲ 0.7654 1.0153 53▲ 0.8405 1.1585

20 1 1 4 54▲ 0.6390 1.1401
21 1 1 1 55▲ 0.6392 1.8037

22▲ 1 1.3808 56 1 1 4
23 1 1 1 57▲ 1 1.0456
24 1 1 7 58 1 1 4

25▲ 1 1.0175 59▲ 1 1.0592
26 1 1 7 60▲ 1 1.1030

27▲ 0.8586 1.2795 61▲ 1 1.2075
28 1 1 3 62 1 1 4
29 1 1 1 63 1 1 2
30 1 1 2 64 1 1 6

31▲ 0.9997 1.0204 65▲ 1 1.0781
32 1 1 4 66▲ 1 1.1781

33▲ 1 1.0594 67 1 1 6
34 1 1 4

Note: a. ▲ represents a non-optimal project according the Z-order-m production frontier; b. PDS 1: DBB; PDS 2: DBB (early procure-
ment); PDS 3: DBB + CM (at agent); PDS 4: DB/EPC; PDS 6: Multi-stage DB/EPC; PDS 7: EP + C.
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However, for the accuracy of remaining PDS and the 
overall accuracy, the updated case base gets a better re-
sult compared with the initial case base. As a result, the 
accuracy is improved significantly after the utilization of 
Z-order-m method to remove non-optimal cases from the 
case base. 

Conclusions

To address the problems within existing studies on PDS 
selection, this research adopts a combination of CBR and 
robust nonparametric production frontier method to build 
a novel model. It demonstrates the feasibility of integrat-
ing the nonparametric production frontier method into 
the CBR retrieve process for PDS selection in construction 
projects. It also compares DEA-type methods, based on 
which the Z-order-m method is chosen to establish the 
partial production frontier for PDS selection. A case study 
based on the questionnaire survey is conducted to test the 
validation of the proposed model. With the comparative 
analysis between the traditional CBR and the hybrid Z-
order-m based CBR, the results reveal that the later could 
effectively improve the accuracy for the selection of PDSs.

This research overcomes the shortcomings of the tra-
ditional DEA-type methods, such as inevitability of outli-
ers and ignorance of environment factors. It utilizes the 
Z-order-m method to better estimate the efficiency values 
and establish a more stable production frontier. To meet 
the dimension limit during the Z-order-m estimation pro-
cess, it employs Bayesian estimation-based SEM to reduce 
the dimension of project performance indicators. It con-
firms that environmental factors have an impact on the 
efficiency estimation of construction projects. Improving 
the accuracy rate of PDS selection by the hybrid Z-order-
m based CBR method characterizes an important con-
tribution of this research to the body of knowledge. This 
research also provides industry practitioners with a good 
example of using quantitative analysis for PDS selection 
in their projects.

An updated case base of CBR, based on nonparametric 
production frontier theory, is developed in this research. 
In the developing process, the optimal cases obtained 
from the Z-order-m efficiency estimation are retained in 
the updated case base while the non-optimal cases are 
removed. Doing like this greatly reduces the number of 
cases (projects) whose information is collected from the 
questionnaire survey, which may result in a limitation. 
Another limitation of this research is that the bias for the 
minority group of PDS is high. Therefore, future research 
is recommended to collect more questionnaire responses 
from different types of projects to improve the case library. 
In this research, the budget/duration ratio is used as an 
environmental factor. More environmental factors, such 
as weather, geographical condition and change in legisla-
tion, can be recommended in future research to enhance 
the efficiency estimation. 
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