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abstract. Accurate estimation of budget costs is critical for effective management of construction projects. The per-
formance of various management functions is dependent on the accuracy of the estimates throughout the construction 
phase. These estimates, however, inevitably involve a considerable amount of error, which imperatively requires the 
evaluation of budget cost estimates and the measurement of errors associated with the estimates. Applying an analytical 
procedure, this study carried out a thorough statistical analysis of existing practice in the construction industry to identify 
limitations of the practice. As an alternative to the practice, a Bayesian approach was found to be more appropriate than 
the industry common practice to account for the probabilistic nature of estimates and to forecast errors associated with 
the budget estimates. A scenario-based example is included to demonstrate application of the analytical procedure for 
analysing historical cost performance data that are readily available in most construction companies. 
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introduction 

Accurate estimation of budget costs is critical for suc-
cessful management of construction projects. Budget cost 
estimates that are prepared at the preconstruction stage 
and are updated when significant changes are made to a 
project, are referenced in decision-making for planning 
and control throughout the execution of a project. Thus, 
the accuracy of estimates greatly affects the quality of 
decisions. Inaccurate estimates naturally increase the 
risks of a project and become a barrier to effective man-
agement. Despite the importance of accurate budget esti-
mates, the problem of accuracy remains unsolved (Trost, 
Oberlender 2003). Most construction projects experience 
a certain degree of deviation between estimated and ac-
tual costs – a detailed breakdown shows the greatest de-
viation in the construction phase (Ökmen, Öztaş 2010). 
Stevens (1995) reports that 67% of the total cost of all 
overruns occurs in the construction phase. A similar situ-
ation was observed from an investigation on construction 
cost data in the present study – 154 out of the 233 cases 
(66%) showed a percentage error greater than +20% or 
less than –20%. 

Meanwhile, such deviation is virtually inevitable 
due to the nature of estimating process and the variables 
involved in the process. At the preconstruction stage,  
estimators make many assumptions relying on limited 
information available at the time of estimating and the 
assumptions involve a considerable degree of uncertainty 

(Soutos, Lowe 2005). In addition, the accuracy of cost 
estimation is highly dependent on many influential fac-
tors involved in the process – to name a few, the avail-
ability and accuracy of information used for estimating, 
the depth of estimators’ knowledge and experience, and 
the infrastructure and systems utilized for estimating. Un-
der these circumstances, estimators often prepare range 
estimates or contingency plans to account for the uncer-
tainty and errors (Peurifoy, Oberlender 2001). Therefore, 
achieving accurate prediction of errors associated with 
budget estimates can bring significant improvement to 
managing risks in the course of project execution and 
determining contingency costs. 

Research efforts in estimating to date have concen-
trated on the identification of factors that are believed to 
govern construction costs, resulting in estimating models 
that involve various factor variables. On the other hand, 
there is a lack of robust methods for evaluating the accu-
racy of budget cost estimates (Trost, Oberlender 2003). 
Estimators often apply a common industry practice that 
uses simple statistics such as sample means and standard 
deviations of historical cost estimates, actual costs, and 
errors selected from previous completed projects. For this, 
estimators carefully choose sample data to secure homo-
geneity in data based on the similarity of job characteris-
tics at the activity and project levels. This paper addresses 
the limitations of this practice that is commonly applied in 
the industry, and proposes an alternative approach.
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1. research questions and objectives

The accuracy problem requires estimators to determine 
how much potential error is associated with the prepared 
budget estimates, which is a challenging task at the plan-
ning stage. In an effort to support the task, this study 
seeks an effective way to measure estimate errors in a 
quantitative manner while minimizing the burden of deal-
ing with various factors. It examines an existing common 
industry practice widely applied in the industry and also 
explores an alternative method. The specific objectives 
of this study are to answer three research questions by 
testing two null hypotheses (NH) and by comparing the 
accuracy of forecasted estimate errors, as listed below. 
This paper presents an analytical procedure for probabil-
istic measurement of estimate errors, and demonstrates 
an example of its application.   

 – Research question 1: Can the errors of budget cost 
estimates be explained by a relational model? Con-
cerning this question, the NH to be tested is that 
there is a strong association between estimate errors 
and estimates or actual costs. If the NH is rejected, 
then the following two research questions to account 
for the probabilistic nature of estimate errors;

 – Research question 2: Are the errors of budget cost 
estimates independent of the estimates? To answer 
this question, the present study tests a NH that the 
conditional probability distribution of error, given 
a sample of estimates, is statistically consistent (or, 
similar) with the distribution, given any randomly 
sampled subset of the sample estimates; and

 – Research question 3: Can the errors of budget cost 
estimates be predicted more accurately by an alter-
native Bayesian approach? This question is to be 
answered by comparing the residuals of estimate er-
rors that are yielded by the existing industry practice 
and an alternative Bayesian approach.

2. methods for cost estimating 

Various methods have been developed for estimating 
budget costs for the construction of capital projects. 
These methods can be loosely categorized into four 
groups based on the applied approach – statistical analy-
sis of itemized costs, investigation of the impact of cost-
influencing factors on construction costs, projection of 
the time-dependent cost trend, and integrated analysis of 
multi-objectives for cost optimization. 

2.1. statistical analysis of itemized costs
The construction industry has long utilized unit costs of 
previous construction work to estimate construction costs 
for future projects. Unit costs are normally used either 
at the activity level or at the project level. When apply-
ing this approach, estimators select historical projects 
(or, activities of the projects) that are similar to a new 
project (or, activities of the project), and use unit costs 
of the selected projects (or, activities) to prepare new  

estimates (Stevens 1995). While this approach is simple to 
apply, it involves an inherent limitation attributable to the  
characteristics and variable conditions of projects and 
judgment of similarity of those across projects. These 
highlight that the quality of an estimate is highly de-
pendent on judicious selection of a sample from the 
population of historical data. In a similar context, some 
research has recognized the stochastic nature of costs, 
recommending probabilistic estimating as an alternative 
approach for accounting for uncertainty in construction 
costs (Flood 1997). Unlike deterministic common indus-
try practices, these approaches incorporate probability 
distribution of cost into estimating costs.

2.2. factor analysis models
Many previous studies have attempted to explain con-
struction costs as a function of factors. Wilmot and 
Cheng (2003) developed a multivariate regression model 
to predict a long-term cost trend of highway construction 
by fitting various indexes and bid data to the estimated 
price of asphalt concrete work. Soutos and  Lowe (2005) 
investigated the relationships between cost of building 
elements and building characteristics, such as structur-
al type, square footage, and major systems, resulting in 
a regression model. Similar efforts have been made at 
the activity and work package levels. Zayed and Halpin 
(2005) created regression models to estimate pile con-
struction costs by fitting factor variables, including site 
conditions, contractor’s experience, and equipment con-
dition. Hola and Schabowicz (2010) created a method for 
estimating earthwork costs by applying artificial neural 
networks. Simulations are often applied to explain the in-
fluence of factors. Ökmen and Öztaş (2010), for instance, 
proposed a simulation‐based model to analyse the corre-
lation between construction costs and risk‐factors. While 
many relational models work well with highly correlated 
data, historical cost data often exhibit scattered patterns 
between estimates and factors. 

2.3. time-dependent cost trend projection
Some research has attempted to forecast cost change 
trends over time. Dawood and Molson (1997) explored 
a number of standard forecasting techniques, arguing 
that the decomposition model was the most accurate. 
Koppula (1981) developed and compared a Box-Jenkins 
model and a Holt-Winters smoothing model, using the 
construction cost index (CCI) and the building cost in-
dex (BCI). The research showed that while both univari-
ate time series models yielded reasonably good results, 
the Holt-Winter model was slightly more accurate than 
the other. Williams (1994) incorporated two economic 
indexes – prime rate and new housing-starts – in addition 
to the construction cost index, which resulted in a neural 
network (NN) model to predict short-term growth of con-
struction cost over time. Similarly, the consumer price 
index together with the aforementioned indexes have 
been analysed and have resulted in dynamic regression 
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models (Hwang 2009) and univariate time series mod-
els (Hwang 2011) for forecasting short- and long-term 
changes in construction cost. These studies showed that 
forecasting models excluding economic index variables 
produced the most accurate forecasts. 

2.4. integrated analysis of multi-objectives 
Unlike the aforementioned studies, a few previous stud-
ies have approached estimating costs from the perspec-
tive of optimization of multiple project objectives. A few 
simulation techniques were proposed to find a plan that 
optimizes cost and schedule for construction, using the 
probabilistic distributions of costs and durations (Rao, 
Grobler 1995; Isidore, Back 2001). Similar attempts 
have been made for the same purpose by using the ge-
netic algorithms (GA) (Li, Love 1997; Que 2002) and by 
combining simulation techniques and GAs (Feng et al. 
2000). Some studies further expanded the optimization 
by including more project objectives such as quality and 
safety. Kandil and El-Rayes (2005), for example, pre-
sented a multi-objective optimization method designed 
based on GAs to find an optimal solution with regards to 
cost, duration, and quality.

2.5. evaluation of the accuracy of cost estimates
Noting that budget cost estimates inevitably involve er-
rors, a few studies have attempted to find effective ways 
for analysing the uncertainty of the estimated budget 
costs. Most of these have focused on identifying what 
factors affect the accuracy of the estimates. Trost and 
Oberlender (2003) proposed a factor analysis model and 
a multivariate regression model by analysing 45 varia-
bles in eleven groups. Concerning cost overruns in recon-
struction, Attalla and Hegazy (2003) fitted a total of 36 
factors in seven categories; as a result, they developed a 
NN model and a regression model, and compared the two 
models. This study concluded that both models yielded 
similar accuracy while the NN model was more sensitive 
to a larger number of variables. 

Some researchers have tackled the problem in a 
slightly different context. For the purpose of estimating 
contingency, Touran (2003) developed a probabilistic 
model that calculates the probability of cost overruns for 
change order costs, the number of change orders, and 
variation coefficients, and estimates contingency cost de-
pending on a given contingency level. A few studies have 
adopted progressive updating of forecasted costs. Barraza 
et al. (2004) proposed a probabilistic S-curve that shows 
a range estimate of cost per predetermined period. The 
range estimate is updated as actual data becomes avail-
able. Similarly, a probabilistic cost forecasting method 
proposed by Kim and Reinschmidt (2011) makes use of 
performance data collected from an ongoing project to 
update cost estimates during the construction period. The 
method allows an adaptive combination of the informa-
tion used to estimate a project and the actual performance 
data so as to revise cost estimates. 

2.6. a common industry practice
Meanwhile, estimators in the industry often apply a few 
relatively simple approaches to account for potential esti-
mate errors as they complete detail estimating. Most of the 
time, they rely on historical cost data (estimates and actual 
costs) collected from previous projects. For this, estimators 
make judicious selection of data through data sampling – 
they evaluate the similarity of project and activity char-
acteristics between previous projects and a new project. 
For instance, let us assume X1 and X2 are selected sample 
estimates and actual costs, respectively, and X3 is sample 
estimate errors (X2 – X1). Given the selected sample, they 
find its simple statistics – the sample average and standard 
deviation of sample. Using the statistics, they often decide 
a range of cost estimate or a contingency cost, given a de-
sired confidence interval for the prepared cost estimate. 
Similarly, they often forecast estimate error by taking the 
sample average of X3. In this process, in-depth analysis of 
the probability distribution of sample that is selected from 
the population of historical data is rarely performed. Such a 
lack of understanding of the probability distribution of the 
sample used can lead to a misleading error calculation. This 
issue is investigated in depth in the present study.

3. measurement of cost estimate errors   
3.1. a statistics for measurement
Cost estimate error refers to the difference between es-
timated and actual costs. Budget costs are often updated 
for various reasons. In the event of having updated budg-
et costs, the updated estimate is considered as the budget 
estimate in this study. A simple statistic is used in this 
study to quantify the amount of an estimate error in rate 
(error rate, er). Given an activity, its er is calculated by 
Eqn (1) where ep and ap represent an estimated budget 
cost and the actual cost at completion respectively for the 
activity of a project (p): 

  (1)

Thus, there are as many er’s for an activity of the same 
type as projects that have the activity. The negative value 
of erp indicates an overestimate (ep > ap), whereas a posi-
tive value indicates an underestimate (ap > ep). Thus, it 
can be said that the smaller the absolute value of erp is, 
the more accurate the estimate is. 

Meanwhile, both cases can cause risks to project 
organizations. For example, if a contractor prepared an 
underestimated budget for a project and won the project 
at bidding, the contractor would suffer from cost over-
runs during construction of the project. On the contrary, 
if the contractor’s budget cost was overestimated, the 
overestimated budget can bring a totally different result 
to the contactor at bidding where overestimated budget 
can prevent the contractor from winning the project.   
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3.2. a snapshot of estimate accuracy
As discussed earlier, it is hardly possible to predict budg-
et cost estimates without errors. Figure 1, although not 
representative of the entire construction industry, gives a 
fairly good snapshot of the accuracy of budget estimates. 
The graph shows the calculated error rate (er) of 233 
sets of unit cost data (124 formwork activities and 109 
concrete pouring/finishing activities) that were collected 
from reinforced concrete work of medium size building 
projects that were constructed by a general contractor in 
a metropolitan area. Each set comprises an estimated cost 
and its corresponding actual cost at completion. In par-
ticular, the formwork activities were performed by the 
workers of self-performing group of the company. 

As shown in Figure 1, the error rates are widely 
distributed while the majority falls in between ±50% er-
ror range. 117 cases were found to have an error rate 
less than or equal to 0.0 and 116 cases greater than 0.0. 
Out of the 233, only 78 cases fell in between ±20% er-
ror. Also, it is noticeable that the error rates loosely fit 
a normal distribution curve. In normal distribution, the 
shape of histogram to the left of the distribution peak is 
roughly a mirror image of the shape of the histogram to 
the right of the peak (Nolan, Speed 2000). This shape is 
observed from the data set in Figure 1 exhibiting an ap-
proximately symmetric distribution of frequency around 
0.0. The cumulative probability (c.d.f.) curve in the graph 
follows a typical example of a distribution curve with 
short tails. This normality of sample allows convenience 
in statistical analysis of the sample, because many statis-
tical analysis techniques are applied under the condition 
of normality (Box et al. 1978). 

4. research methodology

To answer the three research questions, this study has fol-
lowed a procedure of statistical analysis. The following 
briefly describes the standard statistical techniques that 
are applied in the procedure.

4.1. outlier tests 
It is not unusual to observe outliers from a sample of 
data. Since outliers may greatly influence the result of the 
statistical analysis, it is necessary to remove them (Box 
et al. 1978). The Box-and-Whisker plot, also known as 

the Box-plot, is a generic statistical technique that is use-
ful to identify outliers in a sample. The plot graphical-
ly shows location, dispersion, and outliers of a sample, 
and may indicate skewness and tail size of the distri-
bution of a sample (Nolan, Speed 2000). The technique 
uses boundary values – lower quartile (Q1, value of 25th  
percentile) and upper quartile (Q3, value of the 75th  
percentile) – to determine outliers. Outliers are defined as 
data points falling beyond the range between upper limit 
(Q3 + 1.5 × IQR) and lower limit (Q1 – 1.5 × IQR) where 
inter-quartile range (IQR) is Q3 minus Q1. 

4.2. correlation check
Following the outlier test, a correlation check between 
variables is needed. Given the random variables X and 
Y, it is necessary to examine if X is highly correlated 
with Y. The existence of correlation can be determined by  
measuring the correlation coefficient between the two 
variables that quantitatively represents the degree of as-
sociation between those (Hogg, Craig 1995). The correla-
tion coefficient between the two random variables X and 
Y is given by Eqn (2) where σX and σY  are standard de-
viations of X and Y, and σXY is covariance of X and Y. The 
parameter is greater than or equal to –1.0 and less than 
or equal to 1.0. High correlation indicates the evidence 
of strong association, so that the associated random vari-
ables can be explained by a relational model:

  (2)

4.3. distribution check
Using the three variables – budget cost estimates (e), ac-
tual costs (a), and error rates (er) – that are analysed in 
the present study, let us assume a sample space e that 
consists of subset ek’s, k = 1, 2,… K. If the probability 
distributions of eri’s for ek’s are the same or similar, then, 
the conditional probability of eri for a given subset ek is 
equal to the probability of eri for the sample space e. The 
following hypothetical example illustrates the underly-
ing logic. In this example, sample spaces e and er hav-
ing 1000 samples, respectively, are randomly generated. 
Assume that that ek’s and eri’s are uniformly distributed 
from 1.0 to 5.0 and from –1.0 and 1.0, respectively. Given 
the samples, the probability that eri is less than or equal 
to 0.0, P(eri ≤ 0.00) for a subset (2.0 ≤ ek ≤ 2.1), is com-
pared to the probability of the same eri, given the whole 
sample space e. The former probability was found to be 
0.412 (7 out of 17) and the latter probability was 0.414 
(414 out of 1000). This indicates that if the probability 
distribution of error for each subset of e is consistent, the 
probability for a certain level of error will be statistically 
similar and follows that for the entire sample e. In this 
case, the estimation of expected error can be measured  
based on the distribution of eri, given e; otherwise, 
the conditional probability of error rates needs to be  
considered. 

Fig. 1. A distribution of error rates (er) of the population of 
233 unit costs
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4.4. bayesian probability calculation
The Bayesian approach is an application of the calcula-
tion of conditional probability for which Bayes’ theorem 
is used as the basis and the calculated probability is often 
called Bayesian probability (Box et al. 1978). Eqn (3)  
represents the Bayes’ theorem that evolved from the 
definition of conditional probability and the law of total 
probability where the sample space is partitioned into n 
mutually exclusive and exhaustive events C1, C2,…,CI. 
Using the theorem, the conditional probability of a par-
ticular event Cj, given the event space C, is calculated 
from the probabilities of each event C1, C2,…,CI and 
the conditional probabilities of C, given each event Ci,  
i = 1, 2, …, I (Hogg, Craig 1995):
 

 (3)

5. an analytical procedure for forecasting estimate 
errors and an application example 

This section describes an analytical procedure that is 
built on well-established statistical techniques for prob-
abilistic measurement of budget cost estimate errors by 
analysing historical estimates, actual costs, and estimate 
errors. The procedure explores and tests the existing 
common industry practice and an alternative Bayesian 
approach.

5.1. preparation of sample data
The first step is to retrieve historical cost data – budget 
cost estimates (e) and actual costs (a) – from completed 
projects. A rule of thumb for such sampling is to select 
projects that share similar project characteristics, so as 
to maximize homogeneity in data. Meanwhile, quantities 
of activities of the same type can vary across projects, 
which results in different costs for the activities. Esti-
mators normally select a unit cost and multiply the unit 
cost to the quantity of an activity. For these, it is reason-
able to retrieve the cost data in terms of unit of work. 
Once e and a are retrieved, er can be calculated by using 
Eqn (1). Most construction companies store such data 
in project databases, thus, it is not difficult to acquire 
those. For an application example, an activity, forming 
concrete wall, was selected, applying the rule of thumb. 
Historical unit costs of the activity were collected from 
30 similar projects from the 233 sets described earlier 
(Table 1). 

5.2. removal of outliers
A Box-plot test identified six outliers among 30 sets of 
data sample. The boundary and determinant values of 
Box-plot are as follows: 0.03 (Q1), 0.44 (Q3), 0.41 (IQR), 
1.06 (upper limit), and –0.58 (lower limit). The identified 
outliers are 9, 13, 18, 20, 27, and 29 (refer to the first 
column (p) of Table 1. Consequently, 24 sets of data are 
found to be valid.

5.3. measurement of the degree of correlation
Once outliers are removed from the sample, a correla-
tion check is followed to answer the research question 1.  
This tests the null hypothesis that there are statistically 
significant correlations among the variables (e, a, and 
er) that are believed to be potentially related to each 
other. Given the sample (Table 1), the calculated cor-
relation coefficient for each pair of variables is as fol-
lows: 0.66 for e vs. a, –0.56 for er vs. e, and 0.17 for 
er vs. a. None of these coefficients suggests evidence 
of statistically significant relationships among the three 
variables. Meanwhile, such low correlation could be 
true only for the specific sample. In order to examine 
this, the correlation coefficients for the aforementioned 
233 sets of data, from which the sample (Table 1) was 
selected, were additionally calculated. The calculated 
correlations were found to be 0.67 for e vs. a, 0.20 for 
er vs. e, and 0.18 for er vs. a. Both results show that 
the probability of strong correlation among the varia-
bles is low. In principle, there can be strongly correlated 
data – in such cases, relational models generally can be  
pursued.

5.4. examination of conditional dependency
The results of Section 5.3 leads to investigating how to 
account for the probability distribution of estimate errors 
when using historical data to estimate future work. The 
present study notes a common way of using historical 

Table 1. A sample of unit costs (* outlier)

p ep ap erp

1
2
3
4
5
6
7
8
*9
10
11
12
*13
14
15
16
17
*18
19
*20
21
22
23
24
25
26
*27
28
*29
30

4.66
2.62
2.92
2.77
2.78
3.47
3.47
3.47
3.47
2.96
3.08
6.38
5.51
4.43
3.86
3.86
2.48
2.48
2.78
2.78
5.39
10.24
4.02
4.02
4.02
7.48
6.60
3.30
3.30
4.87

4.17
3.36
4.70
3.77
3.27
4.06
4.25
4.21
7.39
4.35
2.66
6.04
13.45
4.58
3.99
4.05
3.23
7.31
3.64
7.04
6.49
5.68
3.61
3.42
4.51
9.00
23.29
3.49
8.46
2.05

–0.10
0.28
0.61
0.36
0.18
0.17
0.23
0.21
1.13
0.47
–0.14
–0.05
1.44
0.03
0.03
0.05
0.30
1.95
0.31
1.53
0.20
–0.45
–0.10
–0.15
0.12
0.20
2.53
0.06
1.56
–0.58
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data that estimators follow to select a cost estimate. As 
noted earlier, estimators consider homogeneity in data 
by comparing the similarity of conditions between fu-
ture work and previously completed work. Consequently, 
activities sharing similar conditions tend to have similar 
estimates. A rationale behind this is that activities under 
similar conditions will have similar cost performance. 
From the rationale, a hypothetical belief – the estimate 
error of an activity tends to follow the behaviours of the 
errors of its similar estimates – can be established.   

The above is a typical problem of statistical depend-
ence between random variables which can be effectively 
examined by applying random sampling and conditional 
probability distribution theory (Box et al. 1978). With 
regard to the aforementioned beliefs, the dependency of 
er on e can be examined. To examine the dependency, let 
us assume a sample space that is partitioned into n mutu-
ally exclusive and exhaustive events eri, i = 1, 2, …, n,  
and an event space e (Fig. 2). Each subset eri and the 
event space e in the diagram correspond to Ci and C in 
the above Eqn (3), respectively. The event space e in 
Figure 2 is also divided into a number of subset ek’s,  
k = 1, …, K. If the conditional probability distributions 
of eri, given e = ek, say, P(eri | e = ek)’s are statistically 
consistent (or, similar), then it can be said that er (or, all 
eri’s) is independent of e where each ek is a randomly 
selected subset from the entire event space; otherwise, 
er is dependent on ek’s.

For an application example, assume that er has six 
ranges, eri, i = 1, 2, …, 6 (Table 2). Two subsets of the 
event space e are also selected in terms of range – 3.0 <  
e2 ≤ 4.0 and 4.0 < e3 ≤ 5.0 (Table 3). Then, the condi-
tional probability distributions are calculated for six eri’s, 
given e2 and e3, say, P(eri | e = e2) and P(eri | e = e3). A 
paired t-test can be effectively used to examine the con-
gruency of the conditional probabilities. Given the alpha 
of 0.1 and 0.2 and the degree of freedom of 5, critical 
values of two-sided t-test are ±t0.1,5 = ±2.01 and ±t0.2,5 =  
±1.47, whereas calculated t-value for P(eri | e = e2) vs. 
P(eri | e = e3) is –5.00. The test result shows that the 
conditional probability distributions of error rates, given 
e2 and e3, are significantly different. There is no reason 
to believe that the probability distributions of er for each 
subset ek’s are consistent and follow the distribution for 
the entire sample e. There can be conditional dependency 
between estimates and estimate errors. Thus, the null hy-
pothesis for the research question 2 should be rejected. 

5.5. An alternative Bayesian approach
The results of Sections 5.3 and 5.4 support the choice of 
Bayesian approach for dealing with the nature of budget 
estimate errors. The following discusses the process of 
Bayesian probability calculation, the dependence of es-
timate errors on similar estimates, and a comparison of 
accuracy between the Bayesian approach and the existing 
common industry practice. 

Given an estimate ek for a future work we can cal-
culate using Bayes’ theorem P(eri | ek) from P(eri), eri,  
i = 1, 2, …, I, and P(ek | eri) for eri, i = 1, 2, …, I. In 
the context of Bayesian statistics, P(eri | e) is a prior 
distribution of the probability of estimate error, given all 
observations of a selected sample. On the other hand, 
P(eri | ek) is a posterior distribution of the probability, 
given the observations in a subset (similar estimates) of 
the selected sample, with the likelihood P(ek | eri).

For an application example, let us assume a scenario 
that an estimator has selected a budget cost estimate e3 
(4.0 < e3 ≤ 5.0) for a formwork activity (Table 3). The 
estimator wants to know the probability that the selected 
estimate’s er would fall between –0.25 and 0.00, (–0.25 <  
er3 ≤ 0.00), say, P(–0.25 < er3 ≤ 0.00) | 4.0 < e3 ≤ 5.0). 
In this scenario, the sample space er again is assumed to 
be divided into six ranges as shown in Table 2.  

If the prior belief is true, then, by the statistical de-
pendence theory, the probability distributions produced by 
two different approaches – an industry common practice 
and an alternative Bayesian approach – should be statis-
tically similar. This was tested by comparing probabili-
ties calculated by the approaches for the same estimates. 
Table 4 presents the calculated probabilities in terms of 
cumulative probability (c.d.f.) – “common-c.d.f.” and 
“Bayesian c.d.f.”. The common-c.d.f. is computed by the 
industry common practice using the entire 24 valid data 
sets. For example, let us assume that an estimator selects 
4.66 as an estimate. In this case, the error rates of the es-
timate are computed by subtracting 4.66 from each actual 
cost of the 24 sets and dividing the difference by 4.66, 

Table 2. Probability of eri, P(eri), for the entire event space e

i eri Occurrence P(eri) c.d.f. P(eri)
1
2
3
4
5
6

≤–0.50
–0.50~–0.25
–0.25~0.00
 0.00~0.25
 0.25~0.50

 0.50<  

1
1
5
11
5
1

0.04
0.04
0.21
0.46
0.21
0.04

0.04
0.08
0.29
0.75
0.96
1.00

Table 3. Event space ek and probability of ek, P(ek)

k ek Occurrence P(ek) c.d.f. P(ek)
1
2
3
4

≤ 3.0
3.0~4.0
4.0~5.0

5.0<    

7
7
6
4

0.29
0.29
0.25
0.17

0.29
0.58
0.83
1.00

Fig. 2. A sample space and event space of events er and e
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which results in 24 estimated error rates. Given the 24 
error rates, the probability of eri, i = 1, 2, …, 6 (refer to 
Table 2), are computed to produce the common-c.d.f for 
the selected estimate 4.66. The same process is repeated 
for the remaining estimates considered in the scenario, e3 
(4.0 < e3 ≤ 5.0). Meanwhile, the estimator can compute 
the Bayesian-c.d.f. for eri, i = 1, 2, …, 6, given the same 
e3, by repeating the aforementioned process of Bayesian 
probability calculation using Eqn (3) (refer to Section 4.4).  
Given the six estimates falling in the range 4.0 < e3 ≤ 5.0  
and the six ranges of eri, i = 1, 2, …, 6, 36 cumulative 
probabilities can be computed as shown in Table 4. The 
result of two-sided paired t-test for the 36 sets is summa-
rized in Table 4. Given the test result, there is no evidence 
to accept the null hypothesis for the research question 2. 
In addition to the test result in Section 5.4, taken with a 

larger sample, this test also confirms the risk of using the 
entire sample space without considering the dependence 
of estimate errors on similar estimates.

5.6. Application of the Bayesian approach
Applying the two approaches to the 24 valid data in  
Table 1, estimate errors are forecasted. The common in-
dustry practice, using all observations in the sample space, 
yields an average of the 24 estimate errors, S= sample  
mean of erp’s, p = 1, 2, …, 24. Meanwhile, the alterna-
tive Bayesian approach gives an average of errors falling 
in each error range, R = sample mean of erp’s within a 
range, p = 1, 2, …, 24. Given these estimate error fore-
casts, an approach that yields a smaller absolute residual 
of forecasted error should be regarded as a more accurate 
method. In a statistical sense, it can be determined by 
comparing the mean variance of the residuals from each 
method. The last two columns, %D1 and %D2, in Table 5  
presents the residual percentage yielded from the 
two approaches. The averages of variances of %D1,  
100 x( S – erp), and %D2, 100 x ( R – erp) are calculat-
ed to be 712.56 and 345.17, respectively. The result is in 
favour of the Bayesian approach. This means that the error 
of a new estimate that falls in a subset of a sample space 
will more likely follow the probability distribution of the 
errors of estimates in the subset. Considering the results 
of the hypothesis tests in Sections 5.4 and 5.5 and the ac-
curacy comparison in Section 5.6, it is rational to believe 
that the whole sample space needs to be divided into sub-
sets in accordance with the similarity of estimate values.

Table 4. Hypothesis test summary 

e Bayesian- 
c.d.f. (1)

Common- 
c.d.f.(2) t-test 

4.02

4.02

4.02

4.43

4.66

4.87

0.17
0.17
0.67
1.00
1.00
1.00

0.17
0.17
0.67
1.00
1.00
1.00

0.17
0.17
0.67
1.00
1.00
1.00

0.17
0.17
0.67
1.00
1.00
1.00

0.17
0.17
0.67
1.00
1.00
1.00

0.17
0.17
0.67
1.00
1.00
1.00

0.00 
0.08 
0.46 
0.83 
0.88 
1.00 

0.00 
0.08 
0.46 
0.83 
0.88 
1.00 

0.00 
0.08 
0.46 
0.83 
0.88 
1.00

0.04 
0.17 
0.71 
0.83 
0.96 
1.00 

0.04 
0.25 
0.79 
0.88 
0.96 
1.00 

0.04 
0.38 
0.83 
0.92 
0.96 
1.00 

Number of pairs 
   36

Degree of freedom
   35

Two given alphas
   0.1, 0.2

Critical values of 
two-sided tests,
   t0.1,35 = 1.306,
   t0.2,35 = 1.689

Calculated t-value 
of test, 
   3.953

(1) c.d.f. produced by a Bayesian approach.
(2) c.d.f. produced by the industry common practice.

Table 5. Comparison of the accuracy of forecasted errors 

e e a er S R %D1 %D2

≤3.0

3.0~4.0

4.0~5.0

5.0<

2.48
2.62
2.77
2.78
2.78
2.92
2.96

3.08
3.30
3.47
3.47
3.47
3.86
3.86

4.02
4.02
4.02
4.43
4.66
4.87

5.39
6.38
7.48
10.24

3.23
3.36
3.77
3.27
3.64
4.70
4.35

2.66
3.49
4.06
4.25
4.21
3.99
4.05

3.61
3.42
4.51
4.58
4.17
2.05

6.49
6.04
9.00
5.68

0.30
0.28
0.36
0.18
0.31
0.61
0.47

–0.14
0.06
0.17
0.23
0.21
0.03
0.05

–0.10
–0.15
0.12
0.03
–0.10
–0.58

0.20
–0.05
0.20
–0.45

0.09 0.36

0.09

–0.13

–0.02

–20.77
–19.04
–26.41
–8.28
–21.43
–51.48
–37.76

23.21
3.50
–7.72
–13.29
–11.94
6.08
4.35

19.67
24.38
–2.92
6.00
19.79
67.29

–11.00
14.80
–10.92
53.88

5.68
7.41
0.05
18.17
5.02

–25.03
–11.30

22.61
2.90
–8.32
–13.89
–12.54
5.48
3.75

–2.70
2.01

–25.28
–16.37
–2.58
44.92

–22.69
3.11

–22.61
42.19
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The calculated Bayesian probability information is 
interpreted as the probability of expected error rate eri, 
given an initial estimate ek. In other words, the budget 
cost estimate ek may involve as much as eri with a prob-
ability P(eri | ek). Using the information, estimators can 
predict in a probabilistic manner the expected actual costs 
at completion, given selected cost estimates. Figure 3  
presents the cumulative distribution of the calculated 
Bayesian probability for the aforementioned scenario. 
The resulting probability is interpreted as follows. When 
an initial estimate e3 is selected, there is a 67% chance 
that the selected estimate can have an error rate less than 
or equal to 0.00. This can be also said that there is a 
67% chance that the actual cost at completion will be 
less than or equal to the estimated cost or there is a 
33% chance that the actual cost can be greater than its 
estimated cost.

conclusions

Budget cost estimates are important early decisions in 
managing construction projects. This study has addressed 
the limitations of the existing common industry practice 
for forecasting errors associated with budget cost esti-
mates. A belief lies behind this practice – it is rational 
to forecast probability of estimate errors based on the 
distribution of all observed errors of a sample that is se-
lected based on the similarity of conditions between fu-
ture work and previously completed work. The statistical 
analysis on historical data has revealed the existence of 
conditional dependence of errors on similar estimates. 
The proposed approach incorporates the posterior infor-
mation to compute the probability of estimate errors.   

The findings of the present study suggest that a 
Bayesian probability approach is more effective than the 
existing practice for the application of historical cost data 
to predict estimate errors. The Bayesian approach is able 
to predict estimate errors more accurately than the cur-
rent approach, taking into consideration the stochastic 
nature of estimate errors. It is envisioned that estimators 
can take advantage of the alternative approach to prepare 
reliable budget plans and contingency plans. Thereby, the 
approach can complement the existing methods for man-
aging project uncertainty and risks due to inaccurate cost 
estimates.

The presented analytical procedure is easy to apply 
to examine the stochastic nature of historical estimates 
and estimate errors. Meanwhile, the procedure and the 
Bayesian approach can be more effectively applied when 
there is a large sample of historical cost data. A large 
sample that is more densely distributed can allow more 
precise forecasting with much shorter ranges of estimates 
and errors. While the distribution of error rates is un-
likely dependent on the size of a subset, as shown earlier 
by the normality of the distribution of error rates, a large 
sample can reduce any potential influence of inconsistent 
size of each subset. It should also be noted that prior to 
generalization of the Bayesian approach, additional tests 
need to be conducted to verify the approach for more 
types of work other than those tested in this study, in-
cluding data sets that are not highly homogeneous.  
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