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Abstract. Time, cost and quality are three factors playing an important role in the planning and controlling of construc-
tion. Trade-off optimization among them is significant for the improvement of the overall benefits of construction pro-
jects. In this paper, a novel optimization model, named as Chaotic Initialized Multiple Objective Differential Evolution 
with Adaptive Mutation Strategy (CA-MODE), is developed to deal with the time-cost-quality trade-off problems. The 
proposed algorithm utilizes the advantages of chaos sequences for generating an initial population and an external elitist 
archive to store non-dominated solutions found during the evolutionary process. In order to maintain the exploration and 
exploitation capabilities during various phases of optimization process, an adaptive mutation operation is introduced. A 
numerical case study of highway construction is used to illustrate the application of CA-MODE. It has been shown that 
non-dominated solutions generated by CA-MODE assist project managers in choosing appropriate plan which is other-
wise hard and time-consuming to obtain. The comparisons with non-dominated sorting genetic algorithm (NSGA-II), 
multiple objective particle swarm optimization (MOPSO), multiple objective differential evolution (MODE) and previ-
ous results verify the efficiency and effectiveness of the proposed algorithm.
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Introduction

Time and Cost are two essential factors in construction 
project planning. The ability to minimize time and cost 
of a project could determine the level of success of a 
construction company (Zahraie, Tavakolan 2009). Many 
methodologies have been proposed to solve the time-cost 
trade-off (TCT) problem by deciding an optimal com-
bination of construction methods for all the activities 
(Zhang, Xing 2010). These existing techniques for the 
TCT problem include the heuristic methods (Siemens 
1971; Elmaghraby 1993), the mathematical program-
ming models (De et al. 1995; Burns et al. 1996) and the 
evolutionary algorithm (Feng et al. 1997; Hegazy 1999; 
Li et al. 1999; Yang 2007). In general, less expensive 
resources or technologies would result in longer project 
duration. For instance, using productive resources or 
technologies may save time, but this causes an increase 
in the cost. On the other hand, reduction of either time 
or cost may decrease quality of construction projects. 
Consequently, the relevant construction projects such as 
highways, tunnels, and bridges may age or deteriorate 
faster than expected, increasing the maintenance and 
rehabilitation cost. Hence, how to determine an optimal 

combination of execution methods consisting of suitable 
construction technologies and resource utilization plans 
to minimize time, cost and maximize quality simultane-
ously, that is, time-cost-quality trade-off (TCQT) prob-
lem, is becoming a crucial issue for construction planners 
(Zhang, Xing 2010).

Recently, scant studies on TCQT problem have been 
undertaken. At first Babu and Suresh (1996) suggested 
that the quality of a completed project may be affected by 
project crashing. They developed three inter-related lin-
ear programming models to study the trade-offs among 
time, cost and quality. This method is applied by Khang 
and Myint (1999) to study an actual cement factory con-
struction project in Thailand. Attempting to use evolu-
tionary methods, El-Rayes and Kandil (2005) presented 
a multiple objective optimization model in search for an 
optimal resource utilization plan that minimizes construc-
tion cost and time while maximizing its quality jointly. 
The model was developed based on genetic algorithm 
(GA) to provide the capability of quantifying and con-
sidering quality in construction. Zhang and Xing (2010) 
proposed a Pareto-based multi-objective Particle Swarm 
Optimization (PSO) for the fuzzy TCQT problem.
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Differential Evolution (DE) is one of the most popu-
lar evolutionary algorithms which can be used in a broad 
variety of highly nonlinear and complex optimization 
problems. DE is simply structured, easy to use but it has 
shown great robustness and a fast convergence for solv-
ing single objective global optimization problems (Storn, 
Price 1997; Price et al. 2005). In light of these advan-
tages, several researchers attempt to extend DE to solve 
multi-objective problems (Das, Suganthan 2011; Zhou 
et al. 2011). Superior performance of DE over other 
multiple objective algorithms has been verified in many 
reported research works (Reddy, Kumar 2007; Wu et al. 
2010; Xuexia et al. 2012). Despite many reported impres-
sive performances of DE on benchmark functions and 
practice applications, no research has been done on DE 
to deal with TCQT problem. This inspires us to apply DE 
algorithm in solving time-cost-quality trade-off problem.

Therefore, this research develops a novel Multiple 
Objective Differential Evolution algorithm to facilitate the 
time-cost-quality trade-off analysis. On the basis of clas-
sical DE, this proposed algorithm utilizes the advantages 
of chaos sequences to generate an initial population and 
adopts an external elitist archive to store non-dominated 
solutions found during the evolutionary process. In order 
to maintain the exploration and exploitation capabilities 
of the proposed model, an adaptive mutation operation is 
introduced. It will be shown that the proposed algorithm 
can attain fast convergence without losing the diversity of 
solutions on the Pareto front. The paper is structured as 
follows. Section two is a brief review of literature related 
to the establishment of the new multi-optimization model 
while the third and fourth sections present in detail the 
overall pictures of the newly proposed multi-optimization 
model. The performance of the newly developed model 
is demonstrated using numerical experiment and result 
comparisons in section five. Conclusions are drawn in the 
last section of this article.

1. Literature review
1.1. Background of time cost quality problem
As mentioned previously, TCQT problem mainly con-
centrates on selecting an optimal combination of con-
struction methods for all activities in order to arrive at 
an optimal compromise among time, cost and quality for 
the project. Three major objective functions are formu-
larized in the following to enable the evaluation of pro-
ject performance in construction time, cost and quality, 
respectively (El-Rayes, Kandil 2005).

The first objective considered is the minimization of 
total project duration. This objective can be calculated by 
the following expression:

 , (1)

where:  is duration of activity i {i = 1, 2, ...,l in the 
critical path using resource utilization (n). In this study, 

project duration is estimated according to the procedure 
used by El-Rayes and Moselhi (2001).

Another objective considered is the minimization of 
total project cost. This objective can be calculated by the 
subsequent expression:

 
(2)

where:  is material cost of activity (i);  is duration  
of each activity (i) using resource utilization (n);  is 
daily cost rate in $/day of resource utilization (n) in activ-
ity (i);  is subcontractor lump sum cost for resource 
utilization (n) in activity i, if any.

The third, which is also the last objective to be con-
sidered, is the maximization of project’s overall quality. 
To compute the value of this objective, the following 
expression is used:

  
(3)

where:  is performance of quality indicator (k) in 
activity (i) using resource utilization (n); wti,k is weight 
of quality indicator (k) compared to other indicators in 
activity (i); and wti is weight of activity (i) compared to 
other activities in the project.

1.2. Review of multiple objective optimization
This section briefly introduces some basic definitions 
related to this work. All of these are given with respect 
to minimization problem as every maximization problem 
can be converted into minimization problem.

1.2.1. Problem definition
The multi-objective optimization problem can be for-
mally defined as:

  (4)

  (5)

  (6)

  (7)

where: f(X) is the objective vector, k is the number of 
objective functions; gi(X) is set of inequality constraints; 
hj(X) is set of equality constraints. The m and p is the 
number of inequality and equality constraints, respec-
tively. A solution X(x1, x2, ..., xn)T is a vector of n deci-
sion variables in feasible region D. The multi-objective 
optimization problem is to determine those vectors X, 
which yield the optimum values of all the objective  
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functions, from the set D of all vectors which satisfy (5) 
and (6).

1.2.2. Dominance and Pareto front
Pareto dominance is formally defined as follow (Deb 
et al. 2002):

Solution X1(x1.1, x1.2, ..., x1.n)T dominates X2(x2.1, 
x2.2, ..., x2.n)T if both the conditions are satisfied:

1. . The solution X1 is no  
worse than X2 in all objective;

2.  The solution X1 is  
strictly better than X2 in at least one objective.
So, while comparing two different solutions X1 and 

X2, there are three possibilities of dominance relation 
between them:

 – X1 dominates X2;
 – X1 is dominated by X2;
 – X1 and X2 are non-dominated to each other.
A non-dominated solution has no solution can be 

found that dominates it. The set of non-dominated solu-
tions is called the Pareto front.

1.2.3. Fast non-dominated sorting
This approach is proposed by Deb et al. (2002), for each 
solution i of a set S, two entities are calculated:

1. Domination count ni, the number of solutions which 
dominate the solution i;

2.  Si a set of solutions which solution i dominates.
At the end of this procedure, all solutions which 

have their domination count as zero be set in the first 
non-dominated front (F1). Now, for each of these solu-
tions (each solution i with ni = 0), it visits each member 
(j) of its set Si and reduce its domination count (nj) by 
one. In this process, if for any member j the domina-
tion count becomes zero then it is put in a separate list 
P. These members belong to the second non-dominated  
front (F2). The above procedure can be continued  
with each member of P and the third front (F3) is iden-
tified. This process continues until all solutions are  
classified.

1.2.4. Elitist archive and crowding measure
Since Zitzler and Thiele (1999) firstly proposed their 
strength Pareto evolutionary algorithm (SPEA) with elit-
ist reservation mechanism, numerous researchers have 
adopted similar elitist reservation concept in the practice 
(Coello Coello 2006; Wang et al. 2010). In this study, the 
elitist reservation strategy is also adopted. An external 
archive is used to keep the best non-dominated solutions 
that are produced so far by evolutionary algorithm. Ini-
tially, this archive is empty. As the evolution progresses, 
good solutions enter the archive. As a consequence, 
the size of the true non-dominated becomes huge. The 
computational complexity of maintaining the archive 

increases with the archive size. In addition, considering  
the use of archive member to direct further search, the 
archive size also affects the complexity of selection. 
Hence, the archive size will be kept at its specified max-
imum size.

To have a good diversity among generated non-
dominated solutions in the fixed size external archive, 
we need to choose a good measure to evaluate the 
crowding degree around each non-dominated solu-
tion. Numerous estimation methods are proposed in 
the multiple objective evolutionary algorithms. Adap-
tive hypercube is applied in PAES and MOPSO, the 
number of divisions (MOPSO) or an appropriate depth 
parameter is needed selected to control the hypercube. 
Addition, when a solution converges near the Pareto 
front, the hypercube is comparatively large. SPEA (Zit-
zler, Thiele 1999) used the density estimation strategy. 
This method, however, has large computational com-
plexity. Deb et al. (2002) proposed a crowding distance 
method to get an estimation of the density of solutions 
surrounding a particular solution in the population. In 
the crowding distance measure, only average distance 
is considered. It may not accurately reflect the crowd-
ing degree (Huang  et al. 2008; Wang et al. 2010). This 
study adopted crowding entropy method (Wang et al. 
2010) to estimate the density of solutions in external 
store.

The crowding entropy computation requires sort-
ing the solutions in the archive according to each objec-
tive function value in ascending order of value. For each 
objective function, the boundary solutions (smallest and 
largest function values) are assigned an infinite crowd-
ing entropy value so that which are always selected. 
All other intermediate solutions are assigned a crowd-
ing entropy value according to Eqn (8). This calculation 
is continued with other objective functions. The overall 
crowding entropy value is calculated as the sum of indi-
vidual crowding entropy values corresponding to each 
objective:

 
 

(8)

  (9)

 
 (10)

  
(11)

  
(12)

where: dlij are the distances of the ith solution to its 
lower and upper adjacent solution along jth objective 
function, respectively. The parameter  and  are  
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the maximum and minimum values of the jth objective 
function, and k is the number of objective functions.

1.3. Differential evolution
Differential evolution (DE) is a simple population-based, 
direct-search for solving global optimization problems 
(Storn, Price 1997; Price et al. 2005). The original DE 
algorithm is described briefly as follows.

Let  be the search space of the problem under 
consideration. Then, DE utilizes NP, D-dimensional  
parameter vectors:  i = 1, 2, ..., NP  
as a population for each generation of the algorithm. At 
each generation, DE applies two operators, namely muta-
tion and crossover (recombination) to yield one trial vec-
tor Ui,G+1 which will compete with its target vector Xi,G in 
the selection phase. For each target vector Xi,G, a mutant 
vector Vi,G+1 is determined by the following equation:

  (13)

where:  are randomly selected such 
that , and F is a scaling factor such that 

.
Following the mutation phase, the crossover opera-

tor is applied to increase the diversity. For each mutant 
vector Vi,G+1, a trial vector Vi,G+1= 
is generated, using the following scheme:

 (14)

 is user-defined crossover constant; jrand is 
a randomly chosen index from {1, 2, ...D}, which can 
ensure that trail vector Vi,G+1 will differ from its target 
Xi,G by at least one parameter.

To decide whether the trial vector Ui,G+1 should be a 
member of the population in next generation, it is compared 
to the corresponding target vector Xi,G using the greedy 
criterion. The selection operator is expressed as follows:

  (15)

With the memberships of the next generation are selected, 
the evolutionary cycle of the DE iterates until a stopping 
condition is satisfied.

1.4. Chaos approach for population initialization
Chaos theory is a scientific theory describing erratic 
behaviour in certain nonlinear dynamical systems. Cha-
otic mappings can be considered traveling particles 
within a limited range occurred in a deterministic non-
linear dynamic system. There is no definite regularity for 
such a traveling path. Such a movement is very similar 
to a random process, but extremely sensitive to the initial 

condition (Cheng, Huang 2010). Chaotic sequences have 
been proven easy and fast to generate and store, there is 
no need for storage for long sequences. Moreover, these 
sequences are deterministic and reproducible (Bedri Ozer 
2010).

The one dimensional logistic map is one of the sim-
plest systems with density of periodic orbits:

  (16)

In equation above, Xn is the nth chaotic number 
where n denotes the iteration number. Obviously, 
Xn under conditions that initial  and that 

. The variation of control 
parameter μ in Eqn (16) will directly impact the behav-
iour of X greatly. The domain area of control parameter μ 
has often been defined as [0,4]. In the experiments μ = 4 
has been used.

2. The proposed multiple objective differential  
evolution algorithm (MODE)

In this section, the proposed optimization algorithm, 
Chaotic Initialized Multiple Objective Differential Evo-
lution with Adaptive Mutation Strategy (CA-MODE), 
is described in details. It is noticed that our algorithm 
is developed based on standard Differential Evolution 
(Storn, Price 1997; Price et al. 2005). In CA-MODE, 
potential candidate solutions have been taken care right 
from the initialization and the exploration and exploita-
tion capabilities during various optimization processes 
are mainly concerned. Besides using chaos to generate 
potential initial points, we propose adaptive mutation 
strategy to prevent the search from becoming a purely 
random search or a purely greedy search. In this way the 
proposed algorithm can converge faster while maintain-
ing a good diversity. The overall picture of the proposed 
algorithm is illustrated in Figure 1.

2.1. Chaotic initialization
Before the optimization process, the user provides 
the value of population size NP, Number of decision 
variables D, Number of objective functions M, sets 
mutant constant F, crossover probability constant CR, 
and initializes the external elitist archive  and  
maximum size of E, specifies the maximum number of 
generation Gmax and lower bound (LB), upper bound 
(UB) of decision variables.

Population initialization is the first and the primary 
task in any evolutionary algorithm. The population in 
DE can be guided towards the more promising areas if 
the initial population can be spread as much as possible 
over the objective function surface. Hence, incorporat-
ing chaotic maps into DE is worth investigating. In CA-
MODE, a combined initial population of 2NP solutions 
is generated using uniform random distribution and chaos 
techniques.
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Generated a point in D-dimensional space 
, where  and  is  

uniform random distribution, and then the chaotic point  
 is created as . So, we  

can simply generate the first NP individuals as follows:

  
(17)

Chaos approach is used to generate other NP solutions 
according to the following equation:

  
(18)

2.2. Select population and create elitist archive
During the optimization process size of population is kept 
as NP (Storn, Price 1997). From combined population,  
out of which NP best (elite) solutions are selected. It 
is important to note that in a single objective solution  
which has ‘highest fitness value’ is the best solution. 
Nevertheless, in multi-objective domain, to check two 
solutions dominance approach is used. Thus, in this 

research, the NP solutions are selected based on fast  
non-dominated sorting (Deb et al. 2002) and entropy 
crowding technique (Wang et al. 2010). The overall  
picture of this procedure is illustrated in Figure 2.

The solutions belonging to the best non-dominated 
set (Set F1) are selected first. If size of F1 is smaller than 
NP, the remaining members of population are chosen 
from subsequent non-dominated fronts in order of their 
ranking (F2, F3 …). This procedure is continued until no 

Fig. 1. Flowchart of CA-MODE

Fig. 2. Select population and create Archive procedure
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more sets can be accommodated. Assume that Fk is the 
last non-dominated set beyond which no other set can be 
accommodated. In general, number of solutions in all set 
F1 to Fk would be larger than NP. To choose exactly NP 
population members using crowding entropy sorting to 
select the best solutions, it is necessary to fill all popu-
lation slots in descending distance order. Archive is the 
best non-dominated set (F1).

2.3. Adaptive mutation operation
Once initialized, DE mutates the population to produce 
a set of mutant vectors. A mutated vector Vi,G+1 is gen-
erated corresponding to the target vector Xi,G according 
to Eqn (13). In the original DE three mutant vectors are 
selected arbitrarily and the base vector is chosen ran-
domly among 3 vectors (DE/rand/1/bin). This has a good 
exploratory but it slows down the convergence of DE. In 
DE/best/1/bin the base vector is always selected as one 
having the best fitness value. The strategy may provide 
a fast convergence but it may lead to loss of diversity.

To help CA-MODE in maintaining the exploration 
and exploitation capabilities, this research proposed three 
selection mechanisms that are operated based on itself 
parameter call ms = 1/3 (mutant selection) and maxi-
mum of generation Gmax. Three phases of selection are 
described in Figure 3.

Phase 1:  (call random selection)

In Eqn (13), Xr1, Xr2, Xr3 are randomly chosen in the 
population set of NP. At the beginning of the evolution-
ary process, all the vectors for mutation are randomly 
selected and the best point of the population may or may 
not be included in them. Because of its random nature, 
this strategy helps algorithm in preserving the diversity.

Phase 2: 

Xr1 is the base vector is selected from external elitist 
archive. Xr2, Xr3 are arbitrarily chosen in the popula-
tion set of NP. In this strategy, the base vector is always 
selected as the one have the best fitness function value 
and the other vectors are chosen randomly among pop-
ulation. This technique makes algorithm neither purely 
greedy nor purely random in nature. It balances between 
diversity and convergence.
Phase 3:  (call elitist selection)

In the last phase of optimization process, the algorithm 
needs to accelerate the convergence. All the vectors Xr1, 
Xr2, Xr3 for mutation are the best points which taken in 
the external elitist archive.

2.4. Crossover operation
The crossover operation is to diversity the current popu-
lation by exchanging components of target vector and 
mutant vector. In this stage, a new vector, named as trial 
vector, is created according to Eqn (14).

The most important task of multi-objective optimi-
zation is the modification of the selection mechanism. 
The selection operation is based on the concept of Pareto 
dominance. In this operation, firstly evaluate trial vector 
Ui,G+1 then compare with target vector Xi,G. There may 
be at most three dominance possibilities between Ui,G+1 
and Xi,G.

If Xi,G dominates Ui,G+1, Ui,G+1 is discarded.
If Ui,G+1 dominates Xi,G, Xi,G+1 + Ui,G+1 , and update 

external archive with update rule.
If Ui,G+1 and Xi,G are non-dominated each other, 

Crowding entropy is used to select individual to next 
target vector (the less crowded the better).

2.5. Update elitist archive
The vector which is chosen in selection operation process is 
called selected vector. If the selected vector is dominated by 
a member(s) of archive, the selected vector is rejected. If the 
selected vector dominates some member(s) of the archive, 
then the dominated members are deleted and selected vec-
tor is accepted. If the selected vector is non-dominated with 
each member in archive, it will enter archive.

The Update rule is illustrated in Figure 4. Figure 4a, 
in which 3 non-dominated solutions, shown as bold dots, 

Fig. 4. Illustration of archiving scheme
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are stored in the archive: A1, A2, and A3. At the current 
iteration, three archive candidate solutions are found to be 
C1 through C3, shown as hollow squares. All the update 
procedure is showed in Figure 4b, since archive member 
A1 is dominated by C1, A1 is deleted. C2 is dominated 
by some archive members, so C2 is rejected. C3 is non-
dominated with each member in archive, it will become 
archive member. Figure 4c displays all archive members 
in current iteration after updating process.

When the external Archive population reaches its 
maximum capacity Nmax, the crowding entropy to select 
Nmax individuals with less crowded.

2.6. Stopping conditions
The optimization process terminates when the stopping 
conditions are met. The user can set type of these condi-
tions. Commonly, maximum generation Gmax or maxi-
mum number of functions evaluations (NFE) can be used 
as the stopping criterion. When the optimization process 
terminates, the final set of optimal solutions are readily 
presented to the user.

3. Multiple objective differential evolution  
for time-cost-quality trade-off (MODE-TCQ)

This section of the article is dedicated in describ-
ing the MODE-TCQ optimization model (Fig. 5). It is 
noticed that the MODE-TCQ is developed based on the  
CA-MODE as the searching engine. The objective of this 
optimization model is to minimize construction cost and 
duration while maximizing its quality.

In this study, we consider the case that the TCQT 
problem is accomplished by minimizing the cost, time 
while maximizing quality of construction projects. The 

model requires inputs of project information including 
activity relationship, activity duration and construction 
methods for each activity. In addition, the user also needs 
to provide parameter setting for the search engine, such 
as maximum number of searching generation (Gmax), the 
population size (NP), the size of external elitist archive 
(Nmax). With these inputs, the optimizer can carry out 
calculation process to obtain optimal combination set of 
construction methods for all activities in a construction 
project. With all the necessary information provided, the 
model is capable of operating automatically without any 
human intervention.

Before the searching process can commence, an 
initial population of feasible solutions is created using 
a uniform random generator and chaos. A candidate 
solution to the TCQT problems can be represented as a 
vector with D elements as follows:

  
(19)

where D is the number of decision variables of the prob-
lem at hand. It is obvious that D is also the number of 
activities in the project network. The index i denotes the 
ith individual in the population. The vector Xi,j represents 
one construction method for activity j. The construction 
method Xi,j is an integer number in the range of [1,Mj] 
(j = 1 to D), meaning one position from Mj construction 
methods. Since original DE operates with real-value vari-
ables, a function is employed to convert those activities’ 
construction method options from real values to integer 
values within the feasible domain:

  (20)

where Xi,j is the option of activity j at the individual ith. 
rand [0,1] denotes a number between 0 and 1, generated 
by uniformly distributed random and chaos. UB(j) = Mj 
is number of construction methods for each activity. Ceil 
is a function to round a real number to the nearest integer 
greater than or equal to it.

The search engine (CA-MODE) takes into account 
the results obtained from scheduling module and search-
ing for an optimal combination of construction methods 
for each activity. In the research, three contradicting 
objectives are employed. The formulae of each objective 
function are described in detail at Section 1.1.

After the searching process terminates, a set of 
optimal solution, which called Pareto front, is identified. 
Having the entire Pareto front is of great importance 
because it can assist planners evaluate the pros and cons 
of each solution based on qualitative and experience-
driven considerations.

4. Case study

In order to demonstrate the effectiveness of the proposed 
Chaotic Initialized Multiple Objective Differential Evo-
lution with Adaptive Mutation Strategy (CA-MODE) 
method for the TCQT problem, a numerical case is ana-Fig. 5. Flowchart of CA-MODE for the TCQT problem
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lysed. In addition, the results obtained by CA-MODE 
method are compared with NSGA-II, MOPSO, MODE 
and previous research findings. The case is adopted from 
previous study of an actual construction highway project 
(El-Rayes, Kandil 2005). This project consists of 18 con-
struction activities, where each has a number of possible 
resource utilization options that can be used to construct 
the activity. Figure 6 shows the precedence relationships 
of the network and Table 1 shows the associated time, 
cost and quality for the options of activity. From this 
table, there is an average of 3.4 construction methods 
for each of 18 activities, which produces billions pos-
sible combination for delivering the entire project. Each 
of these possible combinations leads to a unique impact 
on project performance. It means decision makers have 
to face a main challenge of searching in large options 
to find solutions that establish an optimal and delicate 
trade-off among construction time, cost and quality. The 
present optimization model is used to search this large 
space of possible solutions using the newly developed 
multi-objective optimization model.

4.1. Optimization result of CAMODE-TCQT
In this section the parameter settings of the proposed 
CAMODE-TCQT are shown in Table 2 (Storn, Price 
1997; Wu et al. 2010). To avoid randomness, ten inde-
pendent optimization runs are conducted and average the 
external archive contains 100 members. To be concise, 
Table 3 lists the first 9 non-dominated solutions in the 
descending order of time, cost, and quality, respectively. 
These results also include the optimal combination of 
the construction methods. The distribution of the non-
dominated solutions in Pareto optimal front using the 
proposed CA-MODE is show in Figure 7, which clearly 
shows the relationships among time, cost and quality. 
This three dimensional representation of visualize the 
trade-off among project time, cost and quality in order to 
support decision makers in evaluating the impact of vari-
ous resource utilization plans on project performance.

The non-dominated solutions can also establish 
the trade-off between any two objectives on a two-
dimensional plane. Figures 8–10 show the relationship 
between the time and the cost, the cost and the quality, 
the time and the quality, respectively. As we can see in 
the time-cost curve (Fig. 8) for example, the less cost 

Fig. 6. Network of project

we spend on project, the longer duration we need to  
complete project and vice versa. However, Figures 8–10 
may not be good representatives of the entire trade-off 
surface in the three-dimensional space. In fact, the two-
dimensional trade-off surface, when projected from three 
to two dimensions, may lose some non-dominated points 
because the hidden dimension that makes these points 
non-dominated.

4.2. Statistical comparison and analysis
To demonstrate the effectiveness of CA-MODE, the per-
formance of proposed model is compared with previous 
findings (El-Rayes, Kandil 2005), NSGA-II (Deb et al. 
2002), MOPSO (Yang 2007) and MODE, which have 
been implemented and applied to TCQT problem with 
impressive success. In order to be convenient for com-
parison, all three algorithms used equal number of func-
tion evaluations, the population size and the maximum 
generations are set to 100 and 300, respectively. The size 
of approximated Pareto optimal set is chosen as 100. The 
constant mutant and crossover probability factor are cho-
sen at 0.5 and 0.9, respectively. The control parameters 
of the proposed CA-MODE are the same as the previous. 
For all experiments, 10 times independent runs are car-
ried out to collect the statistical results.

Table 4 shows the performance results obtained 
by proposed algorithm and benchmarked algorithms. 
Observing from this table, all of five solutions found by 
CA-MODE model are superior to previous findings and 
benchmarked models. In terms of time, all models can 
obtain the best time, but CA-MODE yields the higher 
quality and lower cost (case 1). The proposed algorithm 
can acquire lowest cost and highest quality. To further 
investigate the effectiveness of the proposed approach, 
several quantitative assessments of the performance of a 
multi-objective optimization algorithm are presented as 
follows.

Unlike in single-objective optimization, perfor-
mance measures to multi-objective optimization prob-
lems are more complicated. Three issues are normally 
taken into consideration: (1) convergence to the Pareto 
optimal set; (2) maintenance of diversity in solu-
tions of the Pareto optimal set; and (3) maximal dis-
tribution bound of the Pareto optimal set (Wu et al. 
2010). Numerous quality indicators have been sug-
gested in literature (Fonseca, Fleming 1995; Deb et al.  
2002; Zitzler et al. 2003; Coello Coello 2006). The 
quality indicators can be classified into three categories 
depending on whether they evaluate the closeness to the 
Pareto front, the diversity in the solutions obtained, or 
both (Zitzler et al. 2003). In this research, three qual-
ity indicators evaluating each type of the above are 
described as the following:

1. C-metric (C): C-metric is quite often used to 
check the quality of the true Pareto front of opti-
mized problem is not known (Zitzler, Thiele 1999). 
Let  be two sets of decision solutions.  
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Table 1. Options of resource utilization

Activity
 (i)

Resource
 option

 (n)

Duration
 (days)

Cost
(dollars)

Act.
weight
 (%) 
(wti)

QI k = 1 QI k = 2 QI k = 3

QualityIW
(wti,k)

QP
( )

IW
(wti,k)

QP
( )

IW
(wti,k)

QP
( )

1

1 14 2400

3 50

100

30

96

20

98 2.9520
2 15 2150 90 89 89 2.6850
3 16 1900 86 77 84 2.4870
4 21 1500 75 72 73 2.2110
5 24 1200 63 60 65 1.8750

2

1 15 3000

5 40

98

40

94

20

99 4.8300
2 18 2400 87 94 95 4.5700
3 20 1800 81 92 85 4.3100
4 23 1500 77 72 70 3.6800
5 25 1000 60 66 59 3.1100

3
1 15 4500

8 70
100

15
97

15
95 7.9040

2 22 4000 80 82 81 6.4360
3 33 3200 62 60 63 4.9480

4
1 12 45000

11 50
99

35
95

15
94 10.6535

2 16 35000 74 71 76 8.0575
3 20 30000 59 63 64 6.7265

5

1 22 20000

10 60

100

20

97

20

99 9.9200
2 24 17500 93 89 89 9.1400
3 28 15000 77 71 72 7.4800
4 30 10000 61 64 61 6.1600

6
1 14 40000

11 50
95

25
95

25
100 10.5875

2 18 32000 76 74 79 8.3875
3 24 18000 59 62 68 6.8200

7
1 9 30000

10 30
97

30
99

40
93 9.6000

2 15 24000 70 73 71 7.1300
3 18 22000 61 62 67 6.3700

8

1 14 220

1 100

95

0 NA 0 NA

0.9500
2 15 215 83 0.8300
3 16 200 75 0.7500
4 21 208 68 0.6800
5 24 120 61 0.6100

9

1 15 300

1 50

100

50

99

0 NA

0.9950
2 18 240 97 92 0.9450
3 20 180 81 88 0.8450
4 23 150 71 75 0.7300
5 25 100 63 64 0.6350

10
1 15 450

1 60
94

40
97

0 NA
0.9520

2 22 400 79 83 0.8060
3 33 320 63 69 0.6540

11
1 12 450

2 70
96

30
95

0 NA
1.9140

2 16 350 72 75 1.4580
3 20 300 61 66 1.2500
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Table 2. CAMODE-TCQT’s parameter setting

Input parameters Notation Setting
Number of decision variables D 18
Population size NP 100
The crossover probability CR 0.9
Scaling factor F 0.5
Maximum size of Archive Nmax 100
Mutant selection ms 1/3
Maximum generation Gmax 300

C-metric is defined as the mapping between the 
ordered pair (S1, S2) and the interval [0,1]:

 . (21)

Provided that C(S1, S2) = 1, all solutions in S2 are 
dominated by or equal to solutions in S1. If C(S1, S2) = 0,  
then none of the solutions in S2 are covered by S1. 
Both C(S1,S2) and C(S2, S1) should be checked in 
the comparison because C-metric is not symmetrical 
in its arguments (Wang, Singh 2009). Table 5 illus-
trates comparison results among four algorithms in 

terms of C-metric, where A1, A2, A3 and A4 indicate  
CA-MODE, MODE, MOPSO and NSGA-II. It can be 
seen that MODE, MOPSO and NSGA-II on average have 
over 42%, 76% and 74% solutions to be dominated by  
CA-MODE, respectively.

2. Spread (SP): This indicator (Wang et al. 2010) is to 
measure the extent of spread achieved among the 
non-dominated solutions. Its mathematical defini-
tion may be given as:

Fig. 7. Time-Cost-Quality trade-off Pareto front using 
CA-MODE

12 1 22 2000 3 50 99 35 98 15 95 2.9415
2 24 1750 89 85 87 2.6190
3 28 1500 70 71 79 2.1510
4 30 1000 62 61 63 1.8540

13 1 14 4000 7 40 99 40 96 20 97 6.8180
2 18 3200 73 71 76 5.0960
3 24 1800 60 62 63 4.2980

14 1 9 3000 6 80 100 10 95 10 98 5.9580
2 15 2400 79 82 81 4.7700
3 18 2200 63 67 66 3.8220

15 1 16 3500 7 70 100 30 98 0 NA 6.9580
16 1 20 3000 3 30 97 30 96 40 98 2.9130

2 22 2000 89 85 87 2.6100
3 24 1750 81 79 78 2.3760
4 28 1500 72 73 74 2.1930
5 30 1000 67 60 62 1.8870

17 1 14 4000 6 70 98 20 97 10 99 5.8740
2 18 3200 73 75 72 4.3980
3 24 1800 62 65 61 3.7500

18 1 9 3000 5 30 98 45 99 25 94 4.8725
2 15 2400 75 77 71 3.7450
3 18 2200 63 66 67 3.2675

Notes: QI:  Quality indicator; QP:  Quality performance;
 NA:  Not available; IW:  Indicator weight.

Activity
(i)

Resource
option

(n)

Duration
 (days)

Cost
(dollars)

Act.
weight
 (%) 
(wti)

QI k = 1 QI k = 2 QI k = 3

QualityIW
(wti,k)

QP
( )

IW
(wti,k)

QP
( )

IW
(wti,k)

QP
( )

Continued of Table 1
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Table 3. Best non-dominated solutions obtained by CA-MODE-TCQT

Solutions Partial set Optimal resource
utilization options

Project performance

Time
(days)

Cost
(dollars)

Quality
(%)

1 Sorted by Time [1.2.1.1.2.1.1.2.1.1.1.1.1.1.1.2.1.1] 104 164715 96.17
2 [1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 158820 95.03
3 [1.3.1.1.2.1.1.3.1.1.1.1.1.1.1.5.1.1] 104 163100 95.01
4 Sorted by Cost [5.5.3.3.4.3.3.5.4.2.3.4.3.3.1.5.3.3] 159 99870 65.24
5 [3.5.2.3.4.3.3.1.1.1.3.1.3.2.1.4.2.1] 120 105570 72.69
6 [1.5.3.3.4.3.3.5.1.1.3.1.3.3.1.5.1.1] 114 105270 71.55
7 Sorted by Quality [1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 168820 97.63
8 [1.1.1.1.1.1.1.2.3.1.1.1.1.1.1.2.1.1] 109 167695 97.06
9 [1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1] 104 167820 97.33

Table 4. Result comparison between CAMODE-TCQT and benchmarked algorithms

Model Case Optimal Resource
Utilization Options

Project Performance

Time
(days)

Cost
(dollars)

Quality
(%)

C
A

M
O

D
E-

TC
Q

T

1 [1.2.1.1.2.1.1.2.1.1.1.1.1.1.1.2.1.1] 104 164715 96.17
2 [1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 158820 95.03
3 [1.5.3.3.4.3.3.5.1.1.3.1.3.3.1.5.1.1] 114 105270 71.55
4 [5.5.3.3.4.3.3.5.4.2.3.4.3.3.1.5.3.3] 159 99870 65.24
5 [1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1.1] 104 167820 97.33

Pr
ev

io
us

 fi
nd

in
gs 1 [1.1.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 166320 95.00

2 [1.5.3.3.4.3.3.5.1.1.3.1.3.2.1.5.1.1] 114 105470 71.00
3 [2.3.1.1.2.3.1.1.1.1.1.1.1.1.1.3.1.1] 115 141620 90.00
4 [2.5.1.3.4.2.3.3.1.1.1.1.3.1.1.5.1.1] 109 121350 77.00
5 [1.5.1.3.4.3.3.5.1.1.2.1.3.2.1.5.3.1] 124 104620 72.00

N
SG

A
-I

I-
TC

Q
T 1 [1.1.2.3.1.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 153320 92.20

2 [1.2.2.3.1.1.2.1.1.1.2.1.2.1.1.1.1.1] 104 145820 87.29
3 [5.3.1.3.4.3.3.2.4.2.1.3.3.2.1.5.3.3] 157 102915 71.56
4 [5.4.1.3.4.3.3.1.3.1.1.2.3.1.1.4.3.1] 141 104850 74.88
5 [1.1.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1] 104 158320 93.53

M
O

PS
O

-T
C

Q
T 1 [1.3.1.3.1.1.3.3.1.1.1.1.1.3.1.2.1.1] 104 142815 87.39

2 [1.4.1.3.1.2.1.2.1.1.1.1.1.1.4.1.1.1] 104 156020 89.52
3 [5.5.3.3.4.3.3.4.4.1.2.1.3.2.1.4.3.3] 151 101758 68.01
4 [3.4.3.3.4.3.3.1.2.1.1.4.3.3.1.4.3.2] 143 102160 68.57
5 [2.2.1.1.1.1.1.1.2.1.2.1.1.1.1.3.1.1] 105 166560 96.05

M
O

D
E-

TC
Q

T

1 [1.3.1.1.2.1.1.3.1.1.1.1.1.1.1.5.1.1] 104 163100 95.10
2 [1.5.3.3.4.3.3.5.1.1.3.1.3.3.1.5.1.1] 114 105270 71.55
3 [1.1.1.2.2.3.1.2.1.1.1.1.1.1.1.2.1.1] 114 133315 90.06
4 [2.5.1.3.4.2.3.2.1.1.3.1.3.2.1.5.1.1] 109 120615 77.01
5 [5.5.3.3.4.3.3.5.1.1.1.1.3.2.1.5.1.1] 124 104420 72.08
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Table 5. Comparison of C-metric for different algorithms

C(A1,
A2)

C(A2,
A1)

C(A1,
A3)

C(A3,
A1)

C(A1,
A4)

C(A4,
A1)

Best 0.70 0.15 0.88 0.14 0.93 0.11
Wor. 0.28 0.01 0.58 0.00 0.39 0.00
Avg. 0.42 0.08 0.76 0.04 0.74 0.03
Std. 0.15 0.05 0.09 0.04 0.16 0.04

Table 6. Comparison of SP-metric for different algorithms

CA-MODE MODE MOPSO NSGA-II
Best 0.6931 0.7308 0.7043 0.9761
Worst 0.8461 1.0670 0.9641 1.2699
Avg. 0.7671 0.8688 0.7848 1.1005
Std. 0.0428 0.1010 0.0957 0.0876

Table 7. Comparison of HV-metric for different algorithms

CA-MODE MODE MOPSO NSGA-II
Best 0.9998 0.9775 0.9832 0.9533
Worst 0.9165 0.9158 0.9000 0.9000
Average 0.9579 0.9481 0.9325 0.9262
Std. 0.0291 0.0242 0.0287 0.0194

Fig. 10. Time-Quality trade-off analysis

Fig. 9. Cost-Quality trade-off analysis

Fig. 8. Time-Cost trade-off analysis

 
, (22)

where Ω is a set of solutions, (E1, ..., Ek) are k extreme 
solutions in the set of true Pareto-front PF and

A value of zero for this metric indicates all members 
of the Pareto optimal set are equidistantly spaced. A 
smaller value of SP indicates a better distribution and 
diversity of the non-dominated solutions. Table 6 shows  
that the comparison of the spread metric for different 
algorithms. It can be seen that the average performance 
of CA-MODE is superior to the other algorithms.

3.  Hyper-volume (HV): This indicator calculates the 
volume (in the objective space) covered by members 
of a non-dominated set of solutions Ω for problem 
where all objectives are to be minimized (Zitzler  
et al. 2003; Wu et al. 2010). Mathematically, for each 
solution ; a hypercube vi is constructed with a 
reference point W and the solution Xi as the diagonal 
corners of the hypercube. The reference point can 
be found simply by constructing a vector of worst 
objective function values. Thereafter, a union of all 
hypercubes is found and its HV is calculated:

 
. (23)

Algorithms with larger HV values are desirable. The HV 
value of a set of solutions is normalized by a references 
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set of Pareto optimal solution with same reference point. 
After normalization, the HV values are confined in range 
[0,1]. Table 7 shows the comparison results among dif-
ferent algorithms in term of HV. From Table 7 we can see 
that the proposed model obtains the largest HV values, 
which means that CA-MODE has better convergence and 
diversity performance than the other algorithms.

Conclusions

This paper presents a novel multi-objective optimization 
model, namely CA-MODE, for solving Construction Pro-
ject Time-Cost-Quality Trade-off problem. The new opti-
mization model utilizes chaos to scatter the individuals 
over the searching place; this technique can significantly 
enhance the diversity of the initial population and generate 
the potential candidate right from the very beginning of the 
algorithm. The elitist reservation strategy is also adopted. 
An external archive is used to store the Pareto optimality 
found so far in the whole evolution process. Moreover, 
an adaptive mutation operation is introduced to balance 
diversity and convergence of proposed algorithm. The 
experiment results revealed that the proposed CA-MODE 
approach is efficient for solving multi-objective TCQT 
problems where multi-objective Pareto optimal solutions 
can be found in one simulation run. Compared with other 
multi-objective evolutionary algorithms MODE, MOPSO, 
NSGA-II and previous findings, the CA-MODE has bet-
ter diversity characteristics, and yields better compromise 
solutions and higher degree of satisfaction.

The Pareto front generated by the proposed algo-
rithm which is useful information for decision makers 
to further determine the optimal design under the con-
sideration of project time, cost and quality trade-offs. It 
shows no difference if no references on time, cost and  
quality for the decision makers are selected. If the deci-
sion-makers have certain preferences on time, cost and 
quality, they can quickly make decision according to the 
sorted specific factors from approach.

The proposed model CA-MODE has the vast appli-
cation potential to solve different multi-objective optimi-
zation problems in construction management, since it can 
be easily modified to deal with these problems. To name 
a few, examples include the trade-off among time, cost 
and environmental; performance, cost and reliability in 
engineering design.
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