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Abstract. This study investigates the performances of the integrated particle swarm optimizer (iPSO) algorithm in the 
layout and sizing optimization of truss structures. The iPSO enhances the standard PSO algorithm employing both the 
concept of weighted particle and the improved fly-back method to handle optimization constraints. The performance of 
the recent algorithm is tested on a series of well-known truss structures weight minimization problems including mixed 
design search spaces (i.e. with both discrete and continuous variables) over various types of constraints (i.e. nodal dis-
placements, element stresses and buckling criterion). The results demonstrate the validity of the proposed approach in 
dealing with combined layout and size optimization problems.
Keywords: particle swarm optimizer, combined sizing/layout optimization, trusses, structural optimization.

Introduction

In the last decade several new metaheuristic techniques 
have been developed to solve the structural optimiza-
tion problems. Genetic algorithms (GA), particle swarm 
optimization (PSO), harmony search (HS), teaching and 
learning based optimization (TLBO), firefly algorithm 
(FA) and flower pollination algorithm (FPA) are a vari-
ety of well-established methods for the optimal design of 
structures. Depending on the optimization purpose, cross-
sectional areas of the members and/or nodal coordinates 
separately or simultaneously can be included as the de-
sign variables of the problem. Phan et al. (2013), Gholi-
zadeh and Fattahi (2014), Gholizadeh and Poorhoseini 
(2015), Kaveh and Shokohi (2015), Gholizadeh (2015) 
and Artar (2016) applied some metaheuristic algorithms 
for the design optimization problems including the sizing 
variable only. Although it is possible to obtain better re-
sults taking into account both sizing and layout variables, 
in such a case the optimization problem becomes more 
complex due to rising number of variables (Hasançebi 
et al. 2009; Tang et al. 2005; Miguel et al. 2013; Silih 
et al. 2010; Deb, Gulati 2001; Dede, Ayvaz 2015; Bekdaş 
et al. 2015; Aydın, Çakır 2015). On the other hand, to 
acquire practical solutions cross-sectional areas usually 
should be selected from a predefined discrete list of avail-
able structural profiles, while nodal coordinates generally 
are chosen from a continuous search space. Hence, for-
mulating a mixed variable optimization problem may be 

unavoidable and employed optimization method should 
be able to handle both continuous and discrete variables 
at the same time (Achtziger 2007; Torii et al. 2011).

Dede and Ayvaz (2015) performed sizing and layout 
optimization of truss structures using teaching learning 
based optimizer (TLBO). Miguel, L. F. F. and Miguel, 
L. F. F. (2012) optimized size and layout of truss struc-
tures subjected to dynamic constraints using Harmony 
Search (HS) and Firefly Algorithms (FA). Miguel et al. 
(2013) represented the efficiency of Firefly Algorithm to 
optimize size, layout and topology of truss structures. 
Tang et al. (2005) and Deb and Gulati (2001) carried out 
sizing and topology optimization of the truss structures 
using Genetic Algorithm (GA) and its variants. 

In this study, an integrated Particle Swarm Optimiz-
er (iPSO) proposed by Mortazavi et al. (2017) is em-
ployed for optimal design of 2D and 3D truss structures 
including both sizing and layout variables to demonstrate 
its performance on those type problems. The iPSO ap-
plies concept of the weighted particle to enhance the 
search capacity of the standard particle swarm optimizer 
(PSO). In order to handle the optimization constraints, 
iPSO implements the improved Fly-back technique. This 
technique aims to make the role of the weighted particle 
more prominent and thereby improves the characteristic 
search aspects (i.e. exploration and exploitation) of the 
proposed algorithm.  
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In order to evaluate the performance of iPSO, sev-
eral well-known truss structures optimization problems 
which previously solved in the literature adopting dif-
ferent metaheuristic algorithms, are considered. These 
problems include various constraints on displacements, 
stresses and critical buckling loads. Results indicate that 
iPSO has a good search capability at relatively low com-
putation time to solve combined sizing and layout opti-
mization problems of the truss structures. 

The article is structured as follows. The general for-
mulation of truss weight minimization problem is recalled 
in Section 1. Section 2 briefly describes standard PSO 
and then presents the proposed iPSO algorithm in detail. 
Section 3 compares the optimization results with those 
available in the literature. Section 4 is devoted to discuss 
about the affirmative features of applying improved Fly-
back method on the search capability of the iPSO. Con-
clusions discuss overall performance and strength-points 
of the iPSO while summarizing the main achievements 
of this study.

1. Formulation of truss weight minimization  
problems

Since sizing and layout structural optimization problems 
involve element cross-sectional areas and nodal coordi-
nates as design variables, corresponding constraints and 
objective function can be expressed as follows:
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in which W(.) is the weight of structure and dk and dmax,k 
are the existing and allowable displacement for node 
k, respectively. The length, material density and cross-
sectional area of the eth element are respectively Le, ρe, 
and Ae while m is the total number of elements in the 
structure. gk(X) is the kth constraint function, xi is the 
ith design variable. Also, σe is the available stress in the 
eth element and σa,e is the allowable tension/compression 
stress for the same element. While, xmin,e and xmax,e, are 
respectively indicate the lower and upper bounds for the 
cross-sectional area of the eth element; Finally, cormin,p 
indicates the lower bounds and cormax,p indicates the up-
per bounds for  coordinates of pth node.

It is notable that, in the structural optimization to 
achieve a feasible solution the stability of the structure 
should be sustained during the optimization process. In 
this respect, several methods based on graph theory and 

algebraic approaches were provided to check this crite-
rion (Kaveh 2004, 2006). Based on the essence of the 
problem (e.g complexity level) different approaches indi-
vidually or in combination can be used (Mortazavi, Toğan 
2016).

In the current study to check the stability of the 
structure evaluation of the condition number of the stiff-
ness matrix is employed. Such that, if the condition num-
ber of the stiffness matrix is greater than a predefined 
large number, system is determined as unstable. This pre-
defined large number (e.g. 1E15) is specified depending 
on precision defined for complier/interpreter environment 
that is employed by user to solve optimization problem.

2. Integrated particle swarm optimization (iPSO)

Standard Particle Swarm Optimizer (PSO) mimics the 
behavior of animals (e.g. the colony of fish or swarm of 
birds) to find food sources or to escape from predators 
(Kennedy, Eberhart 2001). In the first design cycle of this 
method, a swarm including several particles is randomly 
generated while each particle can be a potential solution 
of the problem. The swarm iteratively flies over the do-
main of the problem for a unit of time. At the end of the 
each iteration, each particle finds its own new position. 
The qualities of these recent positions are evaluated via 
calculating a proper objective function. In each iteration 
the best particle in the swarm (global best) is stored in 
the XG vector while the best positions previously gained 
by each particle are stored in the XP matrix. 

Although PSO is applied in the various engineering 
fields, it is reported that the standard PSO has some draw-
backs (e.g. staggering from the convergence in further 
steps of the process), so different modifications have been 
applied on the PSO in order to overcome these limitations 
(Van den Bergh, Engelbrecht 2003; He et al. 2004; Li 
et al. 2009, 2014).

The iPSO algorithm (Mortazavi, Toğan 2016; Mor-
tazavi et al. 2017) attempts enhancing standard PSO by 
implementing an improved fly-back method and the con-
cept of weighted particle. The iPSO formulation and its 
relative terms are shortly described in the following sub-
sections (see more Mortazavi, Toğan 2016; Mortazavi 
et al. 2017).

2.1. Weighted particle
To improve the standard PSO method a unique particle 
named weighted particle (XW) was proposed by Li et al. 
(2014). Weighted particle is defined as weighted average 
of all available particles in the swarm. Unlike Li et al. 
(2014), the effect of it’s on the solution process of PSO 
is examined on the structural optimization problems. The 
objective value of each particle is taken as weight fac-
tor to calculate XW. The weighted particle can hence be 
defined as:
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In Eqns (2)–(3), m is the number of particles, XW is the 
position vector of the weighted particle, P

iX  is ith particle 
stored in the PX ,  f(.) returns the corresponding value of 
the objective function of the optimization problem, also 
max(.) and min(.), respectively, are the worst and best ob-
jective function values of the particles available in the PX
matrix. Also ε  is a small positive value to prevent division 
by zero condition which in this study is taken as 0.001.

2.2. Improved fly-back mechanism
To handle the constraints of the optimization problems, the 
proposed fly-back mechanism (He et al. 2004) is improved 
to increase the convergence rate of the algorithm and the 
guidance role of the weighted particle. And it is donated 
as improved fly-back technique. The following scheme is 
employed to use the improved fly-back technique. First, 
problem constraints are divided in two groups: (i) nu-
merical constraints, those do not entail structural analy-
sis to evaluate constraint(s) violation, e.g. side constraints 
on cross-sectional areas or nodal coordinates; (ii) Char-
acteristic constraints, those who entail structural analy-
sis to determine their violation, e.g. existing stresses and 
displacements. Next, if a particle violates the numerical 
constraint(s), the corresponding violated components in the 
particle are replaced with the same components stored in 
the weighted particle. The new particle is evaluated and 
if it gives a better objective value it replaces the old one 
and if not, it is reset to its previous best position stored in 
the PX .

2.3. Formulation of the iPSO algorithm
iPSO utilizes the weighted particle (XW) not only to over-
come reducing or vanishing the guidance effect of parti-
cle own prior best position P

iX  and position of the best 
particle in the swarm (XG) when a particle is located very 
close to one or even both of these landmark points but 
also to involve all particles’ experience through weighted 
particle in the position updating of each particle. Conse-
quently, iPSO is formulated as below:

( )1
4 4 4 4

0

1, rand

if rand ;

t t W t
i i i i i

i

i Cϕ ϕ

α

+ = − ≥ = ×

≤

V X X
 (4)

( )( )
( ) ( )

1
1 2 3

2 3

0if rand ;

t t t P t
i i i i i i j i

t G t P t W t P
i j i j

i

w ϕ ϕ ϕ

ϕ ϕ

α

+ = × + + + −

− + −

>

+V V X X

X X X X (5)

1 1
1 1 1

2 2 2 3 3 3

1, , rand
rand , rand .

t t t
i i i i i

i i i i

i j m C
C C

ϕ
ϕ ϕ

+ += + ≥ ≤ = ×

= × = ×

X X V
 (6)

In Eqns (4)–(6), superscripts of “t” and “t + 1” denote 
current step and next step, respectively. So, i

t V1+  is the 
updated velocity, iw  is the inertia term of current veloc-
ity, and i

t V  is the current velocity of ith particle. C1, C2, 
C3, and C4 are acceleration factors, where respectively can 
be selected as – ( )2 3i iϕ ϕ+ , 2, 1 and 2. randki  is the ran-
dom number selected from the [0, 1] interval, in which 

{ }43210 ,,,,∈k . Also, P
j

t X  indicates the randomly se-
lected particle from the current matrix of PX . Moreover, 

Gt X  is the global best particle up to current step while 
i

t X1+  and i
t X , respectively, represent the updated posi-

tion and current position of the ith particle. The weighted 
particle calculated for the current step is shown by Wt X . 
In each iteration, iw  is randomly selected from [0.5, 0.55] 
and α = 0.4. Li et al. (2014) established these parameters 
adjustments for scalar functions with continuous search 
spaces.

Since discrete variables are also adopted in this 
study, Eqns (2)–(5) are modified as follows:
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The operator INT (.) in above formulations takes the inte-
ger part of any scalar variable. The rest of the definitions 
are the same as for Eqns (2)–(5). As can be seen from 
given formulation the XW plays significant role in the 
guidance of swarm. In the proposed method the weighted 
particle accompanied with XW form the particular motion 
orientation for other particles. So, excepted particles own 
experiences stored in XP each particle has two reason-
able guidance points (i.e. XW and XG), in comparison to 
standard PSO where XG takes over this role individually. 

It is remarkable that, the weighted particle includes 
the data stored in all particles while associates them re-
lated with their objective values (i.e. for a minimization 
problem, particle with lower objective value has a higher 
impact). Neglecting particles inertia, in each iteration WX
spots a location in search domain based on combination 
of detected locations by swarm up to current step. So, 
this particle (as gravity center of colony) lies closer to 
better particles. Subsequently, since it cannot stand so far 
away from swarm it generally provides a local search, 
and moving toward this particle increases the exploita-
tion ability of the algorithm. On the other hand, similar 
to the standard PSO, holding the effect of particles’ in-
ertia, moving toward the P

iX  and GX  (for 0rand i α> ) 
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provides exploration ability of the algorithm. However, 
to reach the global optimum through the search space, a 
balance between exploration and exploitation is required 
(Gholizadeh 2013). In iPSO, this balance is provided via 
adjusting attraction factor (α ).

2.4. Parameters of iPSO 
To exhibit the effect of variation of attraction factor (α) and 
initial velocity inertia term (w) on iPSO algorithm perfor-
mance, sensitivity analysis based on the graphical sensitiv-
ity method described in Lee et al. (2013) was carried out. 
These analyses provide illustrative data about the effect 
of adjustable parameters, i.e. changing a parameter either 
has a positive or negative effect on the performance of 
the algorithm. The corresponding mapped ranges for the 
attraction factor (α), initial velocity inertia term (w), and 
number of population (N) are illustrated in Figure 1. Re-
sults of the sensitivity analysis performed for 18-bar and 
39-bar trusses verify the results obtained by Li et al. (2014) 
and Mortazavi and Toğan (2017). According to these re-
sults, the best combination of internal parameters (α and w) 
are w = [0.5, 0.55] and α = 0.4, respectively. As a conse-
quence, considering the numerical experiments conducted 
in the current study, it can be worth to say that the appro-
priate values for α and w are 0.4 and 0.5 for the examples 
to be investigated in the present study. 

3. Design examples

Five benchmark truss optimization problems are solved to 
evaluate the performance of the iPSO. Due to the stochas-

tic nature of the optimization technique, 30 independent 
runs are carried out for solving each test problem. For 
more clarity the statistical information and number of ob-
jective function evaluation (OFEs) about each solution 
also are provided. It is notable that some statistical data 
and OFEs of referred studies are not reported in the rela-
tive literature.

3.1. 15-bar planar truss structure
As shown in Figure 2, the 2D 15-bar truss structure is 
taken as the first test case. The design parameters adopted 
in this example are presented in Table 1. Population size 
and allowable number of iterations are respectively set as 
20 and 300 for this example. 

Table 2 compares the optimum design obtained by 
the iPSO with those using other techniques available in 
relative studies. In addition Table 2 presents the statisti-
cal information about this problem, as well. According to 
data tabulated in Table 2, iPSO found the lightest solution 
among the reported results by Wu and Chow (1995) using 
GA, Tang et al. (2005) using improved GA, Hwang and 
He (2006) applying ARSAGA, Rahami et al. (2008) us-
ing Force method and GA, Dede and Ayvaz (2015) using 
TLBO, and Miguel et al. (2013) using FA. However, the 
lightest design for this example was reported by Gholi-
zadeh (2013) using SCPSO. This result, 72.5413 lb, is 
only %0.3 lb smaller than the design obtained by using 
iPSO. The acquired optimized structure is shown in Fig-
ure 3. The best weight is achieved at 249th iteration (i.e. 
after 4980 structural analyses) and it remains unchanged 
until the last iteration is reached. The standard deviation 
for the 30 independent runs is 2.023 lb and it indicates 
that dispersion of the outcomes is in the acceptable range 
from mean value of the solutions. Based on the com-
parisons made in Table 2, it can be expressed that iPSO 
has adequate capability to handle the layout and sizing 

a. 18-bar truss

Fig. 1. Illustrative results of the sensitivity analysis for the 
internal parameters of iPSO algorithm

b. 39-bar truss

Fig. 2. Schematic of the planar 15-bar truss structure

Fig. 3. Optimal layout for the planar 15-bar truss problem
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Table 1. Input data for the planar 15-bar truss problem

Material properties
Young’s modulus E = 68947.5728 MPa (10 Msi)
Density ρ = 27.1447 kN/m3 (0.1 lb/in3)
Allowable stress ±172.36898 MPa (±25 ksi)

Design variables
Sizing variables Ai =1, 2, . . ., 15
Discrete area set, S S = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 

0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 
3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 

10.850, 13.330, 14.290, 17.170, 19.180} in2

Layout variables
254 cm (100 in) ≤ X2 = X6 ≤ 355.6 cm (140 in)

558.8 cm (220 in) ≤ X3 = X7 ≤ 660.4 cm (260 in)
254 cm (100 in) ≤ Y2, Y3 ≤ 355.6 cm (140 in)

127 cm (50 in) ≤ Y4 ≤ 228.6 cm (90 in)
–50.8 cm (–20 in) ≤ Y6, Y7 ≤ 50.8 cm (20 in)

50.8 cm (20 in)≤ Y8 ≤ 152.4 cm (60 in)
Nodal loads

Node number x y
8 0 –44.537 kN (–10 kips)

Constraints
Displacement –
Euler buckling –
Stress σe ≤ allowable stress

optimization problem. Figure 4 shows the convergence 
history of the 15-bar truss structure for iPSO. 

3.2. 18-bar planar truss structure 
The 18 bar truss shown in Figure 5 is selected as the sec-
ond example of the combined sizing/layout optimization. 

Input data required for this test case are listed in Table 3. 
The population size and allowable number of iterations 
are respectively set as 10 and 500 for this example.

The optimized layout of the structure is shown in 
Figure 6. The optimum design found by the iPSO is com-
pared with those reported in the relative literature in Ta-
ble 4. According to the provided information in Table 4, 
iPSO finds the lightest solution in comparison with the 
results found by Hasançebi and Erbatur (2002) using SA, 
Kaveh and Kalatjari (2004) using Force method and GA, 
Rahami et al. (2008) using Force method and GA, Lee 
and Geem (2005) using HS, and also Dede and Ayvaz 
(2015) using TLBO. However, comparing the designs 
presented in Table 4 it is notable that the better result 
among them is the one obtained by Gholizadeh (2013) 
employing SCPSO. The optimum design is reached at 
445th iteration (i.e. after 4450 structural analyses) and any 
improvement in the solution is not obtained until reach-
ing to the maximum allowable number of iterations. The 
statistical data for current example is also provided in 
Table 4. The data shows that the value of the standard 
deviation is equal to 14.899 lb for the set of obtained so-
lutions through 30 independent runs. This value indicates 
that distribution of the obtained results over their mean 
value is statistically admissible. The corresponding con-
vergence history of the 18-bar truss structure for iPSO is 
demonstrated in Figure 7. 

Fig. 4. Convergence history for the planar 15-bar truss using 
iPSO
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Table 2. Comparison of the iPSO optimization results with the literature for the 15-bar truss problem

Design variables

Wu and 
Chow 
(1995)

GA

Tang 
et al. 

(2005)
iGA

Hwang 
and He 
(2006)

ARSAGA

Rahami 
et al. 

(2008)
GA

Miguel 
et al. 

(2013) 
FA

Gholizadeh 
(2013)
SCPSO

Dede and 
Ayvaz (2015)

TLBO

This 
study 
iPSO

Sizing variables (in2)

A1 1.174 1.081 0.954 1.081 0.954 0.954 1.081 1.081
A2 0.954 0.539 1.081 0.539 0.539 0.539 0.954 0.539
A3 0.44 0.287 0.44 0.287 0.22 0.270 0.141 0.27
A4 1.333 0.954 1.174 0.954 0.954 0.954 1.081 0.954
A5 0.954 0.954 1.488 0.539 0.539 0.539 0.539 0.539
A6 0.174 0.22 0.27 0.141 0.22 0.174 0.347 0.141
A7 0.44 0.111 0.27 0.111 0.111 0.111 0.111 0.111
A8 0.44 0.111 0.347 0.111 0.111 0.111 0.174 0.111
A9 1.081 0.287 0.22 0.539 0.287 0.287 0.141 0.27
A10 1.333 0.22 0.44 0.44 0.44 0.347 0.27 0.287
A11 0.174 0.44 0.22 0.539 0.44 0.347 0.22 0.44
A12 0.174 0.44 0.44 0.27 0.22 0.220 0.141 0.27
A13 0.347 0.111 0.347 0.22 0.22 0.220 0.44 0.287
A14 0.347 0.22 0.27 0.141 0.27 0.174 0.347 0.174
A15 0.44 0.347 0.22 0.287 0.22 0.270 0.141 0.27

Layout variables (in)

X2 123.189 133.612 118.346 101.5775 114.967 137.2216 100.0042 132.2415
X3 231.595 234.752 225.209 227.9112 247.04 259.9093 241.0473 257.4379
Y2 107.189 100.449 119.046 134.7986 125.919 123.5006 118.8228 128.3136
Y3 119.175 104.738 105.086 128.2206 111.067 110.0020 100.0829 111.2506
Y4 60.462 73.762 63.375 54.863 58.298 59.9356 50 59.9894
Y6 16.728 –10.067 –20 –16.4484 –17.564 –5.1799 3.1411 –10.5543
Y7 15.565 –1.339 –20 –16.4484 –5.821 4.2193 –9.6997 10.7686
Y8 36.645 50.402 57.722 54.8572 31.465 57.8829 46.8963 60.0

Statistical results

Best weight (lb) 120.52 79.82 104.573 76.6854 75.55 72.5143 76.6519 72.7373
Worst weight (lb) 80.156 76.522
Mean weight (lb) 76.411 74.316
Std. deviation (lb) 1.922 2.023
OFEs 6000 8000 16000 8000 8000 4500 16000 4980

Fig. 5. Schematic of the planar 18-bar truss structure
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3.3. 25-bar space truss tower
The third example deals with the combined sizing/layout 
optimization of the 3D 25-bar truss tower shown in Fig-
ure 8. Problem specifications are listed in Table 5. Initial 
values of nodal coordinates and members grouping are 
presented in Table 6. The symmetry of structure is main-
tained during the optimization process. The population 
size and allowable number of iterations are set as 10 and 
500, respectively. 

Table 3. Input data for the planar 18-bar truss problem

Material properties
Young’s modulus E = 68947.5728 MPa (10 Msi)
Density ρ = 2768 kg/m3 (0.1 lb/in3)
Allowable stress ±137.8951 MPa (±20 ksi)

Design variables
Sizing variables                                                     Members 

A1 1, 4, 8, 12, 16
A2 2, 6, 10, 14, 18
A3 3, 7, 11, 15
A4 5, 9, 13, 17
Discrete area set  {2.0, 2.25, . . ., 21.5, 21.75} in2

Layout variables
–571.5 cm (–225 in) ≤Y3, Y5, Y7, Y9 ≤ 622.3 cm (245 in)

1968.5 cm (775 in) ≤ X3 ≤ 3111.5 cm (1225 in)

1333.5 cm (525 in) ≤ X5 ≤ 2349.5 cm (925 in)

698.5 cm (275 in) ≤ X7 ≤ 1841.5 cm (725 in)

63.5 cm (25 in) ≤ X9 ≤ 1206.5 cm (475 in)

Loading conditions
Node number x                             y

1 0 –44.537 kN (–10 kips)

2 0 –44.537 kN (–10 kips)

4 0 –44.537 kN (–10 kips)

6 0 –44.537 kN (–10 kips)

8 0 –44.537 kN (–10 kips)

Constraints
Displacement –

Euler buckling
2

e
eb

e

EA
L

ασ ≤

Stress σe ≤ allowable stress

Fig. 6. Optimal layout for the planar 18-bar truss problem

Fig. 7. Convergence history for the planar 18-bar truss using 
iPSO
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The optimum design is compared with those avail-
able in the relative literature in Table 7. The iPSO finds 
the lightest solution for the current structure in compari-
son with the reported results by Wu and Chow (1995), 
Tang et al. (2005) using different variants of GA, Raha-
mi et al. (2008), Kaveh and Kalatjari (2004) using Force 
method and GA. The results show that iPSO and SCPSO 

(Gholizadeh 2013) converge to better solution in compar-
ison with others however there is a negligible difference 
between these designs in the point view of engineering. 
The optimal layout found for this problem is shown in 
Figure 9. It is accomplished at 487th generation (i.e. af-
ter 4870 structural analyses) to find the optimum design 
reported in Table 7. Any further enhancement in the de-
sign is not attained until the maximum iteration number 
is reached. The graphical representation of this process is 
illustrated in Figure 10. The statistical data for this exam-

Table 4. Comparison of the iPSO optimization results with the literature for the planar 18-bar truss problem

Design variables
Hasançebi 

and Erbatur 
(2002) SA

Kaveh and 
Kalatjari 

(2004) GA

Rahami 
et al. (2008) 

GA

Lee and 
Geem 
(2005)

Gholizadeh 
(2013)
SCPSO

Dede and 
Ayvaz (2015) 

TLBO

This study 
iPSO

Sizing variables (in2)
A1 12.25 12.25 12.75 12.62 12.50 12.25 14.25
A2 17.5 18 18.5 17.22 17.50 17.5 11.75
A3 5.75 5.25 4.75 6.17 5.75 5.75 6.00
A4 4.25 4.25 3.25 3.55 3.75 4.25 8.00

Layout variables (in)
X3 910 913 917.4475 903.1 907.2491 906.9373 916.4975
Y3 179 186.8 193.7899 174.3 179.8671 179.8866 190.5241
X5 638 650 654.3243 630.3 636.7873 637.0087 916.4975
Y5 141 150.5 159.9436 136.3 141.8271 142.617 152.9217
X7 408 418.8 424.4821 402.1 407.9442 408.6414 649.4695
Y7 91 97.4 108.5779 90.5 94.0559 94.1563 105.425
X9 198 204.8 208.4691 195.3 198.7897 199.6503 205.4255
Y9 24 26.7 37.6349 30.6 29.5157 25.3657 36.4252

Statistical results
Best weight (lb) 4533.24 4547.9 4530.7 4525.6 4512.365 4528.797 4520.99

Worst weight (lb) 4621.227 4560.27

Mean weight (lb) 4551.709 4526.585

Std. deviation (lb) 37.691 14.889

OFEs – 5000 8000 25000 4500 16000 4450

Fig. 8. Schematic of the spatial 25-bar truss tower

Fig. 9. Optimal layout for the spatial 25-bar truss problem
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ple is declared in Table 7. The standard deviation value of 
the set of achieved solutions is 1.3908 lb. This shows that 
the solutions satisfactorily are spread out over the mean 
value of the solutions set.

3.4. 39-bar space truss tower
The fourth test problem is the combined sizing/layout 
optimization of the 3D 39-bar truss tower shown in Fig-
ure 11. Problem specifications are listed in Table 8. Fixed 
nodes’ coordinates and elements’ connectivity are pre-
sented in Table 9. The top and bottom nodes have fixed 
position while middle nodes’ coordinates are taken as de-
sign variables. The symmetry of structure is maintained 
during the optimization process. The population size and 
allowable number of iterations is set to 10 and 1000, re-
spectively. 

The optimum design found by iPSO is demonstrated 
in Figure 12 while in Table 10 it is compared with those ob-
tained from other methods. The solution obtained by iPSO 
is lighter than the cited references Wang et al. (2002) and 
Dede and Ayvaz (2015). This optimum design is attained 
at 725th generation (i.e. after 7250 structural analyses). No 
further improvement is achieved through the remaining it-
erations. Table 10 provides the statistical information about 
the 30 independent runs of iPSO for this example.

The standard deviation 1.831 lb indicates an accept-
able distribution of the outcomes over the mean value of 
all independent runs. Since the buckling criterion is added 
as an extra constraint, the boundary condition of the prob-

Table 5. Input data for the spatial 25-bar truss problem

                                                    Material properties
Young’s modulus E = 68947.5728 MPa (10 Msi)
Density ρ = 2768 kg/m3 (0.1 lb/in3)
Allowable stress ±275.80 MPa (±40 ksi)

                                                     Design variables
Sizing variables Ai = 1, 2, …, 8
Nodal coordinates and sym-
metry conditions

x4 = x5 = −x3 = −x6;  x8 = x9 = −x7 = −x10;  y3 = y4 = −y5 = −y6;   
y7 = y8 = −y9 = −y10;  z3 = z4 = z5 = z6

Discrete area set  {0.1, 0.2, . . ., 2.6, 2.8, 3.0, 3.2, 3.4} in2

Layout variables
50.8 cm (20 in)≤ X4 ≤ 152.4 cm (60 in)

101.6 cm (40 in) ≤ X8 ≤ 203.2 cm (80 in)
101.6 cm (40 in) ≤ Y4 ≤ 203.2 cm (80 in)
254 cm (100 in) ≤ Y8 ≤ 355.6 cm (140 in)
228.6 cm (90 in) ≤ Z4 ≤ 330.2 cm (130 in)

Loading conditions
Node num-
ber

x y z

1 4.454 kN (–1.0 kips) –44.537 kN (–10 kips) –44.537 kN (–10 kips)
2 0 –44.537 kN (–10 kips) –44.537 kN (–10 kips)
3 2.227 kN (0.5 kips) 0 0
6 2.672 kN (0.6 kips) 0 0

Constraints
Displacement |∆i| ≤ 0.89 cm (0.35 in); i = 1, …, 6
Euler buckling –
Stress σe ≤ allowable stress

Fig. 10. Convergence history for the spatial 25-bar truss using 
iPSO
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Table 6. Initial layout and member grouping for the spatial 25-bar truss problem

Joint 
number x (in) y (in) z (in) Group Member number  (end joints number)

1 –95.25 cm (–37.5) 0.0 508 cm (200) A1 1(1,2)
2 95.25 cm (37.5) 0.0 508 cm (200) A2 2(1,4), 3(2,3), 4(1,5), 5(2,6)
3 –95.25 cm (–37.5) 95.25 cm (37.5) 254 cm (100) A3 6(2,5), 7(2,4), 8(1,3), 9(1,6)
4 95.25 cm (37.5) 95.25 cm (37.5) 254 cm (100) A4 10(3,6), 11(4,5)
5 95.25 cm (37.5) –95.25 cm (–37.5) 254 cm (100) A5 12(3,4), 13(5,6)
6 –95.25 cm (–37.5) –95.25 cm (–37.5) 254 cm (100) A6 14(3,10), 15(6,7), 16(4,9), 17(5,8)
7 –254 cm (–100) 254 cm (100) 0.0 A7 18(3,8), 19(4,7), 20(6,9), 21(5,10)
8 254 cm (100) 254 cm (100) 0.0 A8 22(3,7), 23(4,8), 24(5,9), 25(6,10)

9 254 cm (100) –254 cm (–100) 0.0

10 –254 cm (–100) –254 cm (–100) 0.0

Table 7. Comparison of the iPSO optimization results with the literature for the spatial 25-bar truss problem

Design variables Wu and Chow 
(1995) GA

Tang et al. 
(2005) iGA

Kaveh and Kalatjari 
(2004) GA

Rahami et al. 
(2008) GA

Gholizadeh 
(2013) SCPSO

This study 
iPSO

Sizing variables (in2)
A1 0.1 0.1 0.1 0.1 0.1 0.1
A2 0.2 0.1 0.1 0.1 0.1 0.1
A3 1.1 1.1 1.1 1.1 1.0 1.0
A4 0.2 0.1 0.1 0.1 0.1 0.1
A5 0.3 0.1 0.1 0.1 0.1 0.1
A6 0.1 0.2 0.1 0.1 0.1 0.1
A7 0.2 0.2 0.1 0.2 0.1 0.1
A8 0.9 0.7 1 0.8 0.9 0.9

Layout variables (in)
X4 41.07 35.47 36.23 33.0487 36.9520 37.6
Y4 53.47 60.37 58.56 53.5663 54.5786 54.46
Z4 124.6 129.07 115.59 129.9092 129.9758 130
X8 50.8 45.06 46.46 43.7826 51.7317 51.89
Y8 131.48 137.04 127.95 136.8381 139.5316 139.55

Statistical results
Best weight (lb) 136.2 124.94 124.0 120.1149 117.227 117.255
Worst weight (lb) 132.672 121.969
Mean weight (lb) 122.876 119.57
Std. deviation (lb) 3.671 1.3908
OFEs – 6000 – 10000 4500 4870



Journal of Civil Engineering and Management, 2017, 23(8): 985–1001 995

Table 8. Input data for the spatial 39-bar truss problem

Material properties
Young’s modulus E = 210 GPa (30457.9249233 ksi)
Density ρ = 7800.2 kg/m3 (0.2818 lb/in3)
Allowable stress ±240 MPa (±34.809048 ksi)

Design variables

Sizing variables Ai = 1, 2, 3, 4, 5

Layout variable

                                               Y12, Z12, Y13, Z13, Y14, Z14 
Loading conditions

Node number x y z

5 10 kN (2.2481 kips)

10 10 kN (2.2481 kips)

15 10 kN (2.2481 kips)

Constraints
Displacement X Y Z
Node 13 0.4 cm (0.1574 in)

Euler buckling

        
2

e e
eb

e

K EA
L

σ −
≤

Stress            σe ≤ allowable stress

Table 9. Initial layout and member grouping for the spatial 39-bar truss problem

Joint number x (m) y (m) z (m) Group (end joints number)

1 –0.5 0 A1 (1,2)(6,7)(11,12)
5 –0.14 4 A2 (2,3)(7,8)(12,13)
6 –0.5 0 A3 (3,4)(8,9)(13,14)
10 –0.14 4 A4 (4,5)(9,10)(14,15)
11 0 1 0 A5 Rest of the elements
15 0 0.28 4

Fig. 12. Optimal layout for the spatial 39-bar truss problemFig. 11. Schematic of the spatial 39-bar truss tower
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Table 10. Comparison of the iPSO optimization results with the literature for the spatial 39-bar truss problem

Design variables Wang et al. (2002) FSD Dede and Ayvaz (2015) TLBO This study iPSO

Sizing variables (cm2)
A1 11.01 11.9650 12.08
A2 8.63 11.1457 10.1
A3 6.69 7.8762 6.64
A4 4.11 2.7013 3.18
A5 4.37 2.4058 1.72

Layout variables (m)
Y12 0.805 0.8996 0.872
Z12 1.186 1.3507 1.198
Y13 0.654 0.6917 0.693
Z13 2.204 2.3122 2.496
Y14 0.466 0.4825 0.490
Z14 3.092 3.3031 3.309

Statistical results
Best weight (kg) 203.18 154.13 135.0552
Worst weight (kg) 140.865
Mean weight (kg) 138.58
Std. deviation (kg) 1.831
OFEs – 7560 7250

Table 11. Input data for the planar 47-bar truss problem

Material properties
Young’s modulus E = 30 Msi
Density ρ = 0.30 lb/in3

Allowable stress +20 ksi and –15 ksi for members in tension and compression, respectively.

Design variables

Sizing variables Ai=1, 2, …, 46, 47
Layout variables X2 = –X1, X4 = –X3, Y4 = Y3, X6 = –X5, Y6 = Y5, X8 = –X7, Y8 = Y7, X10 = –X9, Y10 = Y9, X12 = –X11, 

Y12 = Y11, X14 = –X13, Y14 = Y13, X20 = –X19, Y20 = Y19, X21 = –X18, Y21 = Y18

Discrete area set {0.1, 0.2, 0.3, . . ., 4.8, 4.9, 5.0} in2

Loading conditions

Load case Node numbers x y z
1 17 and 22 6.0 kips –14.0 kips 0
2 17 6.0 kips –14.0 kips 0
3 22 6.0 kips –14.0 kips 0

Constraints

Displacement 
Euler buckling 3.96EA/L2

Stress σe ≤ allowable stress
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lem becomes more complex, thereupon the probability of 
existing more local optimum points in the search space is 
raised, and consequently the standard division of current 
example is higher than prior example. Figure 13 shows 
the convergence history of the 39-bar truss structure for 
iPSO.

3.5. 47-bar planar truss structure 
The last test problem is devoted to investigate the sizing 
and layout optimization of the planar 47-bar truss struc-
ture shown in Figure 14. The necessary data to model 
this problem are specified in Table 11. The population 
size and limit number of iterations are set as 40 and 600, 
respectively. Considering the symmetric about the y-axis, 
members of the 47-bar truss are collected into 27 inde-
pendent groups as sizing variables in Table 12. Layout 
variables corresponding to the nodal coordinates are also 
presented in Table 11. Therefore, totally 44 design vari-
ables are taken into consideration during the optimization 
process of this test example. Furthermore, it can be seen 
from Table 11 that 47-bar truss structure is subject to the 
three independent loading conditions.

The optimum design found by iPSO is illustrated in 
Table 13 while for the sake of comparison the results ob-
tained in other studies using other methods are also in-
cluded. According to this table the present approach, iPSO, 
is competitive with all other results presented in Table 13 
in finding optimum solution. The best weight for this case 
is found at 501th iteration and any improvements are not 
occurred until the last iteration. The statistical information 
of 30 independent runs is also provided in Table 13. Stand-
ard deviation for Gholizadeh (2013) using sequential cel-
lular particle swarm optimization (SCPSO) and this study 
using iPSO are 34.755 and 20.782 lb, respectively. The 
standard deviation on the optimized weight of the iPSO is 
comparatively lower than other cited methods, so there is 

Fig. 13. Convergence history for the spatial 39-bar truss using 
iPSO

Table 12. Member grouping for the planar 47-bar truss problem

Group Member Group Member

1 1, 3 16 28
2 2, 4 17 29, 30
3 5, 6 18 31, 32
4 7 19 33
5 8, 9 20 34, 35
6 10 21 36, 37
7 11, 12 22 38
8 13, 14 23 39, 40
9 15, 16 24 41, 42
10 17, 18 25 43
11 19, 20 26 44, 45
12 21, 22 27 46, 47
13 23, 24
14 25, 26
15 27

Fig. 14. Schematic of the planar 47-bar truss structure
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Design variables Hasancebi and 
Erbatur (2001) iGA

Hasancebi and 
Erbatur (2002) SA

Gholizadeh (2013) This study 
iPSOPSO CPSO SCPSO

A1 2.5 2.5 2.8 2.6 2.5 2.5
A2 2.2 2.5 2.7 2.5 2.5 2.5
A3 0.7 0.8 0.8 0.7 0.8 0.8
A4 0.1 0.1 1.1 0.3 0.1 0.1
A5 1.3 0.7 0.8 1.2 0.7 0.7
A6 1.3 1.3 1.3 1.1 1.4 1.4
A7 1.8 1.8 1.8 1.6 1.7 1.7
A8 0.5 0.7 0.9 0.8 0.8 0.8
A9 0.8 0.9 1.2 1.1 0.9 0.9
A10 1.2 1.2 1.4 1.3 1.3 1.3
A11 0.4 0.4 0.3 0.3 0.3 0.3
A12 1.2 1.3 1.4 0.8 0.9 0.9
A13 0.9 0.9 1.1 1.0 1.0 1.0
A14 1.0 0.9 1.2 1.0 1.1 1.1
A15 3.6 0.7 1.6 0.9 5.0 0.9
A16 0.1 0.1 1.0 0.1 0.1 0.1
A17 2.4 2.5 2.8 2.7 2.5 2.5
A18 1.1 1.0 0.8 0.9 1.0 1.0
A19 0.1 0.1 0.1 0.1 0.1 0.1
A20 2.7 2.9 3.0 3.0 2.8 2.8
A21 0.8 0.8 0.9 1.0 0.9 0.9
A22 0.1 0.1 0.1 0.2 0.1 0.1
A23 2.8 3.0 3.3 3.3 3.0 3.0
A24 1.3 1.2 0.9 0.9 1.0 1.0
A25 0.2 0.1 0.1 0.1 0.1 0.1
A26 3.0 3.2 3.3 3.3 3.2 3.2
A27 1.2 1.1 1.2 1.1 1.2 1.2

Layout variables (in)
X2 114.0 104.0 98.8628 99.363 101.3393 101.2077
X4 97.0 87.0 78.6595 83.4439 85.9111 85.8555
Y4 125.0 128.0 146.7331 126.3845 135.9645 135.9679
X6 76.0 70.0 66.5231 69.5148 74.7969 74.9087
Y6 261.0 259.0 239.0901 218.2013 237.7447 238.0442
X8 69.0 62.0 55.6936 58.0004 64.3115 64.1206
Y8 316.0 326.0 327.7882 322.2272 321.3416 321.5037
X10 56.0 53.0 48.8641 51.4015 53.3345 53.3481
Y10 414.0 412.0 398.6775 401.5626 414.3025 413.7265
X12 50.0 47.0 43.14 46.8605 46.0277 46.2881
Y12 463.0 486.0 464.7831 458.3021 489.9216 487.9695
X14 54.0 45.0 37.8993 46.8885 41.8353 41.8603
Y14 524.0 504.0 511.045 527.8575 522.4161 522.8897
X20 1.0 2.0 18.2341 16.2354 1.0005 0.9892
Y20 587.0 584.0 594.071 610.8496 598.3905 598.3959
X21 99.0 89.0 90.9369 98.3239 97.8696 97.8656
Y21 631.0 637.0 621.3943 624.958 624.055 624.0605

Statistical results
Best weight (lb) 1925.79 1871.70 1975.84 1908.83 1864.10 1861.429
Worst weight (lb) 2007.563 1908.991
Mean weight (lb) 1894.056 1873.011
Std. deviation (lb) 34.755 20.782
OFEs 100000 N/A 25000 25000 25000 20040

Table 13. Comparison of the iPSO optimization results with the literature for the planar 47-bar truss problem
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relatively less dispersion in the obtained solutions. Consid-
ering the previous problems, this problem is a largescale 
optimization problem, and based on the numerical results 
reported in Table 13, it can be stated that the proposed 
iPSO algorithm can find the best optimal solution among 
the cited methods for the this problem. Figure 15 shows 
the optimal design found for this problem. Besides, Fig-
ure 16 demonstrates the convergence history of the 47-bar 
truss structure using iPSO. 

Discussion

In this study the concept of weighted particle is utilized for 
both position updating and constraints handling features 
of the proposed algorithm. The new approach is called 
improved Fly-back technique. In this recent approach 
the search space is divided into two different categories 
and so the problem domain is examined more accurately. 
Furthermore, by incorporating the weighted particle into 
constraints handling process the affirmative data stored in 
this particle is used to handle the constraints. Since the 
weighted particle is the weighted average of all particles 
on the swarm, sharing its components with the violated 
particles can improve the exploitation feature of the algo-
rithm. Especially, weighted particle lies closer, but not at 
same position, to the XG. On the other hand the weighted 
particle can share experience of all existing particles with 
the particle that violates the numeric boundary condition 
of the search space. This means all particles can interact 
with each other through the weighted particle. 

Improved Fly-back mechanism plays two important 
roles: first, it emphasizes the role of the weighted parti-
cle as the guidance point for other particles (i.e. enhanc-
ing the exploitation) and second, it gives an opportunity 
to access the components stored in the weighted particle 
(i.e. enhancing the exploration). In this respect, Figure 17 
compares the performance of the standard and improved 

Fig. 15. Optimal layout for the planar 47-bar truss problem

Fly-back methods on the optimization of 18-bar truss 
structure. As can be seen from this figure, the conver-
gence rate and final outcome of improved Fly-back tech-
nique are good than its old form. It is notable that, since 
the condition is qualitatively identical for all other exam-
ples, the diagram is plotted just for 18-bar truss problem 
to prevent any unnecessary congestion.

Conclusions 

Integrated particle swarm optimization (iPSO) improves 
the standard PSO’s search capability by implementing 
the concept of weighted particle and improved Fly-back 
approach. The enhancement is mostly in order to avoid-
ing the algorithm from premature convergence into lo-

Fig. 16. Convergence history for the planar 47-bar truss using 
iPSO

Fig. 17. Comparison between the standard and improved fly-
back mechanism on 18-bar truss problem
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cal optima(s). Furthermore, unlike the classical penalty 
function approach, the improved Fly-back strategy ena-
bles iPSO to consistently acquire feasible solutions with-
out any violations in the boundary conditions. The pro-
posed algorithm was tested on five well known weight 
minimization problems of truss structures. All of them 
include sizing and layout variables and the last one is 
the slightly higher scale problem consisting of totally 44 
sizing and layout variables. The statistical data for each 
example is provided and based on acquired outcomes the 
iPSO shows adequate robustness and the iPSO can be 
considered as an efficient algorithm for solving combined 
sizing/layout optimization problems of truss structures.
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