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Abstract. Reliable and efficient risk assessments are essential to deal effectively with potential risks in international con-
struction projects. However, most conventional risk modeling methods are based on the hypothesis that risk factors are 
independent, which does not account adequately for the causal relationships among risk factors. In this study, a risk assess-
ment model for international construction projects was developed to improve the efficacy of risk management by integrat-
ing fault tree analysis and fuzzy set theory with a Bayesian belief network. The risk rating of each risk factor, expressed as 
the product of risk occurrence probability and impact, was incorporated into the risk assessment model to evaluate degrees 
of risk. Therefore, risk factors were categorized into different risk levels taking into account their inherent causal relation-
ships, which allowed the identification of critical risk factors. The applicability of the fuzzy Bayesian belief network-based 
risk assessment model was verified using a case study through a comparative analysis with the results from a fuzzy syn-
thetic evaluation method. The comparison shows that the proposed risk assessment model is able to provide guidelines for 
an effective risk management process and ultimately to increase project performance in a complex environment such as 
international construction projects.

Keywords: international construction projects, risk assessment, causal relationships, fuzzy numbers, fuzzy Bayesian belief 
network, fault tree analysis, fuzzy synthetic evaluation.

Introduction

Rapid economic development and globalization have 
provided increasing opportunities for construction en-
terprises to expand their businesses to the international 
construction market (Bu-Qammaz et  al., 2009; Kuo & 
Lu, 2013; Liu et al., 2016). Compared with domestic con-
struction projects (DCPs), some major characteristics of 
international construction projects (ICPs) are as follows: 
larger contract amounts; longer return periods of invest-
ment; involvement of a higher number of contracting 
parties with diverging interests; and susceptibility to ex-
ternal environments (e.g., political, economic, social and 
cultural conditions). As well as different construction 
practices (Zhao et al., 2016) and inadequate skill and ex-
pertise (Liu et al., 2016) in ICP contractors, the implemen-
tation of ICPs generally has a higher risk exposure and 
greater challenges than DCPs. As a result, failure to deal 
with potential risks effectively in ICPs can increase the 
difficulties in achieving project objectives and often causes 

project delays, budget overruns and lower reputation for 
the construction company.

Risk management is a formal and fundamental process 
to improve project performance by mitigating or control-
ling the consequences of risks associated with project ob-
jectives, usually including risk identification, risk assess-
ment, and risk treatment as well as monitoring phases 
throughout a project life cycle (El-Sayegh, 2008; Islam 
et  al., 2017). Among these principal phases of the risk 
management process, risk identification and risk assess-
ment are the most essential components that enable deci-
sion makers to formulate appropriate risk treatment plans 
in advance and to take appropriate proactive measures. 
Thus, there is a strong need for a reliable and efficient risk 
assessment (RA) framework to facilitate the effectiveness 
of risk management in ICPs. Since risks in complex con-
struction projects such as ICPs are dynamic and interde-
pendent (Islam et al., 2017), an adequate RA framework 
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should account for the interrelationships among risk fac-
tors (RFs). Ignoring risk interdependencies can lead to in-
sufficient reflection of real risk conditions of construction 
projects and may cause less reliable outcomes of RAs for 
decision making (Liu et al., 2016).

A wide range of methods have been developed for 
RAs in construction projects. These methods generally 
include qualitative, quantitative, and semi-quantitative 
methods (Chien et al., 2014). Additionally, the degree of 
risk is usually evaluated according to several criteria, such 
as the probability of risk occurrence and the magnitude 
of risk impact on project objectives. There are many ex-
isting RA frameworks or models developed for construc-
tion projects using various methods, such as the analytical 
hierarchy process (AHP) method (Wang et al., 2016), the 
technique for order preference by similarity to ideal solu-
tion (TOPSIS) and complex proportional assessment (CO-
PRAS) (Zavadskas et al., 2010), step-wise weight assess-
ment ratio analysis (SWARA) and COPRAS-based analy-
sis (Valipour et al., 2017), a combination of failure mode 
and effect analysis (FMEA), fault trees, event trees and 
fuzzy logic (Abdelgawad & Fayek, 2012), fuzzy AHP and 
fuzzy TOPSIS-based analysis (Taylan et al., 2014), fuzzy 
synthetic evaluation (FSE)-based (Wu et  al., 2017; Xu 
et al., 2010; Zhao et al., 2016), and fuzzy decision making 
trial and evaluation laboratory (DEMATEL)-based (Seker 
& Zavadskas, 2017). However, these RA frameworks do 
not consider the causal relationships among RFs. Thus, 
in order to address this issue, some researchers have pro-
posed a few of methods that can analyze risk causal re-
lationships when develop RA frameworks for ICPs. For 
example, Bu-Qammaz et al. (2009) presented an RA mod-
el for ICPs by applying analytic network process (ANP) 
method that can handle the interrelationships among RFs. 
Yildiz et al. (2014) considered the causalities among RFs 
that may lead to cost overrun in ICPs and proposed a 
knowledge-based risk mapping tool for systematic assess-
ment of project vulnerabilities. Deng et al. (2014) investi-
gated ICPs vulnerability to political risks and uncovered 
the interrelationships among variables using exploratory 
factor analysis. Liu et  al. (2016) proposed a network of 
20 significant risk paths through the structural equation 
modeling (SEM) technique, aiming to examine risk effects 
on the objectives of ICPs from the perspective of Chinese 
contractors. In addition, Bayesian belief network (BBN)-
based methods have become increasingly popular with 
researches for use in risk management of offshore engi-
neering systems (John et al., 2016; Meng et al., 2019; Ren 
et  al., 2009), process systems (Guo et  al., 2019; Yazdi & 
Kabir, 2017; Zarei et al., 2019), supply chain (Ojha et al., 
2018; Qazi et al., 2018), and construction projects (Chen 
& Wang, 2017; Khanzadi et al., 2017; Leu & Chang, 2013; 
Wang & Chen, 2017; Zhang et al., 2014) because of their 
ability to model interdependencies among variables both 
qualitatively and quantitatively combined with the ability 
to incorporate knowledge representation and reasoning. 
In conventional BBN analysis, occurrence probabilities of 
root nodes are regarded as the crisp values. However, in 

construction engineering, it is difficult or nearly impos-
sible to obtain exact values of occurrence probabilities due 
to a lack of sufficient data (Zhang et al., 2014). Fuzzy set 
theory (FST) can solve such engineering problems under 
uncertainty using fuzzy numbers, so that the integration 
of FST and BBN may well provide a useful means of in-
corporating uncertain factors in probabilistic risk analysis.

Some research has been conducted to study RA in ICPs 
by investigating the inherent causal relationships among 
RFs, however the fuzzy Bayesian belief network (FBBN) 
method is seldom adopted in the risk management of 
ICPs. Therefore, the main objective of this research is to 
develop a comprehensive FBBN-based RA model for ICPs 
by considering inherent causal relationships among RFs, 
so as to facilitate more effective evaluation and control of 
project risks. The remainder of this paper is organized as 
follows: the research methodology is presented in Section 
1; Section 2 describes five major phases of the proposed 
FBBN-based RA model; Section 3 demonstrates the ap-
plication of the proposed RA model using a case study 
and compares its results with those obtained from an FSE 
method; the insights of the research findings are discussed 
in Section 4; and finally, the conclusion section highlights 
the contributions from this research, existing limitations, 
and research directions for future study.

1. Research methodology

This section focuses on an explanation of the methods of 
identifying causal relationships of RFs in ICPs, risk impact 
assessment methods, risk occurrence probability (OP) 
assessment methods, and risk ranking method, which 
constitutes the FBBN-based method to construct an RA 
model for ICPs. In addition, fuzzy synthetic evaluation 
(FSE) method is introduced as a technique to be used to 
conduct a comparative analysis with FBBN-based method 
in regard to RAs for ICPs.

1.1. Identifying causal relationships of RFs

After identifying potential RFs in ICPs based on a com-
prehensive literature review and expert interviews, a hi-
erarchical risk breakdown structure (HRBS) can be de-
veloped. Fault tree (FT) analysis and BBN, as root-cause 
analysis methods, are then used for further investigating 
causal relationships among the identified RFs. A causal 
relationship is also called a cause-effect relationship, de-
noting the relationship between a first event (the cause) 
and a second event (the effect), where the second event is 
a consequence of the first (Hu et al., 2013). A causal rela-
tionship is different from a correlation relationship which 
is bidirectional. The causal relationship can be represented 
in the form of “A influences or leads to B”. In reality, risks 
in ICPs are interrelated and have cause-effect relationships 
among them and therefore, the occurrence of one RF may 
lead to a chain reaction of occurrence of other RFs which 
may then exaggerate the impact of the first risk on project 
objectives through risk paths.
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1.1.1. FT analysis
The FT structure is a graphical deductive model including 
a series of basic events (BE) and intermediate events (IE) 
leading to the occurrence of a particular undesired event, 
i.e., a top event (TE) (Abdollahzadeh & Rastgoo, 2015), as 
illustrated in Figure 1(a). It is constructed in a top-down 
manner which starts with the upper events and proceeds 
to their causes until the basic failure components are 
reached; relationships among different elements are rep-
resented by logical AND/OR gates (Leu & Chang, 2013).

Conventional FT analysis method has the advantage 
of providing a good sketch of the root-causes of risks and 
analyzing defects or weaknesses of a system with impre-
cise information (Islam et al., 2017). However, it assumes 
that the state variables of events are binary and all events 
are statistically independent (Kabir et al., 2016). If mul-
tiple failures affect the components of a system and cause 
several different consequences, the state variables of events 
are not limited to a binary state (Weber et al., 2012), in 
which case the FT analysis method is inappropriate. In 
addition, the FT analysis method is limited in its ability 
to capture and demonstrate causal relationships among 
variables especially in complex projects.

1.1.2. BBN method
The BBN, also known as a Bayesian network or a causal 
network, is a probabilistic model that can visually present 
cause-effect relationships among a set of random variables 
in the form of a directed acyclic graph (Khodakarami & 
Abdi, 2014; Luu et al., 2009). Figure 1(b) shows a simple 
structure of a BBN. Nodes in the graph represent proba-
bilistic variables: the nodes without any parent node are 
called root nodes (RN) while the nodes without any child 
node are called leaf nodes (LN), and the nodes having 
both parent and child nodes are called intermediate nodes 
(IN). Edges in the graph, directed from a parent node to 
a child node, denote the interdependencies or causal rela-
tionships among variables. The intensity of interdepend-
encies can be quantified through conditional probability 
distributions associated with each node.

The BBN method can be suitable for risk analysis in 
large and complex risk networks, and when coping with 
risk-related problems, it is usually used in terms of a set 

of identified RFs (input variables) linked to potential fail-
ure events (the output variables) (Cárdenas et al., 2013). 
Unlike the FT analysis method, the BBN has the advan-
tage of modeling flexibility in involving various kinds of 
cause-effect interdependencies using probabilistic gates 
instead of merely deterministic AND/OR connections. 
However, it is usually difficult to establish causal relation-
ships among variables directly in a complex BBN. To solve 
this problem, several transformation processes from an FT 
structure to a BBN have been proposed, showing how the 
results obtained from the FT analysis can be further cast 
in the corresponding BBN (Kabir et al., 2016; Wilson & 
Huzurbazar, 2007). In this paper, FT analysis and BBN 
were therefore merged to determine causal relationships 
of RFs in ICPs.

1.2. Risk impact assessment methods

The unavailability of precise and numerical data is com-
mon in the RA of complex ICPs because of the uncertain-
ties involved. The FST, first introduced by Zadeh (1965), 
solves problems characterized by uncertainties due to 
the imprecision, vagueness and subjectivity of human 
thoughts. FST is a well-recognized decision support tool 
that can mathematically represent the vague data from 
experts’ judgments and can implement effective RA in a 
fuzzy environment (Islam et al., 2017). Therefore, FST is 
useful to be applied to the assessment of risk impact on 
ICP objectives, where fuzzy numbers and corresponding 
continuous membership functions can be developed to 
quantify linguistic variables from empirical judgments and 
the uncertainties involved (Cheng & Lu, 2015). A normal-
ized fuzzy number denoted as A  is in the form of a fuzzy 
set, and its membership function is expressed as ( )AF x



 
with an interval 0, 1    (Kuo & Lu, 2013). There are many 
different types of fuzzy numbers commonly used for con-
verting linguistic variables into quantitative forms, such as 
triangular, trapezoidal and Gaussian fuzzy numbers (John 
et al., 2014; Samantra et al., 2017). Considering the con-
ceptual and operational simplicity, trapezoidal fuzzy num-
bers are extensively adopted for modeling uncertainties 
and therefore are the most generic class of fuzzy numbers 
with linear membership functions (Kabir et al., 2016). As 
a result, normalized trapezoidal fuzzy numbers are used 
in this research related to fuzzy computing.

Figure 1. a) A simple structure of an FT; b) A simple structure of a BBN

a) b)
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A normalized trapezoidal fuzzy number can be param-
eterized by A a b c d  ( , , , )=  where a, b, c and d are real num-
bers (Figure 2), and its trapezoidal membership function 

AF x( )


 is given by Eqn (1):

A

x a a x b
b a

b x cF x x d c x d
c d

– ,       ,
–
1,           ,  ( ) – ,       ,
–
0,     otherwise.

 ≤ ≤
 ≤ ≤= 
 ≤ ≤





 

 (1)

Let A1
  and A2

  be two trapezoidal fuzzy numbers, 
namely A a b c d1 1 1 1 1  ( , , , )=  and A a b c d2 2 2 2 2  ( , , , )= . Based 
on Zadeh’s extension principle, the fuzzy-number arith-
metic operations between A1

  and A2
  are defined by a se-

ries of operational laws, including addition, subtraction, 
multiplication and division, as presented respectively from 
Eqns (2) to (5); while the scalar multiplication result of 
A  is defined by Eqn (6) (Andrić & Lu, 2016; Chen et al., 
2012).

A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2      ( , , , ) ( , , , )  (  ,  ,  ,  );⊕ = ⊕ = + + + + 

A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2      ( , , , ) ( , , , )  (  ,  ,  ,  );⊕ = ⊕ = + + + + 

 (2)

A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , ) ( , , , )  ( – , – , – , – );= =  
A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , ) ( , , , )  ( – , – , – , – );= =    (3)

A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , ) ( , , , )  (  ,  ,  ,  );⊗ ≈ ⊗ = × × × × 

A A a b c d a b c d a a b b c c d d1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , ) ( , , , )  (  ,  ,  ,  );⊗ ≈ ⊗ = × × × × 

 (4)

A A a b c d a b c d a d b c c b d a1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , )  ( , , , )  ( / , / , / , / );≈ =  

A A a b c d a b c d a d b c c b d a1 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 1 2     ( , , , )  ( , , , )  ( / , / , / , / );≈ =    (5)

k A k a b c d k a k b k c k d k       ( , , , )  (   ,   ,   ,   ),   if     0. ⊗ ≈ ⊗ = × × × × >

k A k a b c d k a k b k c k d k       ( , , , )  (   ,   ,   ,   ),   if     0. ⊗ ≈ ⊗ = × × × × >

 (6)

1.3. Risk OP assessment methods

1.3.1. FBBN
The FBBN method integrating the FST and BBN is pro-
posed for quantifying the probability of risk occurrence in 
ICPs. While conducting the RA process, BBN is a suitable 
tool which not only illustrates the causes influencing a giv-
en event directly, but also enables probabilistic inference 

within a model. In a BBN structure, prior and conditional 
probabilities of corresponding variables are required to 
run a BBN computation. The quantitative analysis of inter-
dependencies between variables relies on different states 
of parent nodes and a set of conditional probability tables 
(CPTs) assigned to each node. The CPTs contain condi-
tional probabilities with respect to all the combinations of 
values of certain node associated with their parent nodes. 
As for root nodes, their CPTs only contain the prior prob-
abilities (Bobbio et al., 2001).

Assuming xi is the set of parents of node yj in a BBN 
graph, then the CPT of yj is defined by j iP y x( |  ). Eqn (7) 
indicates the conditional independence (Li et al., 2012), 
and Eqn (8) shows the calculation of joint probability 
(Ren et al., 2009). The marginalization rule and Bayesian 
rule can be defined by Eqn (9) and Eqn (10), respectively 
(Kabir et al., 2016; Khodakarami & Abdi, 2014). Thus, an 
inference mechanism that permits both causal and diag-
nostic inference in the BBN can be conducted based on 
a Bayesian theorem to present the conditional probability 
dependencies among variables (Cárdenas et al., 2013).

n
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=
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(10)

where, P(X  = xi) represents the prior occurrence prob-
ability of xi before observing any relevant evidence; P(X = 
xi |Y  = yj) is the posterior occurrence probability of xi 
given that yj has occurred; P(Y = yj |X = xi) refers to the 
conditional occurrence probability of yj given that xi has 
occurred; and P(Y  = yj) represents the marginal occur-
rence probability of yj which can be viewed as a constant 
when evidence is found.

Using the BBN method in RA has the following prin-
cipal advantages: (1) BBNs have a higher efficiency and 
accuracy compared to stochastic Petri networks (Weber 
et  al., 2012) and artificial neural networks (Khodakara-
mi & Abdi, 2014) for coping with incomplete and small 
number of datasets, especially in integrating different 
sources of knowledge in one model; (2) BBNs can con-
duct inference inversely and perform probability updat-
ing of variables easily when new information becomes 
available, which is a unique feature compared with some 
traditional risk-based methods such as feed-forward-like 
approximate reasoning approaches (Ren et al., 2009); (3) 
BBNs can construct large and complex risk networks 
using an aggregation process to take sub-networks into 
previous hierarchy levels (Khakzad et al., 2011); and (4) 

Figure 2. The normalized trapezoidal fuzzy number 
A a b c d  ( , , , )=

0

1.0

F  (x)

a b c d x

A~
A~
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modifications to BBNs are isolated and the remainder of 
the network will not be affected when variables are added 
or removed (Luu et al., 2009). However, traditional BBN 
analysis only deals with crisp values of prior and condi-
tional probabilities as input parameters, which is a major 
limitation in risk OP assessment. By incorporating the 
FST into the traditional BBN analysis, the FBBN method 
is further able to conduct risk OP assessment with lin-
guistic variables and fuzzy numbers apart from expressing 
causal relationships among RFs and conducting inverse 
inference in a risk network (Zhang et al., 2016).

1.3.2. Defuzzification of fuzzy numbers in FBBN
The defuzzification of converting fuzzy numbers into their 
equivalent crisp values is required for the calculation of 
fuzzy Bayesian inference. Currently, several defuzzifica-
tion methods have been developed and used, such as mean 
of maxima (MOM), center of maxima (COM), centroid 
method and α-weighted valuation method (Kabir et al., 
2016; Kuo & Lu, 2013). The centroid method is efficient 
in minimizing information loss that leads to more reliable 
fuzzy Bayesian inference during a fuzzy-to-crisp transfor-
mation (Kabir et al., 2016), so it is adopted in this research 
for the defuzzification of fuzzy numbers in FBBN. Eqn 
(11) expresses the fuzzy-to-crisp transformation when 
a trapezoidal fuzzy number A a b c d  ( , , , )=  is defuzzified 
based on the centroid method (Ross, 2004), where D A( )  
is the equivalent crisp value of A . Therefore, using Bayes-
ian computation rules together with fuzzy-number arith-
metic operations and the centroid defuzzification method, 
FBBN-based inference can then be conducted to obtain 
both marginal and posterior OPs of RFs.

x F x dxD A
F x dx
   ( ) ( )    

 ( ) 
∫ ⋅

= =
∫


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a b c
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+ +
  (11)

1.4. Risk ranking method

During the decision making process in a fuzzy environ-
ment, ranking of fuzzy numbers is viewed as an essential 
aspect. Various ranking procedures have been proposed 
since the FST was first introduced, but some of them fail 
to discriminate fuzzy numbers and do not match with hu-
man intuition (Samantra et al., 2017). Rao and Shankar 
(2011) explored an improved ranking method using 
“circumcenter of centroids (CoC)” and verified its appli-
cability. This work thus uses the CoC method to obtain 
crisp values of risk ratings for evaluating the risk degree 
of each RF. For a normalized trapezoidal fuzzy number 
A a b c d  ( , , , )=  (Figure 2), the trapezoid figure of its mem-

bership function can be split into three parts: two triangles 
and a rectangle. The CoC of these three parts is considered 
as a reference point to rank normalized fuzzy numbers. 
Let AS x y0 0 ( , )



 be the circumcenter, and it is defined by 
Eqn (12). The ranking function of A  is then presented in 
Eqn (13), where R A( )  means the Euclidean distance be-
tween the AS x y0 0 ( , )



 and the origin of coordinates.

A
a b c d a b c d c bS x y0 0

  2   2   (2    – 3 )  (2    – 3 )  5 ( , ) , ; 
6 12

+ + + + × + + 
=  
 



A
a b c d a b c d c bS x y0 0

  2   2   (2    – 3 )  (2    – 3 )  5 ( , ) , ; 
6 12

+ + + + × + + =  
 



 
(12)

R A x y2 2
0 0 ( )    .= +   (13)

1.5. Comparing RA results of the FBBN-based 
method and the FSE method

To validate the effectiveness of the proposed FBBN-based 
RA method, the FSE method was used to conduct a com-
parative analysis. The FSE method is a comprehensive 
evaluation approach based on fuzzy mathematics. As an 
application of FST, FSE uses multiple criteria to evaluate 
an object relative to an objective in a fuzzy environment 
(Islam et al., 2017; Zhao et al., 2016), which can deal with 
complicated evaluations with multiple levels and attrib-
utes, and is able to represent empirical knowledge of prac-
titioners. Therefore, the FSE method is very practical for 
various types of non-deterministic problems (Wu et  al., 
2017) and has been widely adopted in construction man-
agement research particularly for the aspect of RAs. How-
ever, this method cannot manage the randomness and 
discreteness characteristics of project risks. In addition, 
it also fails to describe causal relationships of the risks at 
different hierarchy levels. Considering the wide use and 
availability of the FSE method in RAs, it was selected in 
this work to compare the results (e.g., risk ranking, critical 
RFs, and overall project risk rating) with those obtained 
from the FBBN-based method. The FSE method consists 
of three basic steps which are as follows:

Step 1. RAs of individual RFs
In this study, the OP and magnitude of impact (MI) of 
each individual RF (in the first level) were collected from 
a questionnaire survey, and then were represented with an 
11-point linguistic scale and a nine-point linguistic scale, 
respectively. Trapezoidal membership functions were used 
to denote the OP and MI of RF i. In order to rank risks 
based on the FSE method, the score of risk rating (Si) of 
RF i can be calculated using Eqn (14):

i i iS P I     ,= ×   (14)

where, Pi is the OP of RF i after defuzzification using Eqn 
(11); Ii is the MI of RF i after defuzzification using Eqn 
(11).

Step 2. RAs of risk groups
To calculate the OP, MI, and score of the risk rating of 
each risk group (in the second level), the weight of each 
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RF (in the first level) within each risk group should be 
first determined. The weights assigned to the OP and MI 
of RF i can be obtained based on Eqn (15) and Eqn (16), 
respectively:
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where k is the number of RFs within a risk group.
The membership functions for OP and MI of risk 

groups were obtained by calculating the fuzzy composi-
tion of the corresponding weight vector W and the evalu-
ation matrix M of RFs, i.e., D W M    = × . With the defuzzi-
fication results of both OP and MI, the score of risk rating 
for each risk group can be calculated based on Eqn (14).

Step 3. Evaluating overall project risk
Firstly, the weights assigned to the OP and MI of each risk 
group t (in the second level) can be calculated by Eqn (17) 
and Eqn (18), respectively:
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where q is the number of risk groups in the second level; 
k

i
i t

P
1=
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∑  denotes the sum of OP of k RFs under group t; 

and 
k
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 
∑  represents the sum of MI of k RFs under 

group t.

If the overall project risk is in the third level, its mem-
bership functions for OP and MI are obtained by calcu-
lating the fuzzy composition of the corresponding weight 
vector WG and the evaluation matrix MG of risk groups 
in the second level. Then, the score of overall project risk 
rating can be derived based on the rationale of Eqn (14). 
Similarly, if there are more levels of risk groups, their risk 
evaluation results can be determined in the same way.

2. The proposed FBBN-based RA model

This study aims to propose a systematic FBBN-based RA 
model in relation to ICPs for risk ratings and categoriza-
tion which can provide guidelines for decision making. 
Figure 3 demonstrates the phases of the proposed RA 
model, which is explained in detail in the remainder of 
this section.

2.1. RFs identification (P1)

This phase identifies potential RFs from the perspective 
of ICPs contractors, aiming to recognize and classify the 
RFs that are likely to affect successful completion of ICPs. 
A HRBS that classifies and organizes RFs explicitly can 
be constructed based on an extensive literature review 
and expert interviews. In the HRBS, a key problem (e.g., 
project failure) that needs to be solved is in the first level, 
which will then be decomposed into risk groups and more 
detailed RFs.

2.2. Identifying causal relationships of RFs (P2)

RFs usually interact with each other in complex ICPs, 
and this phase aims to explore causal relationships among 
identified RFs. Firstly, an FT structure can be set up in a 
top-down fashion based on the established HRBS and re-
viewed by domain experts through exploratory interviews. 
Other RFs and RFs’ interrelationships can be further add-
ed. The considered causal relationships only involve strong 

Figure 3. The FBBN-based RA model phases
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links among RFs. Furthermore, a BBN structure will be 
constructed based on the FT transformation for fully pre-
senting cause-effect relationships among identified RFs. 
The events and vertical links in an FT structure should be 
directly transformed into corresponding nodes and funda-
mental links of a BBN structure according to conversion 
algorithms (basic, intermediate and top events of an FT 
are mapped into root, intermediate and leaf nodes of a 
BBN, respectively). Further, overlapping nodes are com-
bined into one node, and supplementary links are inserted 
into the BBN structure according to experts’ opinions.

2.3. Risk OP and risk impact assessment (P3)

In this phase, RFs’ OPs and MIs on project objectives will 
be evaluated. To quantify experts’ linguistic variables on 
the OPs of RFs, the centroid method is used to convert 
the fuzzy prior and conditional occurrence probabilities of 
RFs into equivalent crisp values which will then be used 
to conduct Bayesian inference (causal and diagnostic in-
ference).

2.3.1. Assessment of experts’ linguistic opinions

Experts estimate RFs’ OPs and MIs in form of fuzzy lin-
guistic scales. When experts are making judgments based 
on their knowledge and experience, it is much easier for 
them to use qualitative descriptors than to provide crisp 
numerical values directly. The concept of linguistic vari-
ables is very useful in dealing with the situation that is too 
complex or too vague to be reasonably described in quan-
titative expressions, which allows for ambiguities, uncer-
tainties or incomplete information of experts’ judgments 
(John et al., 2014). Fuzzy linguistic scales can be designed 
with a set of linguistic variables, and each linguistic vari-
able is represented by a fuzzy number and a correspond-
ing fuzzy membership function that covers the universe of 
discourse (Samantra et al., 2017).

2.3.2. Determination of experts’ weights

This step evaluates and weights experts on their judg-
ments’ confidence to conduct fuzzy aggregation of their 
judgments, which can increase the reliability of data ac-
quired from questionnaire surveys. In most cases, experts 
may have different confidence levels with regard to their 
own judgments due to differences in their educational 
backgrounds, working experience and risk attitudes, re-
sulting in deviations among the judgments of different 
experts (Kabir et al., 2016). Zhang et al. (2014) proposed 
an expert confidence indicator (θ) to reveal the credibil-
ity of collected data based on two aspects, namely, expert 
ability (ζ) and expert subjectivity reliability (ψ). The value 
of ζ increases along with the accumulation of education-
al backgrounds and working experience of experts. The 
value of ψ towards individual judgments is evaluated ac-
cording to risk attitudes of different experts. In this study, 
the judgment weight of each expert (wt) is expressed in 
Eqn (19).

t t t
t

t t tt t
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1 1
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θ ζ ×ψ
w = = =

θ ζ ×ψ∑ ∑
   (19)

After the determination of experts’ weights, fuzzy ag-
gregation of individual judgments on OPs and MIs of RFs 
can be conducted respectively. Such an aggregation is a 
process in fuzzy logic, combining fuzzy numbers in or-
der to obtain an average preference fuzzy set (Andrić & 
Lu, 2016). The aggregated preference fuzzy set of each RF 
(i.e., weighted RF–WRF) can be computed as in Eqn (20), 
where RFi1, for example, denotes the individual judgments 
of the first expert on the OP or MI of the ith RF.

i i i iWRF RF RF RF1 1 2 2 3 3          .=w ⊗ ⊕ w ⊗ ⊕ w ⊗ ⊕  (20)

2.3.3. Determination of fuzzy CPTs using FBBN
The link between any two connecting nodes in a BBN 
structure is developed by means of a conditional probabil-
ity distribution. Before the determination of fuzzy CPTs, 
fuzzy prior and conditional probabilities of RFs should be 
estimated at first based on experts’ judgments.

Determining the fuzzy CPT for each RF (as a node in 
FBBN) is an important step towards quantitative analysis 
of OPs based on RFs’ causal relationships. The values of 
fuzzy CPTs (including fuzzy prior and conditional prob-
abilities of root and child nodes respectively) are assessed 
by experts using linguistic variables. Trapezoidal fuzzy 
numbers and membership functions are determined to 
describe these linguistic variables and then, experts’ judg-
ments can be subsequently aggregated into weighted val-
ues (i.e., WRF) by incorporating experts’ weights.

2.3.4. Calculation of OPs and MIs of RFs
In this step, the OPs of RFs are assessed by the FBBN-
based method, and the MIs of RFs are calculated by means 
of the FST. Through the Bayesian inference, different types 
of OPs (i.e., prior and marginal OP, posterior OP) can be 
calculated and the final results are in the form of crisp 
values. Causal inference aims to predict the OPs of child 
nodes with regard to the combinations of all their par-
ent nodes. The fuzzy CPTs are then converted into crisp 
values based on centroid defuzzification method, which 
are treated as evidence inputs of the causal inference. 
Thus, marginal OPs of intermediate and leaf nodes can be 
calculated using Bayesian Eqns (7)–(9). From the causal 
inference, OPs of RFs are predicted considering existing 
cause-effect relationships. However, the objective of the 
diagnostic inference of FBBN is to obtain the posterior 
OP of each node that can provide reliable references for 
fault diagnosis and to perform probability updating analy-
sis when new observations are added to certain nodes. In 
this paper, Eqns (7)–(10) are used to calculate posterior 
OPs of all RFs in the FBBN when a project failure occurs. 
The closer the posterior OP of a RF is to 1, the greater the 
contribution of the RF to overall project risk.

In terms of calculating each RF’s MI on project ob-
jectives, the experts’ judgments represented by linguistic 
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variables are transformed into trapezoidal fuzzy numbers 
according to a presumed fuzzy scale and then, a fuzzy 
aggregation of the judgments of all experts considering 
experts’ weights is conducted using Eqn (20). Therefore, 
an average preference fuzzy set (i.e., WRF) is obtained rep-
resenting the MI of each RF.

2.4. Risk rating (P4)

Risk rating is a process for assessing severities of unde-
sired events, which helps developing control and mitiga-
tion strategies for potential project risks. This phase rates 
RFs by multiplying their OPs and MIs (i.e., i i iR P I    = × ). 
Due to the application of FBBN to OP assessment of RFs, 
different types of risk ratings can be obtained. As a result, 
corresponding fuzzy risk ratings are calculated by mul-
tiplying the fuzzy MIs of RFs with different types of risk 
occurrence probabilities using Eqn (6). Finally, critical 
RFs having a significant effect on project objectives will 
be identified by prioritizing RFs based on crisp values of 
risk ratings which are calculated by the CoC method (Eqn 
(12) and Eqn (13)).

2.5. Risk categorization (P5)

This phase categorizes RFs based on the concept of risk 
matrix, in which the horizontal axis and vertical axis rep-
resent the OP and MI, respectively. The referential risk 
matrix can be constructed through the product of the lin-
guistic scale of OP and that of MI (Samantra et al., 2017). 
Every RF will be distributed in the referential risk matrix 
with a certain value of risk rating from the FBBN method, 
and different risk levels of the identified RFs will also be 
divided. On the basis of the results of risk categorization 
in terms of risk rating values, decision makers can propose 
appropriate risk control plans to maximize project success.

3. Case study 

In this section, a case study was used to demonstrate and 
verify the application of the proposed FBBN-based RA 
model for ICPs, where risk degrees of potential RFs con-
sidering causal relationships were assessed and critical RFs 
were therefore determined. In addition, the FSE method 
was also applied to the same case in order to compare the 
results with findings obtained from the FBBN-based RA 
model. 

The investigated ICP is a high-speed railway project 
in Turkey: the Ankara-Istanbul high-speed railway proj-
ect. This infrastructure project was commenced in 2008 
by a consortium of four companies (two from China and 
two local) through the EPC (Engineering, Procurement 
and Construction) agreement and it was into operation in 
2014. The total length of the railway is about 158 kilome-
ters. The project scope mainly includes railway beds and 
tracks, bridges, tunnels, electrification and communica-
tion engineering.

3.1. Applying the proposed FBBN-based  
RA model to an ICP

3.1.1. Identification of RFs and their causal 
relationships
A generic network structure of potential RFs for the inves-
tigated ICP was built from the perspective of contractors, 
presenting causal relationships among RFs at different 
hierarchy levels. Some important potential RFs were pre-
liminarily summarized according to a thorough literature 
review. Then, these identified RFs were organized hierar-
chically and a four-level HRBS (Appendix A, Figure A1) 
enabling detailed risk analysis was developed. The highest 
level of the HRBS, the “ICP failure”, was decomposed into 
“country risk”, “international market risk”, “project im-
plementation risk”, and “decision making behavior risk”. 
More detailed RFs were arranged under lower levels.

In order to develop a BBN structure illustrating causal 
relationships among RFs, an FT structure was constructed 
first as a transition. A group of domain experts (see in 
Table 1) were invited to take part in separately organized 
exploratory interviews and gave their opinions on the in-
terrelationships among RFs according to the established 
HRBS, which also led to the addition of 19 new RFs (i.e., 
R9, R19, R22, R23, R27, R29, R35, R36, and R38–R48) to the 
root-cause relationship of the “ICP failure”. All of these 
identified RFs for ICPs are expressed specifically in Table 2.  
Thus, an FT risk structure was developed after reaching a 
consensus among these experts. Only strong links among 
RFs were considered in the FT structure, while non-signif-
icant causal relationships were ignored. While developing 
the BBN risk structure, basic, intermediate and top events 
in the FT structure were mapped into root, intermediate 
and leaf nodes of a BBN structure accordingly; overlap-
ping nodes (e.g., R20 and R37) were combined into one 
node; and supplementary links between RFs were inserted 
into the BBN structure based on experts’ opinions. As an 
example, a directed link from “contract risk (I9)” to “con-
struction risk (I12)” in the BBN structure is added to show 
cause-effect relationship between these two RFs, namely, I9 
has an influence to I12. The BBN structure with 91 nodes 
and 111 links is illustrated in Figure 4. The probabilistic 
gates representing causal relationships in the BBN risk 
structure were calculated quantitatively in Section 3.1.2.

Table 1. A profile of selected experts in the decision  
making group

Abbreviation Position/Title Work experience  
in ICPs field (yrs.)

E1 Senior manager 24
E2 Project manager 21
E3 Academic expert 19
E4 Operation manager 17
E5 Estimating manager 13
E6 Senior design engineer 9
E7 Site engineer 8
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Table 2. The RFs of ICPs based on literature review and experts’ judgments

No. RF No. RF
L ICP failure R11 Changes in laws/regulations (Ls/Rs)
I1 Country risk R12 Inadequate legal framework
I2 International market risk R13 Unfair construction Ls/Rs
I3 Project implementation risk R14 Invalid construction Ls/Rs
I4 Political / government policy risk R15 Public protest / interference
I5 Legal risk R16 Language barrier
I6 Social risk R17 Differences in religious/cultural tradition
I7 Resource procurement risk R18 Public insecurity / crime problems
I8 Insufficient revenue R19 Resource demand changes
I9 Contract risk R20 Import-export restrictions
I10 Financing risk R21 Intense market competition of similar projects in host country
I11 Design risk R22 Unclear contract clauses and conditions
I12 Construction risk R23 Advantageous risk allocation to owner
I13 Operation risk R24 Delay in payment
I14 Decision making behavior risk R25 Excessive contract variation
I15 Macroeconomic risk R26 Delay in solving dispute problems
I16 Intervention of government R27 Insufficient financing capability
I17 Unstable political situation R28 Insufficient debt repayment capability
I18 Immature legal system R29 Unattractive financing to investors
I19 Labor/material/equipment (L/M/E) price fluctuation R30 High financing costs
I20 Unavailability of L/M/E R31 Designers’ inadequate capability
I21 Project demand changes in host country R32 Conflicting interfaces of work items
I22 Improper contract R33 Unclear specifications for design
I23 Difficulties in dispute resolution R34 Variations in design
I24 Unavailability of enough financing R35 Adverse relationships among project participants
I25 Inappropriate design R36 Unstable supply of L/M/E
I26 Managerial problems in construction R37 Insufficient experience / skill in construction works
I27 Technological problems in construction R38 Complexity in construction technologies
I28 Safety-related problems in construction R39 Lack of proper construction technologies
I29 Construction specification and standard problems R40 Insufficient protection of adjacent buildings and facilities
I30 Adverse site conditions R41 Incomplete safety and health regulations
I31 Operation cost overrun R42 Different construction standards and measurement system
I32 Maintenance problems R43 Unclear construction specifications
I33 Insufficient capability of decision makers (DMs) R44 Natural hazards
I34 Unreasonable rent-seeking behavior R45 Uncertainty in subsurface condition
I35 Irrational decision making behavior R46 Poor infrastructure on site
R1 Interest rate fluctuation R47 Higher maintenance costs than expected
R2 Exchange rate fluctuation R48 More frequent maintenance than expected
R3 High inflation R49 Insufficient capability in emergency response
R4 Corruption/bribery R50 Insufficient expertise knowledge of DMs
R5 Expropriation/nationalization of assets R51 Poor moral/psychological quality of DMs
R6 Bureaucracy R52 DMs’ improper behavior of pursuing political interests
R7 Protectionism R53 DMs’ improper behavior of pursuing economic benefits
R8 Strong political opposition R54 Information asymmetry
R9 Revolutions/wars/riots R55 Unreasonable decision making methods
R10 Poor international relationships / /
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3.1.2. Risk OP and risk impact assessment
A questionnaire survey for the collection of risk data (e.g., 
CPTs of potential RFs for OP assessment, and the mag-
nitudes of risk impacts for impact assessment) was con-
ducted. Appendix B shows a sample questionnaire. All the 
distributed questionnaires were retrieved from the experts 
who ensured that valid and high-quality data were provid-
ed within their knowledge and experience. The results of 
returned questionnaires were then compiled for analysis.

Normalized trapezoidal fuzzy numbers and corre-
sponding membership functions were used to represent 
different linguistic variables of experts’ judgments from 
the questionnaire. OPs of RFs were quantified by an 
11-point fuzzy linguistic scale, as described in Figure 5(a),  

and a nine-point fuzzy linguistic scale illustrated in Figure 
5(b) was developed to assess the MIs of RFs. Addition-
ally, experts’ weights towards each RF were carried out 
using Eqn (19). Relevant information of expert ability 
(ζ) and expert subjectivity reliability (ψ) for each expert 
were obtained from the questionnaire survey (Section 1 
and Section 3 in Appendix B, respectively). The value of 
ζ is divided into four levels with scores of “1.0, 0.9, 0.8, 
and 0.7”, meaning experts’ working experience: 20, 10–20, 
5–10, and less than 5 years, respectively. The value of ψ is 
classified into five levels with scores of “1.0, 0.9, 0.8, 0.7 
and 0.6”, respectively, and the higher the score, the more 
reliable the expert judgment.

Figure 5. a) The 11-point linguistic scale and corresponding fuzzy membership functions for assessing occurrence probabilities (OPs) of 
RFs; b) The nine-point linguistic scale and corresponding fuzzy membership functions for assessing magnitudes of impact (MIs) of RFs
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Figure 4. A BBN structure of the identified RFs for ICPs (with 91 nodes and 111 links)
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Each node in the BBN structure has two states: “Yes” 
and “No”, reflecting whether the RF represented by the 
node will take place or not. To determine fuzzy CPTs of 
the FBBN, fuzzy prior probabilities of root nodes and 
fuzzy conditional probabilities of child nodes were ob-
tained based on experts’ judgments and then formulated 
using the 11-point fuzzy linguistic scale. In order to as-
sess OPs of RFs for this ICP, crisp values of fuzzy CPTs 
were treated as the evidence inputs for Bayesian inference 
in FBBN. Marginal OPs of intermediate and leaf nodes 
were computed by Eqns (7)–(9) in the process of causal 
inference. When supposing the ICP failure occurred, the 
diagnostic inference then reasoned out to what extent the 
ICP failure was caused by other RFs. The posterior OPs 

of root and intermediate nodes conditioned to the ICP 
failure were computed by Eqn (10). Netica, a powerful 
and easy-to-use software package was used to implement 
Bayesian inference in FBBN analysis. The results of OPs of 
some example RFs from Bayesian inference are explained 
in Table 3. To verify the effectiveness of the established 
FBBN model, four hypothetical scenarios on ten nodes 
were analyzed. Table 4 shows when the number of nodes 
in unfavorable state increased, the marginal OP of the 
“ICP failure (L)” grew accordingly. Obviously, the results 
of these four scenarios fit with the logic of general infer-
ence and can validate the feasibility of the FBBN model 
applied to risk OP assessment.

Table 3. FBBN-based RA results of the nodes (i.e., leaf, intermediate and root nodes) in the risk network for the Ankara-Istanbul 
high-speed railway project (samples)

Node
Occurrence probabilities Magnitude of 

impact
Fuzzy risk ratings Crisp risk ratings

Prior/ Marginal Posterior Prior/Marginal Posterior Prior/Marginal Posterior

L 0.65727 1.00000 (0.7610, 0.8360, 
0.8860, 0.9610)

(0.5002, 0.5495, 
0.5824, 0.6317)

(0.7610, 0.8360, 
0.8860, 0.9610) 0.70086 0.95331

I3 0.67449 0.72029 (0.7166, 0.7916, 
0.8416, 0.9166)

(0.4833, 0.5339, 
0.5676, 0.6182)

(0.5162, 0.5702, 
0.6062, 0.6602) 0.68858 0.71857

I29 0.67881 0.67896 (0.7017, 0.7767, 
0.8267, 0.9017)

(0.4763, 0.5272, 
0.5612, 0.6121)

(0.4764, 0.5273, 
0.5613, 0.6122) 0.68328 0.68338

I22 0.71448 0.71500 (0.6546, 0.7296, 
0.7796, 0.8547)

(0.4677, 0.5213, 
0.5570, 0.6106)

(0.4681, 0.5217, 
0.5574, 0.6111) 0.67908 0.67938

I9 0.69832 0.70084 (0.6328, 0.7078, 
0.7578, 0.8328)

(0.4419, 0.4943, 
0.5292, 0.5816)

(0.4435, 0.4961, 
0.5311, 0.5837) 0.65762 0.65904

I11 0.69975 0.70276 (0.6285, 0.7035, 
0.7535, 0.8286)

(0.4398, 0.4923, 
0.5273, 0.5798)

(0.4417, 0.4944, 
0.5296, 0.5823) 0.65609 0.65778

R42 0.80140 0.80144 (0.6998, 0.7748, 
0.8248, 0.8997)

(0.5608, 0.6209, 
0.6610, 0.7210)

(0.5608, 0.6209, 
0.6610, 0.7211) 0.76185 0.76187

R34 0.78775 0.78807 (0.6439, 0.7189, 
0.7689, 0.8439)

(0.5072, 0.5663, 
0.6057, 0.6648)

(0.5074, 0.5665, 
0.6060, 0.6651) 0.71636 0.71655

R16 0.80664 0.80688 (0.6015, 0.6764, 
0.7264, 0.8014)

(0.4852, 0.5456, 
0.5860, 0.6464)

(0.4853, 0.5458, 
0.5861, 0.6466) 0.69979 0.69992

R54 0.66500 0.66627 (0.7300, 0.8050, 
0.8550, 0.9300)

(0.4855, 0.5353, 
0.5686, 0.6185)

(0.4864, 0.5363, 
0.5697, 0.6196) 0.68957 0.69041

R22 0.71695 0.71704 (0.6102, 0.6852, 
0.7352, 0.8102)

(0.4375, 0.4912, 
0.5271, 0.5809)

(0.4375, 0.4913, 
0.5271, 0.5809) 0.65548 0.65553

R25 0.60170 0.60176 (0.7439, 0.8189, 
0.8689, 0.9439)

(0.4476, 0.4927, 
0.5228, 0.5679)

(0.4476, 0.4928, 
0.5228, 0.5680) 0.65511 0.65515

Table 4. The results of four hypothetical scenarios of the FBBN-based RA model for the Ankara-Istanbul high-speed railway project

Node Scenario 1 Scenario 2 Scenario 3 Scenario 4
I2 No Yes Yes Yes
I11 No No Yes Yes
I12 No Yes Yes Yes
I17 No No No Yes
I22 No No No Yes
I24 No No Yes Yes
I35 No Yes Yes Yes
R2 No No No Yes
R17 No No No Yes
R51 No No No Yes
L P(L = Yes) = 0.56748 P(L = Yes) = 0.67818 P(L = Yes) = 0.68664 P(L = Yes) = 0.69533
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The MI regarding each RF on project success was eval-
uated by the selected seven experts in light of the nine-
point fuzzy linguistic scale. Afterwards, aggregated fuzzy 
impact preference of each RF was obtained by Eqn (20). 
The MIs of some example RFs are also presented in Table 3.

3.1.3. Risk rating
Different types of fuzzy risk ratings of all identified RFs 
were calculated by multiplying crisp values of OPs with 
fuzzy values of MIs. To compare risk ratings more directly, 
the CoC method expressed in Eqn (12) and Eqn (13) was 
employed for obtaining equivalent crisp values of risk rat-
ings. The risk rating results of some samples are shown in 
Table 3.

3.1.4. Risk categorization
A six-level referential risk matrix was developed to catego-
rize the identified RFs and to map the different risk levels 
to which they belonged, where 0.96028 was the highest 
possible value of the risk rating and 0.41667 was the low-
est. In Table 5, RFs of the ICP were categorized into four 
risk levels (Categories 2–5) within corresponding sub-
ranges of risk ratings from the FBBN method. Category 
5 represents the highest risk level and Category 0 is the 
lowest risk level.

In addition, some rational risk response strategies 
directing at each risk level were formulated, which can 
provide a general action plan to cope with the identified 
RFs more effectively. For RFs in Category 0, particu-
lar risk response actions are not required but these RFs 
should be placed on a risk list in order to be tracked. For 
RFs in Category 1, general risk control measures should 
be defined and implemented within a reasonable time-
frame (2–4 weeks) to minimize risks within acceptable 
ranges, and these RFs should be monitored and reviewed 
monthly. For RFs in Category 2, timely investigation is 
required and particular risk control measures should be 

determined and implemented within a week. The RFs 
need to be monitored and reviewed frequently. For RFs 
in Category 3, timely investigation is necessary and more 
detailed risk control measures should be designed and 
implemented within a week. These RFs need to be moni-
tored and reviewed continuously. For RFs in Category 
4, immediate investigation is needed and more detailed 
risk control measures should be determined and imple-
mented quickly (within one or two days). The RFs should 
be monitored and reviewed continuously, and risk control 
measures can be revised according to real-time risk status. 
For RFs in Category 5, immediate investigation is essen-
tial and proper documentation that specifies current risk 
status should be immediately reported to the project deci-
sion team. More specific risk control measures need to be 
implemented immediately. The RFs should be monitored 
and reviewed all the time, and risk control measures are 
supposed to be revised in a timely manner based on cur-
rent risk status.

3.2. RA results of an ICP using the FSE method

In the FSE method analysis, the RFs of ICPs in Table 2 
were divided into four levels based on the HRBS (Ap-
pendix A, Figure A1). The fourth level was defined as the 
overall project risk; the second and third level were risk 
groups which were similar to the structure of the HRBS; 
the first level included individual detailed RFs, and com-
pared with the lowest level of the HRBS, 19 RFs were 
added (i.e., R9 was under the risk group of “political/gov-
ernment policy risk”, R19 was under “resource procure-
ment risk”, R22 and R23 were in the risk group of “contract 
risk”, R27 and R29 were under “financing risk”, R35, R36, and 
R38–R46 were in the risk group of “construction risk”, and 
R47 and R48 were under “operation risk”). The trapezoi-
dal membership functions of an 11-point linguistic scale 
(Figure 5a) and a nine-point linguistic scale (Figure 5b) 
were used to evaluate the OP and MI of risks, respectively.  

Table 5. Risk categorization for the Ankara-Istanbul high-speed railway project based on FBBN-based RA model

Risk level
RFs

Causal inference Diagnostic inference
Category 5 (Risk rating:
0.70929–0.96028) R34, R42 R34, R42; I3, L

Category 4 (Risk rating:
0.54975–0.70928)

R41, R7, R2, R11, R23, R6, R33, R13, R20, R45, R25, R22, 
R54, R16; I26, I2, I24, I8, I25, I5, I4, I30, I28, I10, I16, I14, 
I7, I1, I12, I35, I11, I9, I22, I29, I3, L

R41, R7, R2, R11, R23, R6, R33, R13, R20, R45, R25, R22, 
R54, R16; I26, I24, I2, I25, I8, I5, I4, I30, I28, I10, I16, I7, 
I14, I12, I1, I11, I9, I35, I22, I29

Category 3 (Risk rating:
0.46600–0.54974)

R53, R9, R39, R35, R4, R36, R19, R21, R52, R5, R15, R30, 
R28, R12, R43, R55, R26, R51, R17, R14, R27, R38, R18, 
R37, R3; I19, I27, I32, I13, I15, I34, I18, I21, I17, I23, I31, 
I33, I6, I20

R53, R9, R39, R35, R4, R36, R19, R21, R52, R5, R15, R30, 
R28, R12, R43, R55, R26, R51, R17, R14, R27, R38, R18, 
R37, R3; I19, I27, I32, I13, I15, I34, I18, I21, I17, I23, I31, 
I33, I20, I6

Category 2 (Risk rating:
0.42399–0.46599)

R48, R31, R10, R47, R8, R1, R40, R44, R50, R29, R24, R46, 
R49, R32

R48, R31, R10, R47, R8, R1, R40, R44, R50, R29, R24, 
R46, R49, R32

Category 1 (Risk rating:
0.41708–0.42398) Not identified Not identified

Category 0 (Risk rating:
0.00000–0.41707) Not identified Not identified
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The data needed for the application of the FSE method 
(i.e., OP and MI membership functions of RFs in the first 
level) are also available from the previous questionnaire 
survey. The values of OP and MI of risks were calculated 
based on the defuzzification of their membership func-
tions using Eq. (11).

Firstly, the RA of RFs in the first level were calculated. 
For example, the OP membership function of “interest rate 
fluctuation (R1)” was (0.5682, 0.6432, 0.6932, 0.7682), and 
its MI membership function was (0.1676, 0.2426, 0.2926, 
0.3676). Based on the Eqn (11), the value of OP and MI 
for R1 were obtained, which were 0.66817 and 0.26762, 
respectively. Then, the risk rating score of R1 was derived 
based on Eqn (14):

S P I1 1 1       0.66817  0.26762   0.42287.= × = × ≈

The top ten RFs in the first level in terms of risk rat-
ing scores – that is, the critical RFs – are listed in Table 6.

Then, to assess each risk group in the second level, the 
OP and MI weights of each RF in the first level within each 
risk group were calculated using Eqn (15) and Eqn (16),  
respectively. For example, the weight assigned to the OP 
of R1 which was one of the three RFs (k = 3) within the 
risk group “macroeconomic risk (I15)” was obtained using 
Eqn (15):
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∑ Taking the risk group I15 for example, its OP member-
ship function P

GD 1  was obtained as follows:
P P P
GD W M1 11       (0.348 0.373 0.279) = × = ×

0.5682 0.6432 0.6932 0.7682
0.6162 0.6912    0.7412 0.8162
0.4365 0.5115 0.5615 0.6365

 
  =  
 
(0.5494 0.6244    0.6744 0.7494),  

where PW1  is the OP weight matrix related to the risk 
group I15, consisting of the OP weights of the three RFs 

within this group; and PM1  is the OP membership function 
matrix, consisting of the OP membership functions of the 
three RFs within this group.

Similarly, the MI membership function and risk rating 
score of risk group I15 were also calculated. The RA re-
sults of risk groups in the second level (i.e., I4–I13, I15, and 
I33–I35) are shown in Table 7. In addition, the OP and MI 
weights of these risk groups are also presented in Table 7. 
For example, the weights assigned to the OP and MI of I15 
(which was one of the four risk groups (q = 4) within the 
group “country risk (I1)” in the third level) were obtained 
using Eqn (17) and Eqn (18), respectively:
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∑ Furthermore, the RA results of risk groups in the third 
level (i.e., I1–I3, and I14) and the overall project risk (i.e., 
L) in the fourth level were obtained by running the similar 
calculation process, as shown in Table 8. Finally, the score 
of risk rating of the overall project risk is calculated as 
0.59500 based on the FSE method.

A six-level referential risk matrix was also developed 
to categorize RFs, risk groups, and overall project risk into 
different risk levels, where 0.86850 was the highest pos-
sible value of the referential risk rating while 0.00350 was 
the lowest. As shown in Table 9, the overall project risk, 
most RFs, and all risk groups are located in Category 4 
using FSE method.

3.3. Results analyses

The RA results from the FBBN-based method in Table 3  
and Table 5 show that the crisp marginal risk rating of 
the leaf node “ICP failure (L)” after the causal infer-
ence was 0.70086, located in the risk level of Category 4.  

Table 6. RA results of top ten RFs in the first level for the Ankara-Istanbul high-speed railway project

Node
Occurrence probability Magnitude of impact

Risk rating Rank
Membership function Value Membership function Value

R42 (0.7014, 0.7764, 0.8264, 0.9014) 0.80140 (0.6998, 0.7748, 0.8248, 0.8997) 0.79976 0.80058 1
R34 (0.6877, 0.7627, 0.8128, 0.8878) 0.78775 (0.6439, 0.7189, 0.7689, 0.8439) 0.74391 0.76552 2
R16 (0.7113, 0.7862, 0.8329, 0.8981) 0.80664 (0.6015, 0.6764, 0.7264, 0.8014) 0.70143 0.75220 3
R54 (0.5650, 0.6400, 0.6900, 0.7650) 0.66500 (0.7300, 0.8050, 0.8550, 0.9300) 0.83000 0.74293 4
R22 (0.6170, 0.6920, 0.7420, 0.8170) 0.71695 (0.6102, 0.6852, 0.7352, 0.8102) 0.71017 0.71355 5
R25 (0.5017, 0.5767, 0.6267, 0.7017) 0.6017 0 (0.7439, 0.8189, 0.8689, 0.9439) 0.84386 0.71257 6
R45 (0.6047, 0.6797, 0.7297, 0.8047) 0.70471 (0.6129, 0.6879, 0.7379, 0.8129) 0.71290 0.70879 7
I29 (0.5008, 0.5758, 0.6258, 0.7008) 0.60084 (0.7017, 0.7767, 0.8267, 0.9017) 0.80167 0.69403 8
I17 (0.5214, 0.5964, 0.6460, 0.7199) 0.62088 (0.6569, 0.7319, 0.7819, 0.8569) 0.75687 0.68551 9
I25 (0.5037, 0.5787, 0.6287, 0.7037) 0.60369 (0.6720, 0.7470, 0.7970, 0.8720) 0.77204 0.68269 10
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From the perspective of root nodes, “different construc-
tion standards and measurement system (R42)”, “variations 
in design (R34)”, “language barrier (R16)”, “information 
asymmetry (R54)”, “unclear contract clauses and condi-
tions (R22)” and “excessive contract variation (R25)” pos-
sessed relatively high risk ratings both related to causal 
inference and diagnostic inference, while the interme-
diate nodes such as “project implementation risk (I3)”, 

“construction specification and standard problems (I29)”, 
“improper contract (I22)”, “contract risk (I9)” and “design 
risk (I11)” weighed more heavily in the risk rating calcu-
lation. Such RFs with high values of risk ratings should 
be viewed as critical and treated particularly. While in 
the results obtained from FSE method (Tables 6–9), the 
top ten critical RFs were R42, R34, R16, R54, R22, R25, “un-
certainty in subsurface condition (R45)”, I29, “unstable 

Table 7. RA results of risk groups in the second level for the Ankara-Istanbul high-speed railway project

Node
Occurrence probability Magnitude of impact Risk 

rating Rank
Membership function Value Weight Membership function Value Weight

I15 (0.5494, 0.6244, 0.6744, 0.7494) 0.64940 0.268 (0.4364, 0.5114, 0.5614, 0.6364) 0.53640 0.215 0.59020 8
I4 (0.4000, 0.4746, 0.5244, 0.5993) 0.49959 0.206 (0.6248, 0.6998, 0.7498, 0.8248) 0.72480 0.291 0.60175 6
I5 (0.4729, 0.5479, 0.5975, 0.6715) 0.57240 0.236 (0.5325, 0.6075, 0.6576, 0.7326) 0.63255 0.254 0.60172 7
I6 (0.6070, 0.6820, 0.7310, 0.8029) 0.70557 0.291 (0.4987, 0.5737, 0.6237, 0.6987) 0.59870 0.240 0.64994 3
I7 (0.5181, 0.5931, 0.6431, 0.7181) 0.61810 0.569 (0.4280, 0.5029, 0.5528, 0.6277) 0.52785 0.463 0.57120 9
I8 (0.3678, 0.4428, 0.4928, 0.5678) 0.46780 0.431 (0.5114, 0.5864, 0.6364, 0.7114) 0.61140 0.537 0.53480 11
I9 (0.5414, 0.6164, 0.6664, 0.7414) 0.64140 0.233 (0.5515, 0.6265, 0.6765, 0.7515) 0.65150 0.201 0.64643 4
I10 (0.3749, 0.4499, 0.5000, 0.5751) 0.47498 0.173 (0.5368, 0.6118, 0.6618, 0.7368) 0.63680 0.196 0.54997 10
I11 (0.4801, 0.5551, 0.6052, 0.6802) 0.58015 0.211 (0.6421, 0.7170, 0.7670, 0.8419) 0.74200 0.229 0.65610 1
I12 (0.4936, 0.5686, 0.6187, 0.6938) 0.59368 0.216 (0.5401, 0.6149, 0.6647, 0.7395) 0.63980 0.197 0.61631 5
I13 (0.3582, 0.4333, 0.4833, 0.5584) 0.45830 0.167 (0.4753, 0.5503, 0.6003, 0.6753) 0.57530 0.177 0.51348 12
I33 (0.2275, 0.3025, 0.3525, 0.4275) 0.32750 0.236 (0.6325, 0.7075, 0.7576, 0.8326) 0.73255 0.377 0.48981 13
I34 (0.3751, 0.4501, 0.5001, 0.5751) 0.47510 0.342 (0.3803, 0.4553, 0.5053, 0.5803) 0.48030 0.247 0.47769 14
I35 (0.4855, 0.5605, 0.6105, 0.6855) 0.58550 0.422 (0.6279, 0.7029, 0.7529, 0.8279) 0.72790 0.375 0.65283 2

 Table 8. RA results of risk groups in the third level and the overall project risk for the Ankara-Istanbul high-speed railway project

Node
Occurrence probability Magnitude of impact Risk 

rating Rank
Membership function Value Weight Membership function Value Weight

I1 (0.5179, 0.5929, 0.6425, 0.7164) 0.61737 0.279 (0.5306, 0.6056, 0.6556, 0.7306) 0.63060 0.250 0.62395 1
I2 (0.4533, 0.5283, 0.5783, 0.6533) 0.55330 0.250 (0.4728, 0.5477, 0.5977, 0.6726) 0.57270 0.227 0.56292 4
I3 (0.4587, 0.5338, 0.5838, 0.6589) 0.55880 0.252 (0.5536, 0.6286, 0.6785, 0.7535) 0.65355 0.259 0.60432 2
I14 (0.3869, 0.4619, 0.5119, 0.5869) 0.48690 0.220 (0.5678, 0.6428, 0.6928, 0.7677) 0.66777 0.265 0.57021 3
L (0.4585, 0.5336, 0.5836, 0.6584) 0.55851 / (0.5338, 0.6089, 0.6589, 0.7339) 0.63387 / 0.59500 /

Table 9. Risk categorization for the Ankara-Istanbul high-speed railway project based on FSE method

Risk level RFs
Category 5 (Risk rating:
0.67551–0.86850)

I22, I25, I17, I29, R45, R25, R22, R54, R16, R34, R42

Category 4 (Risk rating:
0.45001–0.67550)

R49, R32, R53, R9, R39, R35, R4, I19, R36, R21, R19, R5, R52, R15, R30, I27, R28, R12, R43, R55, R26, R51, I23, I20, 
R17, R14, I18, R27, R38, R18, I32, I21, R37, R3, R41, I31, R7, I26, R2, I30, R11, I24, R23, R6, I16, I28, R33, R13, R20; 
I34, I33, I13, I8, I10, I7, I15, I5, I4, I12, I9, I6, I35, I11; I2, I14, I3, I1; L

Category 3 (Risk rating:
0.21001–0.45000)

R48, R31, R10, R47, R8, R40, R1, R44, R50, R29, R46, R24

Category 2 (Risk rating:
0.08001–0.21000) Not identified

Category 1 (Risk rating:
0.02101–0.08000) Not identified

Category 0 (Risk rating:
0.00000–0.02100) Not identified
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political situation (I17)”, and “inappropriate design 
(I25)”, where the top seven RFs were the same with root 
node RFs from the FBBN-based method. I11, “irrational 
decision making behavior (I35)”, and “social risk (I6)” were 
top three critical risk groups in the second level; and the 
rank of risk groups in the third level from the highest 
risk rating score to the lowest was: “country risk (I1)”, I3, 
“decision making behavior risk (I14)”, and “international 
market risk (I2)”. Compared with the risk ratings of the 
overall project risk L, the result from FBBN-based method 
(i.e., 0.70086) was higher than that based on FSE method 
(i.e., 0.59500), which can demonstrate that causal relation-
ships among RFs would amplify the project risk degree. 
From the comparative analysis between the FBBN-based 
method and the FSE method, the FBBN-based approach 
proved to be effective in RA of an ICP. In addition, from 
the distribution of RFs in risk matrix, it is more appropri-
ate in categorizing RFs into different risk levels compared 
with the FSE method. 

When compared with the real risk situations of the in-
vestigated project, many RFs during the implementation 
of the project were present and mostly complied with the 
critical RFs that were summarized from the proposed 
FBBN-based RA model. Among the detailed RFs that 
occurred, variation in design was one of the most seri-
ous problems due to the project owner’s multiple require-
ments and inaccurate geological prospecting documents. 
Contractors had a higher pressure to master the required 
standards and specifications of the implementation pro-
cess of the project. Contract risk, including unclear con-
tract clauses and excessive contract variations, caused dif-
ficulties in coordination among project participants. Apart 
from that, language barrier and information asymmetry 
also raised challenges to achieve project objectives suc-
cessfully. Given the above analyses, the proposed FBBN-
based RA model for ICPs manifests its reasonability and 
effectiveness to be applied in practice.

4. Discussion

The unique contribution of this study is the establishment 
of an effective FBBN-based RA model for ICPs. In this 
model, the risk rating regarding each RF can be evaluated 
based on OP and MI assessment, where the CoC method 
is applied to perform risk ranking. The proposed FBBN-
based RA model is able to capture the uncertainties in-
volved, and more importantly, is able to handle complex 
causal relationships among RFs and assess the real-time 
risk status of projects. Risk levels of certain RFs may vary 
at various stages throughout a project life cycle (Xu et al., 
2010), however, based on the proposed FBBN-based RA 
model, critical RFs with high risk ratings can be identified 
by Bayesian inference (i.e., causal inference and diagnostic 
inference) before the very first stage of a project, and the 
risk rating corresponding to each RF can be updated when 
new risk information is available. Compared with the ex-

isting proven FSE method, the FBBN-based approach is 
potentially efficient and reliable in modeling interdepend-
ent risks and updating probabilistic information (Islam 
et al., 2017).

In general, risk rating and risk categorization obtained 
from the FBBN-based RA model can provide useful risk 
management guidelines for decision makers. In the study 
of Qazi and Dikmen (2019), they have substantiated the 
importance of utilizing an interdependency-based risk 
management process. The introduction of the developed 
FBBN-based RA model would be helpful to refine the ex-
isting RA systems of construction projects. Specifically, 
when conducting causal inference, the results of risk rat-
ing and categorization of identified RFs can indicate sig-
nificant RFs that have a strong influence on the success of 
construction projects. Risk rating and risk categorization 
from the diagnostic inference, on the other hand, are able 
to prioritize potential RFs based on new observations, 
which helps decision makers manage the RFs with high 
risk levels before or during the project implementation 
process. The FBBN-based RA model also has the ability to 
analyze updated risk ratings of intermediate or leaf nodes 
through causal inference if the evidences of other nodes 
are observed; and inversely, if a certain node is assigned 
with new observations, those nodes with high risk ratings 
leading to the given node can be identified by diagnostic 
inference. Moreover, fundamental causes of an undesired 
event can be distinguished directly in light of the root 
nodes in a BBN structure. Zhang et al. (2014) also veri-
fied that the FBBN method can substitute the posteriors 
for priors repetitively in a failure re-analysis considering 
risk causal relationships when a new set of failure-related 
information is observed. This substitution not only con-
tinuously reduces data uncertainty, but it also provides 
accident scenarios with real-time and up-to-date analysis.

The proposed FBBN-based RA model also has some 
limitations. For one thing, its application mainly relies 
on the knowledge of experts, especially in the process of 
constructing causal relationships among RFs as well as 
in the determination of CPTs and MIs towards RFs. The 
information provided by experts’ judgments may affect 
the quality of RAs. To increase the reliability of the risk 
data collected from experts’ judgments, experts’ weights 
are emphasized in the proposed RA model. Some suitable 
uncertainty measurement methods, such as Spearman 
correlation coefficient analysis and Pearson correlation co-
efficient analysis (Islam et al., 2017), can be also applied to 
reduce discrepancies in experts’ judgments, which will be 
addressed in a follow-up study. For another, risk control 
measures will be further extended to formulate more spe-
cific risk treatment strategies towards individual RF. Nev-
ertheless, the established FBBN-based RA model is effec-
tive and has potential in practical usage for ICPs and even 
other types of construction projects with minor changes 
given its capabilities of handling uncertainties, presenting 
risk causal relationships and updating risk ratings.
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Conclusions

Conducting comprehensive and effective RAs for ICPs is 
pivotal to the risk management process and to provide de-
cision makers with guidelines for mitigating and control-
ling critical RFs proactively. RFs in complex construction 
projects are potentially interrelated, which is often ignored 
or ineffectively addressed in most previous studies on RA 
for ICPs. Additionally, the implementation of ICPs is a 
dynamic process and therefore, an RA framework that is 
capable of updating to the new information is required, 
whereas few studies attempted to address this issue. As a 
result, this research has developed a comprehensive RA 
model for ICPs from the perspective of contractors using 
a FBBN-based method.

In this study, the proposed methodology combines FT 
analysis, BBN and FST into an integrated FBBN approach 
that makes it possible to incorporate RFs’ causal relation-
ships and uncertainties in an RA model. The MI assess-
ment of RFs is included in the FBBN-based RA model 
other than the OP assessment, which helps to evaluate risk 
ratings in a systematic manner. The proposed FBBN-based 
method is able to perform pre-accident and post-accident 
analysis quantitatively by means of causal and diagnostic 
inference techniques, respectively. A six-level risk matrix 
is also inserted into the model to categorize RFs more ex-
plicitly. The critical RFs and overall project risk level can 
be determined for helping risk response. In addition, sus-
pected RFs can be detected in real time when an accident 
occurs, assisting project risk managers to carry out fault 
diagnosis. The Ankara-Istanbul high-speed railway project 
is used as a case study to demonstrate the application of 
the proposed RA model, and through the comparison of 
results from the FSE method, it reveals the importance of 
exploring the underlying mechanism of a risk interdepen-
dency modeling process and verifies the feasibility of the 
FBBN-based RA model in practice use. 

There are a few limitations of the work presented in 
this paper. The RF list may not be always valid throughout 
the life cycle of ICPs since risks tend to change during the 
implementation of a project. One limitation of this paper 
is the assumption that the identified RF list is static at the 
start of the ICP. A dynamic Bayesian network approach 
has a capacity to model the evolution over time of the 
probabilistic interdependencies within a complex system. 
It uses the preciously accumulated information for the 
present reasoning process in present conditions, while a 
BBN approach lacks such ability and only depends on the 
present states of RFs. Therefore, future research can fur-
ther study the dynamic nature of ICP risks over the proj-
ect’s life cycle using regularly updated RF list and a fuzzy 
dynamic Bayesian network method. Risks in ICPs could 
also be modeled using other features of risk apart from 
risk OP and MI, including risk detectability and project 
mitigation capacity, to quantify the project risk level.

In conclusion, this study confirms that the established 
FBBN-based RA model can be used as a flexible decision 
support tool for decision makers to manage critical RFs 

and develop effective risk treatment measures. This model 
can also be applied, after minor modification, to the RA 
of more specific construction work items or other types 
of projects in different engineering areas. It is anticipated 
that this research will contribute to the development of 
RA methods and promote the capacity of existing RA sys-
tems for ICPs.
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APPENDIX B

Sample questionnaires for the case study.

Dear Expert,
We are conducting a questionnaire survey to assess the risk factors of an international construction project, 

namely, the Ankara-Istanbul high-speed railway project (the second phase). We focus on two aspects: (1) the oc-
currence probabilities of risk factors, and (2) the impacts of risk factors influencing the project performance. The 
questionnaire includes three major sections and is estimated to be completed in around 1.5 hours. The results of 
this questionnaire survey will only be used for our academic work. Your warm participation will provide enor-
mous help for achieving the objectives of our research work. We sincerely appreciate your valuable time for this 
questionnaire survey and we ensure that your personal information will be kept strictly confidential.

Section 1. Personal Information

Name: ................................................................................................................................

Phone number: ................................................................................................................

E-mail: ..............................................................................................................................

Position/Title: .................................................................................................................. 

Years of work experience in international 
construction projects: .....................................................................................................

Section 2. Occurrence Probability Assessment of Risk Factors

The occurrence probability assessment of risk factors in this questionnaire survey involves two contents: (1) prior occur-
rence probability assessment, and (2) conditional occurrence probability assessment. Table B1 gives the linguistic scale 
for assessing occurrence probabilities of risk factors.

Table B1. The 11-point linguistic scale for assessing occurrence probability of each risk factor.

Occurrence probability Description
Impossible (I) Events never occur
Nearly Impossible (NI) Events are extremely impossible to occur
Very Unlikely (VU) Events are highly unlikely to occur
Unlikely (U) Events are unlikely but possible to occur
Slightly Unlikely (SU) The occurrence likelihood of possible events is between unlikely and even chance
Even Chance (EC) The occurrence likelihood of possible events is even chance (i.e., events are likely to occur on rare occasions)
Slightly Likely (SL) The occurrence likelihood of possible events is between even chance and likely
Likely (L) Events are likely to occur
Very Likely (VL) Events are highly likely to occur
Nearly Certain (NC) Events will always occur
Certain (C) Events are expected to occur with absolute certainty

(1) Please tick [√] in any rating that you consider appropriate for each of the following risk factors (R1–R55) with respect 
to its prior occurrence probability. (Sample questionnaires)

No. Risk factor
Prior occurrence probability of risk factor

I NI VU U SU EC SL L VL NC C
R1 Interest rate fluctuation
R2 Exchange rate fluctuation
R3 High inflation
… …
R55 Unreasonable decision making methods
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(2) Please tick [√] in any rating that you consider appropriate for each risk factor (I1– I35 and L) with respect to its con-
ditional occurrence probability (“Yes” means that the risk factor will occur during the project implementation, while 
“No” means that the risk factor will not occur). (Sample questionnaires)

Interest rate 
fluctuation (R1)

Exchange rate 
fluctuation (R2)

High inflation 
(R3)

Conditional occurrence probability of “Macroeconomic risk (I15)”

I NI VU U SU EC SL L VL NC C

Yes
Yes

Yes
No

No
Yes
No

No
Yes

Yes
No

No
Yes
No

Section 3. Impact Assessment of Risk Factors and Evaluation of Expert Subjectivity Reliability

Table B2 gives the linguistic scale for assessing magnitudes of impact of risk factors. The evaluation of the indicator “Ex-
pert subjectivity reliability” aims to obtain the reliability level towards your judgments for each risk factor (both on the 
aspects of occurrence probability and impact). The degree of “Expert subjectivity reliability” is classified into five levels 
with scores of 1.0, 0.9, 0.8, 0.7 and 0.6, respectively, and the higher the score, the more reliable the expert judgments.

Table B2. The nine-point linguistic scale for assessing magnitudes of impact of each risk factor

Magnitude of impact Description 
Absolutely Low (AL) Impacts on project performance can be nearly ignored
Very Low (VL) Potential for causing slight impacts on project performance
Low (L) Potential for causing minor impacts on project performance
Fairly Low (FL) Potential for causing fairly low impacts on project performance
Medium (M) Potential for causing moderate impacts on project performance
Fairly High (FH) Potential for causing fairly high impacts on project performance
High (H) Potential for causing substantial impacts on project performance
Very High (VH) Potential for causing critical impacts on project performance
Absolutely High (AH) Impacts on project performance are catastrophic

Please tick [√] in any rating that you consider appropriate for each of the following risk factors (R1–R55, I1– I35 and 
L) in terms of its impact on the project performance and expert subjectivity reliability. (Sample questionnaires)

No. Risk factor
Impact of risk factor Expert subjectivity reliability

AL VL L FL M FH H VH AH 0.6 0.7 0.8 0.9 1.0
R1 Interest rate fluctuation
R2 Exchange rate fluctuation
… …

R55
Unreasonable decision making 
methods

I1 Country risk
I2 International market risk
… …
I35 Irrational decision making behavior

L International construction project 
failure

The questionnaire survey is finished. Thanks a lot for your cooperation!


