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Abstract. Digital documentation for heritage buildings is one of the methods of preserving them as it provides a current 
record for the buildings. Digital records of heritage buildings can be used for future building rehabilitation, or be presented 
to the public to raise the awareness, increase tourism and decrease vandalism. This paper focuses on scanning object geom-
etry factor to increase the quality of heritage’s façade point cloud. It optimizes the scanner locations and the scanner field 
of view to increase the point cloud quality and shorten the scanning time while guaranteeing a set of quality constraints for 
the point cloud. The quality constraints are based on the incidence angle between the scanned surface and the laser beam, 
and the max spacing between points. Three different multi-objective optimization algorithms are utilized: 1) genetic algo-
rithm, 2) Jaya algorithm, and 3) particle swarm optimization to increase the quality. Optimization performance measures 
are adopted to compare the outputs of the optimization algorithms. A multi-criteria decision-making technique (Weighed 
sum model) is used to choose the optimum solution between the Pareto frontier solutions. Optimization algorithms mini-
mize point cloud density and scanning time while assuring a required point spacing and max incidence angle by changing 
distance between laser scanner and scanned Facade, horizontal and vertical scan repetitions, and scanner different resolu-
tions. The Jaya algorithm generates the most diversifiable optimal solutions and it is the fastest of the three algorithms con-
sidered. This research focuses on vertical building façade and future research will include the all types of Heritage façade. 
Omar Tosson Palace in Egypt is considered as a case study to demonstrate the use of the developed methodology and to 
illustrate its essential features.
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Introduction 

Cultural heritage buildings represent a country’s identity 
and history. Egyptian heritage buildings can be catego-
rized, according to their age, as Pharaonic, Greek and Ro-
manian Buildings, Christian buildings, as well as Islamic 
buildings. Heritage buildings are susceptible to high levels 
of deterioration, hence should be continuously maintained 
and restored. Deterioration in Egyptian heritage buildings 
is mainly attributed to three main factors: 1) human factors 
such as accidents, fires, ignorance, negligence, theft, and 
vandalism, 2) natural factors including erosion, forces of 
nature, climate changes, underground water, and 3) lifes-
pan factor since most of the heritage buildings were built 
long time in the past. The initial step of maintaining and 
restoring a heritage building is to document the current 
state of these buildings. Terrestrial Laser Scanning (TLS) 
is an advanced digital technique that improves the accura-
cy and the precision of capturing and recording Heritage 

buildings. In order to construct a full 3D point cloud data 
of a heritage building with a laser scanner, multiple scans 
from different locations and orientations are required. 
This is to overcome occlusions, scan range and scan view 
limits. The set of scanning positions, orientations, and 
scanning parameters must be carefully configured so that 
the point cloud and the 3D model can be reasonably re-
constructed with a minimal number of scans and superior 
quality. The use of TLS for heritage documentation has be-
come increasingly popular. Terrestrial laser scanners have 
been used for documenting large historic monuments or 
sites, such as the project on Forum of Pompeii (Balzani 
et al., 2004), Great Buddha projects (Ikeuchi et al., 2007), 
Romanian Heritage Monuments (Calin et al., 2015), and 
Nasif Historical House in Jeddah (Baik, 2017).

Sánchez-Aparicio et  al. (2018) studied preservation 
of heritage sites by combining TLS data and radiometric. 
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They developed a method capable of determining chemi-
cal, biological and physical damages in historical masonry 
constructions. They validated their study by choosing the 
Fortress of Almeida, in Portugal as a case study. Antón 
et  al. (2018) assessed the accuracy of 3D modeling for 
historical building information models created by point 
cloud data and BIM tools. They identified a three stage 
semi-automatic process to generate Heritage building in-
formation modelling (HBIM) using point cloud and BIM 
tools. Shanoer and Abed (2018) studied the registration 
of point clouds for documenting cultural heritage build-
ings. Two registration methods were compared in order 
to evaluate TLS outputs for documenting cultural heri-
tage. The accuracy of documentation was assessed based 
on combining TLS outputs and processing elapse time 
factor. Shao et al. (2019) automated registration of point 
clouds resulting from structured light scanner and TLS for 
documentation of heritage. TLS was bundled with photo-
grammetry for better visualization as reported in litera-
ture (Alshawabkeh & Haala, 2004; Cabrelles et al., 2009; 
El-Hakim et  al., 2004; Grussenmeyer et  al., 2008; Guidi 
et al., 2009; Remondino, 2011; Yastikli, 2007). Moreover, 
TLS has been bundled up with Virtual Reality to better vi-
sualize heritage (Fernández-Palacios et al., 2017; Tan et al., 
2016; Basantes et al., 2017; Tschirschwitz et al., 2019; Forte 
et al., 2004; Kersten et al., 2017, 2018a, 2018b).

This paper sheds light on scan geometry factors, aim-
ing at enhancing the point cloud quality resulting from 
scanning heritage buildings. TLS is used as a heritage re-
cording tool to capture the geometric characteristics of a 
heritage building as precisely as possible. A methodology 
is introduced here for optimizing the Terrestrial Laser 
scanner positions as well as the scanner field of view in 
order to improve the point cloud quality while reducing 
scanning, and fulfill quality constraints with respect to 
point cloud such as allowable incidence angle, minimum/
maximum scan range, and the field of view. These quality 
constraints depend on the incidence angle between the 
scanned surface normal and the laser beam, as well as the 
maximum spacing between points. The paper proposes a 
new technique for planning TLS for heritage facades that 
specifies the optimal locations of the scanner. It calculates 
the minimum number of scanner positions and identify 
their relative locations in order to minimize scanning 
time and point density while ensuring the satisfaction of a 
group of quality constraints for the point cloud. The qual-
ity restrictions are: maximum incidence angle between 
the façade surface normal and the laser beam, and max 
point spacing. Three separate multi-objective optimization 
algorithms were utilized: 1) genetic algorithm, 2) Jaya al-
gorithm, and 3) particle swarm optimization to increase 
the quality. Optimization performance measures are used 
to compare the outputs of the optimization algorithms. A 
weighed sum model is used as the decision-making tech-
nique to choose the optimum solution between the Pareto 
frontier solutions. The Tosson Palace in Egypt is used as a 
case study to demonstrate the use of the developed meth-
odology and to illustrate its essential features.

1. Literature review

A key factor in scanning heritage is knowing the point 
density and measurement accuracy necessary to gener-
ate the level of deliverable data for the project at hand 
(Barber et al., 2003). Scanner specifications as well as the 
scanning configuration and conditions are key attributes 
of measurement accuracy. Soudarissanane et  al. (2009) 
classified the factors affecting data accuracy as follows: 
instrument mechanism, atmospheric conditions, object 
surface properties, and scanning geometry. Scanning ob-
ject geometry depends on the position and orientation of 
the required scanned surface with reference to the TLS 
position. The position of the TLS specifies the range, in-
cidence angle, and the point density of the produced laser 
points. The main aim is to develop a high-quality point 
cloud with a minimum scanning time. The point cloud 
quality depends mainly on the positions of the scanner 
relative to the scanned surface. There are several factors 
affecting that, some of them are beyond the operator con-
trol such as the characteristics of the scanner, the envi-
ronmental conditions during the scanning or the surface 
materials (Soudarissanane et al., 2009; Lee et al., 2010). On 
the other hand, there are other factors affecting the point 
cloud quality that are within the control of the operator, 
such as the position of the scanner relative to the scanned 
surface or the point density (Soudarissanane et al., 2009). 
Soudarissanane and Lindenbergh (2011) performed a 
study to determine optimum scan locations of a TLS in 
a simulated scene. They defined the minimum number of 
views that achieve full coverage with good data quality 
and smaller propagation errors. Kersten et al. (2009) in-
vestigated the accuracy behavior of the 3rd generations of 
terrestrial laser scanning systems. They utilized different 
tests for geometric accuracy of different terrestrial laser 
scanning systems such as: 3D accuracy field test, distance 
measurements test, inclination compensation test, and in-
cidence angle influence on laser beam test. Tang and Alas-
wad (2012) investigated the issue of finding optimal scan 
positions in as-built documentation of buildings. They 
suggested an optimization method that guarantees that all 
information is gathered with the required level of detail. 
For this method to work, the authors established a model 
that creates relationships between some parameters related 
to data quality (e.g. accuracy and point cloud density), and 
others related to the method of data collection (e.g. height 
or distance of the scanner). Similarly, Song et al. (2014) 
proposed a laser scanning methodology of scanning 
building façades aimed at minimizing the number of scans 
while achieving a specific level of detail. They proposed a 
model to produce spherical spaces that are feasible to al-
low capturing features with the required detail level. These 
spaces are characterized by internal parameters such as 
scanner resolution, as well as external parameters such as 
scanning positions or the shapes of the features. To be able 
to reduce the time needed to cover all potential spaces for 
all features, they grouped related features into clusters. The 
results are then represented on a heat map that illustrates 
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the number of features captured from candidate scanning 
positions for a given level of detail. Zhang et  al. (2016) 
conducted TLS in dynamic construction site environ-
ments to achieve the required data quality. They proposed 
a “divide-and-conquer” strategy by producing graphs with 
nodes constituting the quality requirements (e.g., accuracy 
and level of detail) linked by edges that highlight the spa-
tial relationships between the nodes. The conclusion was 
that their approach improved the work done by experi-
enced professionals in TLS. In a related context, in their 
research efforts Kriegel et al. (2015) and Blaer and Allen 
(2009) designed iterative methods to calculate the next-
best-scans, taking into consideration the model quality 
generated from a TLS located on a self-directed robot. 
Giussani and Scaioni (2004) developed techniques for 
planning TLS on specific environments such as cultural 
heritage. Ahn and Wohn (2015) proposed a way to find 
proper scanner configurations taking into consideration 
many constraints such as angle of incidence, full coverage, 
sufficient overlap, and scan range limit. Similarly, point 
density of the scanned surface is often considered a meas-
urement quality indicator. A minimum density (minimum 
distance between consecutive points at a certain distance 
from the sensor) is usually selected beforehand. Cabo 
et  al. (2017) devised a new technique for planning TLS 
measurements that determines the best locations of the 
scanner for scanning heritage facades.

Previous research investigated the quality of point 
cloud based on incidence angle, and distance on 2D dis-
cretized map of the scene and they did not study the effect 
of the height of the building. Neither did they use optimi-
zations algorithms such as genetics algorithm, or particle 
swarm to provide optimal viewpoints. This research sup-
plied a new method to determine the best positions of 
the scanner to scan a heritage façade with high quality. It 
achieved high point cloud data quality based on incidence 
angle, and max spacing between points constraints, while 
achieving minimum point density, and scanning time by 
using different optimization techniques. 

2. Optimization algorithms 

2.1. Optimization of genetic algorithms 

Genetic algorithms (GA) are evolutionary algorithms, es-
tablished in 1975 by John Holland (Matthias et al., 2013). 
It is comprised of two key processes. First one is the pro-
cess of selecting individuals to produce next generation. 
The second process is manipulating the chosen individuals 
to procedure the following generation by crossover and 
mutation. The selection approach determines the choice 
of the chromosomes used in reproduction and the num-
ber of off springs that are produced. The superior indi-
vidual has a better chance of being a parent. The initial 
stage is to create random solutions called chromosomes. 
At each stage, a new population is formed and is called 
“generation”. Chromosomes are made of genes that carry 
a group of values to the optimization variables. The second 

stage is calculating the “fitness function” for each popula-
tion’s chromosome. The fitness function helps in the as-
sessment of distinct chromosomes. The third stage is the 
chromosomes selection. There are different strategies of 
chromosomes selection: the roulette wheel selection, the 
rank selection, the steady-state selection, the elitism, the 
Boltzmann selection, and the tournament selection strat-
egy. The aforementioned selection controls the creation of 
the new chromosomes. The fourth stage is performing the 
crossover to create a new child from the two chromosomes 
or individuals. The different types of crossover include sin-
gle-point, two-point, or uniform crossover. Single-point 
crossover is the most popular type. A random single point 
is chosen from one parent to be exchanged to the other 
parent. The fifth stage is performing the mutation process. 
A mutation gene is randomly selected and mutated by a 
small amount, or replaced by a new amount. The purpose 
of mutation is to ensure genetic diversity within the popu-
lation, and to avoid the stagnation around local minimal. 
Finally, a population is produced for each generation and 
previous procedures carry on for a specified number of 
iterations. Optimum solution is the chromosomes in the 
final iteration. 

Non-dominated Sorting Genetic Algorithm II (NSGA-
II) is used in this paper to determine the optimal solution. 
It is a multi-objective genetic algorithm, proposed by Deb 
et al. (2002). In addition to the previous illustrated genetic 
operators two specialized operators in NSGA-II is utilized:

 – Non-dominated sorting: the population is organized 
and divided into fronts (F1, F2, etc.), where F1 (first 
front) represents the approximated Pareto front. Sort-
ing the population into several ranks (fronts) is based 
on the concept of dominance as per the following: a 
solution (a) is considered dominant over the other 
solution (b) provided that solution (a) is not worse 
than solution (b) in respect to all the objectives, and 
solution (a) is considerably better than solution (b) 
in one objective at least. In the case that any of the 
two conditions are not met, then solution (a) does 
not dominate solution (b).

 – Crowding distance:  it is a factor that given to every 
solution in the population in order to measure the 
density of solutions around a particular solution i. 
Therefore, the average distance between two solu-
tions adjacent to solution i are estimated for all M 
objectives.

These ranking mechanisms are used, to create the pop-
ulation of next generation. A MATLAB code was written 
using MATLAB (2018) in order to develop the multi-
objective Non-dominated Sorting Genetic Algorithm II 
optimization. 

2.2. Quasi-oppositional Jaya algorithm

Multi-objective quasi-oppositional Jaya MOQO-Jaya al-
gorithm is developed to solve the multi-objective opti-
mization problems (Rao et  al., 2017). The MOQO-Jaya 
algorithm is an updated version of MO-Jaya algorithm. 
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The concept of opposition-based learning is used, to ex-
pand the population and enhance the convergence rate of 
MOQO-Jaya algorithm. In order to accomplish better ap-
proximation, another population opposed to the current 
one is created according to Eqn (1):

( )= + *new old oldn round n r n ,                                (1)

where r is a random value in the interval [−0.5, 0.5]. The 
population size can increase or decrease as a result of the 
positive or negative random value of r. In MOQO-Jaya al-
gorithm the solutions are updated similar to the developed 
Jaya algorithm based on Eqn (2):

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )+ = + − − −1, , , , , ,1 , , , ,  , ,2 , , , , ,      A i j k A i j k r i j A i j b A i j k r i j A i j w A i j k

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )+ = + − − −1, , , , , ,1 , , , ,  , ,2 , , , , ,      A i j k A i j k r i j A i j b A i j k r i j A i j w A i j k
            

(2)

where b and w represent best and worst solutions index for 
the current created population. r(i, j, 1) and r(i, j, 2) are 
random numbers between [0, 1]. These random numbers 
are used for scaling and guaranteeing good diversification. 
i, j, k represent the number of iterations, number of vari-
ables and number of candidate solutions, respectively. A(I, 
j, k) represents the j variable of k candidate solution in the 
iteration i. Nonetheless, in order to solve multiple objec-
tives problems efficiently the MOQO-Jaya algorithm is as-
sociated with non-dominated sorting methodology as well 
as crowding distance computation mechanism. To solve 
single-objective optimization, it is quite simple to deter-
mine which solution is better from the objective function 

value. However, in the case of multiple conflicting objec-
tives, it’s difficult to distinguish between the worst and best 
solutions from a group of solutions (see Figure 1). 

In the MOQO-Jaya algorithm, selecting the worst and 
best solutions is done by comparing the ranks given to all 
solutions according to the crowding distance value, con-
straints-dominance concept, and non-dominance concept. 
As a start, an initial random population is formed. After-
wards, a quasi-opposite population is produced which is 
combined with the initial population. The resulted new 
population is sorted and ranked by applying the non-
dominance concept and computing the crowding distance 
for every solution. Following this, the P best solutions are 
chosen from the combined population according to the 
rank and crowding distance. Furthermore, the solutions 
are updated according to Eqn (14) of the Jaya algorithm. 
To do this, the worst and best solutions need to be identi-
fied. The highest ranked solution (rank = 1) is chosen as 
the best solution. Conversely, the lowest rank solution is 
chosen as the worst one. In the case of having two so-
lutions or more with the same rank, the solution of the 
highest crowding distance value is selected as the best 
solution. After updating all solutions, the new solutions 
are combined with the initial population. Afterwards, 
these solutions are sorted and ranked again by applying 
the non-dominance concept and computing the crowding 
distance value for each solution. A number P of best solu-
tions are then selected according to the new rankings and 
crowding distance values. The superior solutions are se-
lected based on the corresponding non-dominance ranks 
and the crowding distance values.

2.3. Particle swarm optimization 

Particle swarm optimization (PSO) is a heuristic popula-
tion-based search algorithm that was first established in 
1995 by Eberhart and Kennedy. PSO simulates the bird’s 
social behavior when flocking to the preferred place. PSO 
starts by forming a population called “swarm” which is 
comprised of individuals or “particles” where each par-
ticle flies according to its own as well as its companions’ 
flying experience. Each particle is a possible solution in 
a multi-dimensional space. The status of each particle is 
determined by its velocity and position and they’re both 
updated with every repetition (Zhang & Li, 2010). PSO 
produce a population of solutions called “particles”. Up-
dating particles is done through exchanging information 
between them. Each particle flies in the multi-dimensional 
space towards its personal best “pbest” flying experience, 
as well as the best experience available in the whole swarm 
(global best) “gbest”. During optimization, the position 
and the velocity are updated for each particle in the popu-
lation using Eqns (3) and (4), respectively:

( ) ( ) ( ) ( )( ) ( ) ( )( )+ = × + × × − + × × −1 1 2 2t 1  ;i i i i i iv w v t c r pbest t x t C r gbest t x t

( ) ( ) ( ) ( )( ) ( ) ( )( )+ = × + × × − + × × −1 1 2 2t 1  ;i i i i i iv w v t c r pbest t x t C r gbest t x t
                       

(3)

( ) ( ) ( )+ = + +1 t 1 .i i ix t x t v  (4)Figure 1. Flowchart of MOQO-Jaya algorithm
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In these equations xi (t + 1) is the updated particle i 
position. xi(t) represents the particle i current position. 
vi(t  +1) represents the updated particle i velocity. vi(t) 
represents the particle i current velocity. r1 and r2 are uni-
formly random distributed numbers between [0, 1] that 
represent a potential way to find better solutions towards 
the direction of the personal best, and the global best. c1 
and c2 are constants that are normally assumed and deal 
with social parameters, and the cognitive learning that 
govern the effects of global and personal guides. w is the 
inertia weight which controls the balance between the per-
sonal, and the global experiences. It ranges between 0.3, 
and 0.7 and usually recommended to initially have a large 
inertia weight, then it is reduced during the optimization 
process by a damping factor to easily explore the entire 
search space. A MATLAB code was written in order to 
carry out this optimization procedure.

3. Model development 

3.1. Problem formulation

The multi-objective optimization model is used to deter-
mine the optimal solutions using three different optimiza-
tion techniques which are: (1) genetic algorithm, (2) JAYA 
algorithm, and (3) particle swarm optimization. The ob-
jective of optimization is to minimize point cloud density 
and scanning time while assuring a required point spacing 
and maximum incidence angle by changing distance be-
tween laser scanner and scanned surface, horizontal and 
vertical scan repetitions to full facade coverage, and Scan-
ner different resolutions. 

3.1.1. Decision variable
TLS provides a 3D point cloud of a scene by transmitting 
laser beams to an object or surface and receiving it back. 
It specifies the distance (ρ) between the laser scanner and 
the scanned object by measuring the time required for the 
laser beam to fly to the object and return back to the scan-
ner. The location of the object is determined by recording 
the distance (ρ), and the horizontal (q) and the vertical 
(j) angles required for the laser beam to reach the object 
(see Figure 2). 

The main optimization decision variables are the dis-
tance between laser scanner and scanned surface, scanner 
different resolutions, and horizontal and vertical scan rep-
etitions to full facade coverage. For horizontal and verti-
cal scan repetitions, the scanner is positioned horizontally 
and vertically at equally spaced locations to full scan the 
target façade and satisfy certain requirements. Figure 3 
shows an example of a TLS scanner that repeated 4 times 
horizontally and 3 times vertically. Scaffoldings, or scissors 
lifts can be used to carry the Scanner in the vertical rep-
etitions. In this example, the scanner will be used at three 
different levels at each horizontal station, 12 times in total, 
to eliminate the shadows and satisfy certain requirements. 

Accordingly, for each scanned position, there is a max-
imum field of view that depends on the number of the 
proposed repetitions as shown in Figures 3 and 4. This 

field of view depends on the max horizontal and vertical 
angles for each scan position. The dimensions of field of 
view (Y & Z) depend on the total façade length and height, 
and the required horizontal and vertical repetitions as per 
Eqns (5) and (6) (see Figure 4).

Y = Total façade Length /  
(2*((Horizontal repetition – 2) + 1));    (5)

Z = (Total façade height – Scanner tripod height) / 
(2*((Vertical repetition – 2) + 1)).   (6)

Also, horizontal angles (q) and vertical angles (j) can 
be calculated as per following Eqns (7) and (8), respec-
tively.

−  q =  
 

1Tan ;Y
d

 
 

(7)

− q j =  
 

1 *  Tan Z Cos
d

. 
 

(8)

Y and Z represent the max area covered by a scan posi-
tion and d is the clear spacing between the scanner and 
the vertical façade as shown in Figure 4. The last opti-
mization parameter is the scanning required resolution.  

Figure 2. Scan position parameters

Figure 3. Scanning repetitions of the façade using scissors lift
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Scanning resolutions depend mainly on the increments 
angle between laser signals which depends on scanner 
model and type (see Figure 2).

3.1.2. Constraints 
There are two constraints for the optimization model 
which are incidence angle and max spacing between point 
in the target scanned area. Incidence angle is the angle 
between the laser beam and the normal of the considered 
surface point as depicted in Figure 2. In the proposed 
optimization model, incidence angle is calculated using 
Eqn (9).

α = Cos–1 (d/ρ);    (9)
ρ = d / (Cos(q) * Cos(j)),   (10)

where α is the incidence angle, ρ is the distance between 
the scanner sensor and the corner of scan field area and d 
is the clear spacing between the scanner and the vertical 
façade. The max incidence angle for each scan position 
at the target scan area border should not be greater than 
a specified threshold to insure the scan point precision. 
Soudarissanane et al. (2009) indicated that incidence angle 
should be less than 60°. The second constraint is the max 
spacing between points in the target scan area. This spac-
ing is increased gradually to be maximum at the corner of 
the targeted scanned area. Max spacing between points for 
heritage facades case is considered to be varied between 
4 to 6 mm in this research. As spacing less than 4 mm 
makes the point cloud very heavy and hard to processing 
and if spacing is taken more than 6 mm important details 
might be lost. The maximum point spacing (D) between 
points depend on the maximum vertical and horizontal 
angles at the corner of the targeted scanned area, and on 
the resolution angular angle Φ and it can be calculated 
using Eqn (11). 

D = ρmax (Sin(jmax)) – ρmax+Φ (Sin(jmax + Φres));     (11)

ρmax = d / ((Cos (qmax) * Cos(jmax));  (12)

ρmax+Φ = d / ((Cos(qmax + Φres) * Cos(jmax + Φres)), (13)

where ρmax and ρmax+Φ are the lengths of the last two laser 
beams at the scanned area edge, qmax and jmax are the 
maximum horizontal and vertical angles at the edge, and 
d is the clear spacing between the scanner and the façade 
(see Figure 2).

3.1.3. Objectives
There are two objectives for this framework which are: 1) 
minimizing the scanning time and 2) minimizing point 
cloud density. Point cloud density is the numbers of points 
per meter squared. Minimizing point cloud density de-
creases the point cloud file size and improves the point 
cloud workability and decreases the processing time. Den-
sity of point cloud is very hard to calculate as the spacing 
between points changes in the horizontal and vertical di-
rection continuously. To calculate density for a particular 
scanned area (Z*Y) (see Figure 5), the number of points 
projected on this area is needed to be counted. For every 
horizontal angle step there is a unique maximum vertical 
angle and a unique number of vertical steps (see Figure 5). 
The total number of points is the summation of points for 
all horizontal steps as per following algorithm:

For horizontalangl=0:Hoizontal_step:MaxHorizontal_

angle

Max._Vertical_angle=atand 

(Z*cosd(horizontal_angl)/d);

Points_count=(Max_Vertical_angle/ 

Vertical_step)+Points_counts

End

Point_Cloud_Density=(Points_count)/(Z*Y),

Figure 4. Scanning positions to fully cover the façade
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where Y and Z are the scanned area dimension, d is the 
clear spacing between the scanner and the scanned area. 
Point cloud density is the number of points in the point 
cloud per the scanned area (Z*Y). Scanning time for the 
entire façade can be calculated using Eqn (14):

Scanning time = Vertical repetition (Vr) * Horizontal 
repetition (Hr) * Time per scan resolution +  
Installation horizontal time * Hr + Installation vertical 
time * ((Vr*Hr) – Hr).                                         (14)

3.2. Optimization performance measures

In order to determine any multi-objective optimization al-
gorithm performance there are many performance meas-
ures could be used. Two performance measures were used 
and they are as follows.

3.2.1. Coverage
This performance indicator is used to compares between 
two groups of non-dominated solutions (A, B). The re-
sult is the percentage of individuals of one group that are 
dominated by individuals of the other set. The coverage 
algorithm was developed using MATLAB (2018) as de-
picted in Figure 6. 

3.2.2. Hypervolume
The hypervolume (HV) is a measure used to assess the 
Pareto-fronts quality resulting from solving multi-objec-
tive optimization problem. HV represents the search space 
volume covered by a Pareto-front resulting from a par-
ticular algorithm relating to a specific point. Accordingly, 
for a particular algorithm, a higher HV value is preferable 
as it is an indication of a high Pareto-front quality. For a 
Pareto-front comprising Q solution, a hypervolume vi is 
measured for each solution i belonging to Q, while using 
a reference point W and solutions i that represents the 
corners of the hypercube. The associated hypervolume is 
calculated according to Eqn (15).

=

 =  
  1

.
Q

ii
HV volume v   (15)

In case of two objectives are considered then the cal-
culated volume is an area. There are specific special algo-
rithms for calculating the hypervolume such as algorithm 
in Beume et  al. (2009). Hypervoume tool was used in 
MATLAB (2018) to estimate the Hypervolume indicator.

3.4. Multi criteria decision-making 

Weighed sum model is a decision-making technique 
based on computing a priority index for every alternative. 
In a sense that the superior alternative is one with the 
maximum priority in the case of a maximization prob-
lem. Conversely, the optimum alternative has the mini-
mum priority in the case of a minimization. The priority 
of every alternative is calculated using Eqn (16) adopted 
from Windarto and Muhammad (2017).

( )
=

= ≤ ≤ ≤ ≤∑
1

 *  1 ,1 ,
n

i ij j
i

p f w i m j n  (16)

where pi is the priority of each alternative. fij indicates the 
performance measure in the normalized matrix. wj is the 
weight of every criteria. n and m are the number of criteria 
and alternatives, respectively.

4. Case study

The proposed model was implemented on Tosson Palace 
in Egypt as shown in Figure 7 with 3500 sqm area. The 
main façade of the palace is 80 m length and 20 m height. 
Z+F IMAGER® 5010C was used for TLS scanning and all 
optimization algorithms were calculated on a 2.5 GHz In-
tel laptop. The multi-objective optimization module was 
performed based on the two objective functions previ-
ously defined in the Model Development section. In order 
to provide an acceptable comparison between the opti-
mization algorithms, 10 independent optimization runs 
were carried out for each of the multi-objective genetic 
algorithm, the multi-objective Jaya algorithm, and the 
multi-objective particle swarm optimization. The num-
ber of iterations and the population size were assumed 
to equal 200, and 250 respectively for all algorithms to be 
able to achieve an acceptable comparison. For the genetic 

Figure 5. An example of vertical steps for two different 
horizontal angles for density calculations

Figure 6. Coverage algorithm
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algorithm, the tournament selection was selected as the 
selection strategy. Crossover rate was assumed to be 0.7. 
Mutation rate was assumed to equal 0.05. For the particle 
swarm optimization, the social parameters, and cognitive 
learning were assumed to equal 2. The inertia weight was 
assumed to be 0.5. The Jaya algorithm didn’t require ad-
ditional parameters aside from the population size and the 
number of iterations.

The range raw was considered to range from 5–20 m. 
Number of horizontal and vertical repetitions that deter-
mine the scanner field of view for a specific scanner posi-
tion were considered to range from 2 to 20 repetitions. 
The max spacing constraint was considered to range be-
tween 4 and 6 mm and the max incidence angle used was 
60°. The final optimization parameter to consider was the 
scanning resolution. The different angular resolutions and 
their associated scanning time for the Z+F laser scanner 
are represented in Table 1. Figure 8 shows the resulted 
point cloud after applying the proposed technique. It 
shows the front and side façades of the Palace.

Figure 9 shows a sample of Pareto frontier solutions 
for each optimization. Thirty-eight Pareto frontier solu-
tions were obtained as follows; 13 solutions from the ge-
netic algorithm, 15 solutions from JAYA algorithm, and 
10 solutions from the particle swarm optimization. The 
blue circles, gray stars, and orange represent the Pareto 
frontier solutions of the genetic algorithm, Jaya algorithm, 

and particle swarm optimization respectively. As shown 
in Figure 9, Jaya generated the most diversifiable optimal 
solutions. The average processing times of the JAYA algo-
rithm, particle swarm optimization and genetic algorithm 
were 180 sec, 260 sec, and 450 sec. Thus, JAYA had the 
shortest average computational time, while genetic algo-
rithm had the longest average computational time. Table 2  
shows hypervolume and coverage indicators for the opti-
mization algorithms.

Figure 7. The front façade of Tosson Palace in Cairo- Egypt

Figure 8. Tosson Palace point cloud

Figure 9. Sample of the Pareto frontier solutions  
for the three algorithms

Table 1. Scanner increment angles 

Resolution Increments (HZ°/V°) Scanning time (mins)
1 0.2880 0.26
2 0.1440 0.52
3 0.0720 1.44
4 0.0360 3.22
5 0.0180 6.44
6 0.0090 13.28
7 0.0045 72.60

Table 2. Optimization performance measures

Hypervolume Jaya coverage
JAYA 80.00% –
NSGA-ll 52.56% 23.00%
PSO 75.90% 20.00%
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The decision-making module was implemented to 
choose the optimum solution from the generated Pareto 
frontier solutions. Weighed sum model was used as the 
decision-making technique. All Pareto frontier solutions, 
generated from the three algorithms, were considered as 
alternatives. Then, the scanning time and the density at-
tributes were normalized according to their maximum 
values. Then, the associated weights were considered 60%, 
and 40% for the scanning time, and the point density attri-
butes respectively. A sample of the WSM solutions rank-
ing is depicted in Table 3. The optimum solution in WSM 
had scanning time of 146.28 minutes, a points’ density of 
68648 point/m2, with max spacing 5.77 mm, and a max 
incidence angle of 44.23°.

Conclusions

Heritage documentation plays a very important role in 
heritage maintenance and condition assessment. 3D laser 
scanning is one of the active techniques that are utilized 
to document heritage buildings. However, the absence 
of quality definition is one of the challenges of utilizing 
laser scanning technique. In this paper, an optimization 
and decision-making model is implemented to minimize 
scanning time and density while achieving certain qual-
ity constraints. The terrestrial laser scanner positions 
are determined based on the distance between the laser 
scanner and the scanned surface, the required horizontal 
and vertical angles, and the required scanner resolution. 
These constraints determine the allowable point spacing 
and incidence angle, while minimizing the scanning time 
and the point density. The objective of this research is to 
provide a methodology to determine the optimal posi-
tions of the scanner to scan a heritage facade, based on 
the above- mentioned measurement limitations and con-
straints. Accordingly, it has to ensure that the full coverage 
of the facade surface with the minimum number of scan-
ner positions, while taking into account the previously 
mentioned constraints which are the angle of incidence, 
and max spacing between points. One restriction must be 
taken into account which is that the distance between the 
scanner and the scanned surface must be the same for all 
scanner positions. 

The optimization module indicates the optimum scan-
ning positions based on two objective functions. It utilizes 
three different optimization algorithms which are genetic 
algorithm, Jaya algorithm and particle swarm optimiza-
tion. A fair comparison is then obtained between the three 
algorithms using some performance metrics such as cov-
erage, and hypervolume indicators. Finally, weighted sum 
multi-criteria decision-making technique is implemented 
to determine the best solution and provide a ranking for 
all solutions. This research can be extended in the future 
to scan facades with non-plane surfaces.
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