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Abstract. The elastic load-carrying capacity and buckling trajectory of steel columns under compression with open and 
hollow cross-sections, whose axis is curved by spatial random fields, are studied in the article. As a result of the spatial 
curvature of the axis the cross-sections are subjected to compression, bending and torsion from the onset of loading. 
Numerical simulations are performed using the geometrically non-linear model created using the ANSYS software pack-
age. Each simulation run has input random realizations of yield strength and the random field generated using the Latin 
Hypercube Sampling method. In the plane perpendicular to a perfectly straight column axis, the random observations 
of deformation trajectories of a node in the middle of the column height are studied. The increasing compression load 
moves the node along the curve path (open sections) or along the linear path (hollow sections). Large discrepancies in 
the deformation trajectories of open sections (curvilinear paths) and hollow sections (linear paths) were observed from 
the comparison of simulation runs. The average and design load-carrying capacities of compressed columns with open 
cross-sections are lower in comparison to columns with hollow cross-sections due to the lower efficiency of open cross-
sections in torsion.
Keywords: steel structure, imperfections, column, stability, torsional buckling, torsional-flexural buckling, random field, 
reliability.

Introduction

The rectangular hollow structural steel section was devel-
oped by Stewarts and Lloyds (Wardenier 2002) in 1952. 
This section, which has almost identical properties as the 
circular hollow section, enables connections with straight 
end cuttings. Bridges present a typical example where 
hollow sections are used extensively for structural ap-
plications (Wardenier 2002). These sections have been 
used for footbridges for over 50 years. Rectangular hol-
low structural steel sections, as a result of their excel-
lent mechanical properties and geometric tolerances, are 
frequently used for the construction of high load-bearing 
structures and numerous researches have been performed 
on them (King, Davison 2017). Design of hollow sections 
is due to their special features and connections of more 
importance than the design of open steel sections (War-
denier 2002). Therefore, designers should pay attention to 
the different aspects of hollow sections and their effects 
on structural performance.

For structural components such as columns, which 
have only a load bearing function, the relevant perfor-
mance criterion is stability (Rondal et al. 1992; Galambos 

1998). The classical solution of Euler’s critical load based 
on one-dimensional (1-D) models of perfectly straight 
columns can be found in textbooks (e.g. Timoshenko, 
Gere 1961; Galambos 1998). The calculation of Euler’s 
critical load is useful for normative assessment of reli-
ability of steel elements, for e.g. accoding to Eurocode 3 
(EN 1993-1:2005), however, it is hardly applicable for a 
detailed study of the deformation and stress states of real 
steel columns with spatial initial imperfections, whose 
load-carrying capacity is lower than in the case of ideal 
members.

It should be taken into account that columns with 
open cross-sections could have resistance to torsional-
flexural buckling lower than its resistance to flexural 
buckling. On the contrary, columns with hollow cross-
sections have resistance to torsional-flexural buckling 
usually higher than its resistance to flexural buckling. The 
effect of random spatial imperfections on the structural 
performance of a column under compression, which in 
the case of open cross-sections is more or less reduced 
due to the effect of torsion, is analysed in the present  
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article. Open cross-sections of imperfect columns do 
not resist torsion as effectively as hollow cross-sections, 
which affects their limit states. The limit states are ana-
lysed using the geometrically non-linear solution based 
on advanced beam finite elements BEAM188 (ANSYS 
2014) that include new warping degrees of freedom, 
which are very effective for advanced modelling of twist-
ed beams (Murín, Kutiš 2008; Murín et al. 2014, 2017).

Finite elements used for the analysis of steel beam 
structures are based in most engineering applications on 
the classic Euler-Bernoulli beam theory, which assumes 
that the plane cross-sections remain plane and normal to 
the neutral axis before bending and plane cross-sections 
remain plane and normal to the neutral axis after bending. 
A more detailed description is presented by Timoshenko 
beam theory (Timoshenko 1934), which assumes that the 
cross-sections remain plane and undistorted after defor-
mation, but permits rotation between the cross-section 
and the bending line. This rotation comes from a shear 
deformation, which is not included in a Bernoulli beam.

The Timoshenko beam theory is a so-called first 
order shear deformation theory, where transverse shear 
strain is constant through the cross-section, thus the effect 
of shear deformation on the cross-section is captured in 
an average sense (Groh, Weaver 2015). Two-dimension-
al extension of this theory for isotropic and single-layer 
plates was presented by Mindlin (1951) and extended to 
multi-layered plates by Yang et al. (1966). Other theo-
ries, which are generally referred to as higher-order shear 
deformation theories, have been developed by other re-
searchers (Levinson 1981; Fatmi 2007). A comprehensive 
higher order beam formulation was presented by Argyris 
and Kačianauskas (1996). However, increased efforts 
have not lead to higher accuracy, therefore the first or-
der shear deformation theory remains in practical use 
(Senjanović et al. 2016). Generally, the limit states of 
steel structures can be studied using 3D models based on 
shell (Ádány 2014; Jönsson, Stand  2017) or solid (Krá-
lik 2009; Kala, Valeš 2017) finite elements. However, 
for computational efficiency, beam theory and elements 
(involving much less degrees of freedom) are normally 
favoured without compromising the computational accu-
racy (see e.g. Kala 2012, 2016b).

The load-carrying capacity of columns under com-
pression with intermediate slenderness (non-dimensional 
slenderness around 0.9) is very sensitive to the initial 
geometric imperfection of the initial out-of-straightness 
of the column. This was proven by sensitivity analyses 
of planar buckling (Kala 2009, 2016b). Common mod-
els are based on an approximation of the initial out-of-
straightness using a half-wave sinusoidal function for 
compressed columns (Kala 2009) or a scaling of the 
first eigenvalue buckling mode shape for frame struc-
tures (Kala 2016b). An advantage of these models is 
that the curvature of the axis of the loaded column is 
affine to the initial out-of-straightness. Based on these 
assumptions it is not difficult to analyse the limit states 

of columns and in many cases solutions are available in 
the closed form (Trahair 1977). The outputs of analyt-
ical models are clearly influenced by the amplitude of 
the initial out-of-straightness, used by design standards  
(EN 1993-1:2005), which introduce the so-called equiva-
lent geometrical imperfection covering not only geomet-
ric, but also structural imperfections (Agüero, Pallarés 
2015; Pasternak, Kubieniec 2016). However, the Euroc-
ode equivalent of geometrical imperfections may be very 
conservative as was shown by study of Jönsson and Stand 
(2017). In stochastic models the amplitude of the initial 
out-of-straightness of a beam is usually introduced as a 
purely geometrical imperfection without correlation with 
other imperfections, which are modelled separately (Kala, 
Valeš 2017). In some stochastic models, initial geometri-
cal imperfections are introduced as a linear superposition 
of several scaled buckling modes, where the scale fac-
tor and random sign of each mode are random variables 
(Shayan et al. 2014; Zhang et al. 2016).

The random shape of the axis of a real column can 
be modelled using a higher number of mutually correlat-
ed random variables (Kala 2007). One of the widespread 
modelling approaches of spatial correlation in engineer-
ing applications is based on random fields (Matthies et al. 
1997; Matthies, Bucher 1999). Fundamentals of the anal-
ysis of random fields are described in Vanmarcke (1983). 
Random fields describe the random variability of most 
structural material and geometrical properties very pre-
cisely (Bucher 2006; Vryzidis et al. 2013; Chen et al. 
2016). Taking into account random fields is crucial in the 
accurate prediction of system performances, especially 
field-sensitive failures like buckling (Xi 2015). Sensitiv-
ity of the load-carrying capacity to the shape and size of 
spatial axial curvature of the column increases signifi-
cantly if the second moment of area of the column cross-
section is the same for all rotations of orthogonal coordi-
nate axes passing through the centre of gravity (principal 
second moments of area are the same). Hollow structural 
sections of circular or square shape have this property. 
Spatial axial curvature of a column under compression 
results in torsion of the cross-sections in addition to com-
pression and bending.

The subject of this article is the stochastic analysis 
of the elastic load-carrying capacity (further denoted as 
LCC) of a column under compression, which is hinged at 
both ends. LCC is defined as the maximum load at which 
the yield strength is reached in the most stressed area of 
the column. The shape of the initial out-of-straightness 
of the column is modelled using random fields, which 
are generated using the Latin Hypercube Sampling (LHS) 
method (McKey et al. 1979; Iman, Conover 1980). The 
column is modelled using the finite element BEAM188, 
which can also take into account warping (non-uniform) 
torsion (Vlasov 1959). As was corroborated by recent 
studies (Rubin 2006; Murín, Kutiš 2008; Murín et al. 
2014, 2017; Mokos, Sapountzakis 2011) the effect of 
non-uniform torsion should be considered not only for 
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beams with open cross-sections, but also for beams with 
hollow cross-sections. For columns under compression 
with spatial (in shape and size) random initial out-of-
straightness the load-deflection characteristics are given 
as loading combinations of compression, bending and tor-
sion. Random deformations and LCC of spatial imperfect 
columns with hollow (torsionally rigid) and open (tor-
sionally soft) square cross-sections are analysed in this 
article.

1. Stochastic finite element model

The static resistance of a column under compression 
is analysed using beam finite elements, denoted as 
BEAM188 element in (ANSYS 2014). The BEAM188 is 
based on Timoshenko beam theory. The BEAM188 ele-
ment is suitable for large strain nonlinear analysing of 
slender to moderately thick beam structures. BEAM188 
is a 2-node beam element in 3-D, which has seven de-
grees of freedom at each nodal point. The degrees of free-
dom contain three translations along axes x, y, z, three 
rotations around these axes and furthermore warping de-
gree of freedom, which represents the warping part of the 
first derivative of the angle of twist, resulting from the 
bimoment. Consideration of warping degree of freedom 
permits its use for the satisfaction of boundary conditions 
e.g. at clamped ends of beams (Murín et al. 2017). Inclu-
sion of the warping degree of freedom further provides 
the finite element the capability to analyse the influence 
of bimoment and warping torsion on the stress state of 
beam structures.

A steel column of length L = 2.798 m was analysed. 
The length of the column is chosen so that the non-di-
mensional slenderness of the planar strut acc. to (EN 
1993-1:2005) is equal to one, and thus high sensitivity 
of LCC to the initial out-of-straightness can be expected 
(Kala 2009, 2016b).

1.1. Boundary conditions and cross-section variants
The boundary conditions of the column are depicted in 
Figure 1. The bottom node has null translations along all 
three axes and null rotation around axis x. The top node 
has null translations along axes y and z and null rotation 
around axis x. Both end cross-sections have null warping 
(axial) displacements. The model is subjected to vertical 
compressive load at the top node b in the direction of 
a line passing through nodes a and b. The value of the 
reaction along the x–axis is monitored at node a for the 
determination of LCC.

Fig. 2. Cross mesh of finite element BEAM188

Since the size of the incision is very small (0.1 mm) 
and the incision is not displayed during the meshing of 
the cross-section, the mesh of element BEAM188 is dis-
played identically for both hollow and open sections. 
Therefore, the mesh shown in Figure 2 applies to the hol-
low section and all cases of incision positions depicted in 
Figure 4. The detail of the part of the cross-section with 
incision is depicted in Figure 2. The example of the stress 
state, if hollow cross-section, in Figure 3 is depicted for 
the most stressed part of the column, whose initial geo-
metrical imperfections are depicted in Figure 5. The most 
stressed part is located at approximately two-fifths of the 
height of the column, see Figure 6.

Fig. 1. Column with square cross-sections

Fig. 3. Example of the von Mises stress state of BEAM188
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The cross-section characteristics are listed in Ta-
ble 1, where A denotes the area, Iy is second moment 
of area about axis y, Iz is second moment of area about 
axis z, Iω is warping constant, It is torsion constant, E is 
Young’s modulus of elasticity, G is shear modulus. It is 
apparent that the difference between a section without an 
incision and a section with an incision only affects char-
acteristics Iω and It, associated with torsion. This means 
that differences in the behaviour of the beam during load-
ing and when it reaches the limit state are due to torsion. 
Let us remark that the cross-section with such a small 
incision is only theoretical and it is used just to highlight 
advantages of a hollow cross-section, especially its much 
higher torsional stiffness.

Table 1. Cross-section characteristics

Characteristics Hollow Open
A
Iy
Iz
Iw
It
E
G

1.683E-3 m2

1.492E-6 m4 
1.492E-6 m4

2.827E-12 m6

2.529E-6 m4

210 GPa
81 GPa

1.683E-3 m2

1.492E-6 m4 
1.492E-6 m4

6.115E-9
1.997E-8
210 GPa
81 GPa

1.2. Eigenvalue buckling analysis
The eigenvalue buckling analysis predicts the theoretical 
buckling (critical) load of an ideal elastic column. Ta-
ble 2 lists the first three eigenvalues for hollow and open 
cross-sections.

Table 2. The first three eigenvalues

Eigenvalue Hollow Open
1st

2nd

3rd

392.4 kN
392.4 kN
1540.1 kN

201.0 kN
392.0 kN
396.6 kN

The first two eigenvalues of the column are the same 
for the hollow cross-section, because the principal sec-
ond moments of area of the square cross-section are the 
same. Non-dimensional slenderness calculated from the 
1st eigenvalue 392.4 kN acc. to EN 1993-1:2005 is equal 
to 1.0. The first and second buckling mode shape is half a 
sine wave, the third buckling mode shape is a sine wave. 

In the case of the open cross-section, the first and 
second buckling mode shape is half a sine wave in the 
plane, however, torsion occurs in the first mode shape. 
The non-dimensional slenderness calculated from the 1st 
eigenvalue 201.0 kN is 1.4. Torsion does not occur in the 
second shape and the eigenvalue is very close to the value 
of the hollow cross-section. 

Eigenvalue buckling analysis shows the most impor-
tant differences between columns with open and hollow 
cross-sections. In reality, however, due to structural im-
perfections and non-linearities most real-world structures 
do not attain their eigenvalue predicted buckling strength.

1.3. Random field model
The initial spatial out-of-straightness of the column 
is modelled using eleven nodes, which is fitted with a 
spline, see example in Figure 5. The distance between 
adjacent nodes of the spline along axis x is xi+1 – xi = 
0.2798 m. While the x coordinates of the nodes are fixed, 
y and z coordinates are random variables with a Gauss 
probability density function (pdf) with null mean value 
and standard deviation given by the relation:

 





=

L
xSS i

ai
πsin , (1)

where xi is the position on the beam axis and Sa is the am-
plitude calculated on the assumption that 95% of the ran-
dom realizations of the maximal initial spatial deforma-
tion are within the tolerance limit of (Kala 2011; Kala, Z., 
Kala, J. 2011). The coordinate values in each of the two 
planes are mutually correlated through the Gaussian cor-
relation function (2), which represents a 1D random field 
with correlation length Lcor = 1.44165 m (Valeš 2013).

 ( )2corjh L
jh e ξρ −= , (2)

where ξjh is the distance between two points measured 
along axis x. The correlation length Lcor is a parameter, 
which influences the random shape of the initial out-of-
straightness of the column. If Lcor → ∞, then ρjh → 1 and 
the shape of the initial out-of-straightness converges to 
a half-wave of the sinusoidal function. If Lcor = 0, then  
ρjh = 0 and the y and z coordinates of nine nodes are sta-

Fig. 4. Variants of square cross-section



906 Z. Kala et al. Random fields of initial out of straightness leading to column buckling

tistically independent, which is unrealistic. It may be not-
ed that the use of linear or exponential correlation func-
tions may also be discussed (Chen et al. 2016), however, 
it would require that the correlation length of 1.44165 m 
used here is introduced with a higher value.

The Gaussian correlation function (2) models a cor-
relation whose decay rate increases with distance. Corre-
lation is only considered between the coordinate values 
of nodes in one plane, i.e., the initial out-of straightness 
in one plane is independent to the initial out-of straight-
ness in another plane. Correlation matrix (3) consists of 
four submatrices, where the submatrix with non-zero el-
ements describes the correlation between nodes in one 
plane and the submatrix with zero elements describes the 
correlation between nodes in both planes. The dimension 
of correlation matrix (3) is 18x18, because the initial de-
formation of the first and last node is equal to zero. Each 
non-zero element in Eqn (3) is calculated using Eqn (2).

The random field based on Eqns (1) and (3) is non-
homogeneous, because the variances of the geometric im-
perfections at different nodes are not the same. Detailed 
information about the random field theory can be found 
in a number of books like (Vanmarcke 2010; Adler, Tay-
lor 2007).

 [ ] 1

1

0
0

K
K

K
 

=  
 

, (3)

where

Another random input variable is the yield strength. 
The yield strength fy is considered with Gauss pdf 
with mean value of 297.3 MPa and standard deviation 
16.8 MPa (Melcher et al. 2004). These statistical charac-
teristics of yield strength were obtained from experimen-
tal research and are frequently used in a number of reli-
ability studies (see for e.g. Chen et al. 2016; Thai et al. 
2016). In total the stochastic finite element model has 19 
input random variables. 

2. Load-carrying capacity

The LCC is the studied output random variable. Numeri-
cal simulations are performed as a process of running 
a geometrically non-linear model with regard to initial 

Fig. 5. Example of spatial depiction of the imperfection

[ ]1

     1     0.963 0.860 0.712 0.547 0.390 0.258 0.158 0.090
0.963      1     0.963 0.860 0.712 0.547 0.390 0.258 0.158
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0.712 0.860 0.963      1     0.963 0.860 0.712 0.5

K =
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0.390 0.547 0.712 0.860 0.963      1     0.963 0.860 0.712
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0.090 0.158 0.258 0.390 0.547 0.712 0.860 0.963      1     

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . (4)

geometric imperfections and yield strength. Random re-
alizations (hereinafter referred to as realizations) of yield 
strength and initial out-of-straightness of the column are 
simulated using the LHS method (McKey et al. 1979; 
Iman, Conover 1980), which is part of the software 
Freet (Vořechovský, Novák 2009). The so-called setting 
“mean” (Huntington, Lyrintzis 1998) is used. 62 realiza-
tions are generated for 19 input random variables. LCC 
is calculated successively for all variations of the position 
of the incision in Figure 4, which means that a total of 62 
runs in five series are evaluated.

The LCC is calculated with an accuracy of 0.1% in 
each simulation run. Load-deflection characteristics are 
calculated using the step by step method. The column 
is loaded incrementally with axial load N and a constant 
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number of increments nstep. The size of load N is chosen 
so that its effect results in the stress exceeding the yield 
strength of steel fy anywhere in the beam. For this to oc-
cur, the elastic stress-strain material relationship is used. 
The value of LCC is then calculated using linear inter-
polation of the stress σN from the step at which the yield 
strength is exceeded nN and stress σN-1 from the preced-
ing step nN-1 as:

 ( ) 







−
−

−+=
−

−
−−

1

1
11

NN

NN
NyN

step

nnfn
n
NLCC

σσ
σ . (5)

Figure 6 shows a comparison of the unloaded col-
umn with initial geometrical imperfection with the de-
formed column under ultimate limit state. The initial 
imperfection in Figure 6 is the same as the initial imper-
fection in Figure 5.

Upon reaching the LCC the stress of the column 
with hollow cross-section and cross-section with an inci-
sion is more or less different. The different stress distri-
bution of the column with hollow and open cross-section 
is clearly visible, for e.g. in the first simulation, see Fig-
ure 7. Torsion has an influence on both the deformation 
and the stress in the column at limit state.

3. Deflection curves analysis

Deflection curves of columns under compression are 
shown in Figure 8. All the curves are plotted for the sixth 
node, which is located halfway up the column. Five de-
flection curves, which show the growth of the deforma-

tion in the process of loading the column, emanate from 
the point of the initial imperfection. The point of the ini-
tial imperfection has a random position and corresponds 
to zero stress at the beginning of loading. The five de-
flection curves displayed for 62 realizations describe the 
behaviour of the column with hollow section (solid red 
line) and four variants of the open section (four dashed 
lines), see Figure 8. Although the curves emanate from 
one point, each ends at a different point. The end of the 
curve represents the point at which the yield strength is 
reached in the most stressed area of the column and the 
load terminates upon reaching LCC.

The following observations can be drawn from the 
curves depicted in Figure 8. The deformation of the col-
umn with cross-section I (hollow) is linear for each re-
alization of the initial axial out-of-straightness. Defor-
mations pertinent to open cross-sections have a more or 
less curved trajectory. The difference between trajectories 
of the deformations of cross-sections II and III are very 
small; see the red and green dashed lines in Figure 8. A 
typical example is realization R14. The red and green 
trajectories II and III slightly diverge each in the direc-
tion of the location of the incision. The trajectories of the 
deformations of cross-sections IV and V are very similar; 
see purple and blue dashed lines. Trajectories IV and V 
slightly diverge, each following the direction of its inci-
sion. It is important to remind that a beam finite element 
was used. Therefore, the cross-section remains rigid dur-
ing loading, regardless of cross-section type.

Fig. 6. Finite element analysis of column with hollow cross-
section

Fig. 7. Comparision of von Mises stress of two columns at 
ultimate limit state
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Fig. 8. Deflection curves of columns at the node in x = L/2
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It can be concluded that the incisions on opposite 
sides have very similar deformation curves. An excep-
tion is in cases of very small values of initial imperfec-
tions, see realization R15. Initial imperfection of realiza-
tion R15 is practically zero along axis y. Buckling of the 
cross-section with an incision on the z-axis occurs in the 
direction of y-axis for cross-section III and against the 
direction of the y-axis for cross-section II. Deformation 
curves of open cross-sections of realization R49, which 
have practically zero initial imperfection on both axes, 
are interesting. Deformation trajectory R49 are always 
perpendicular to the axis on which the incision is lo-
cated. Very similar observations can be made in realiza-
tions R57, R24 and R17. The process of buckling of open 
cross-sections is thus predetermined by both the shape of 
initial spatial axial out-of-straightness of the column and 
the location of the incision on the cross-section. Buckling 
of open cross-sections always leads to greater deforma-
tions upon reaching LCC in comparison with the same 
realization of hollow cross-sections. 

4. Statistical analysis of LCC

The results of statistical analysis of LCC of the columns 
are listed in Table 3. The differences in the statistics per-
taining to hollow cross-section I and statistics of other 
open cross-sections II to V are evident. Let us denote 
LCC of the column with cross-section I as LCCI, of col-
umn with cross-section II as LCCII, etc. The mean value 
of LCCI is 20% greater than the mean value of the other 
LCC. The standard deviation of LCCI is 40% greater than 
the standard deviation of the other LCC. The skewness of 
LCCI is positive while the skewness values of the other 
LCC are negative. The kurtosis of LCCI is greater than 
three, while the kurtosis of the other LCC are lower than 
three.

Very strong correlation of 0.97 is observed between 
LCCII and LCCIII and between LCCIV and LCCV, see 
Figure 9. Zero correlation is obtained between LCC of 
columns, whose cross-sections have incisions rotated by 
90 degrees. Strong correlation of approximately 0.72 is 
between LCCI and the other LCC.

Table 3. Statistical characteristics of LCC

Cross-
section

Mean value
[kN]

Std. 
Deviation

[kN]
Skewness Kurtosis

I.
II.
III.
IV.
V.

326.18
271.96
271.93
271.15
271.11

24.735
16.595
17.074
17.295
17.187

  0.121
–0.437
–0.503
–0.310
–0.360

3.194
2.663
2.571
2.288
2.602

It should be noted that skewness and kurtosis are 
functions of higher order statistical moments, which are 
calculated with higher statistical error than mean value 
and standard deviation, see Table 3. Each of the cases II 
to V should theoretically have the same statistical mo-

ment, which could be achieved by using a very high 
number of simulation runs. Application of the evaluat-
ed realizations can be used to improve the estimation of 
statistical moments by calculating the arithmetical mean 
from II to V. In this manner, we can write the statistical 
moments of LCC of the column with, generally, open 
cross-section and random incision position, see Table 4. 
The results listed in Table 4 transparently compare LCC 
of the column with hollow and open cross-section.

Table 4. Statistical characteristics of LCC

Cross-
section

Mean value
[kN]

Std. 
Deviation

[kN]
Skewness Kurtosis

Hollow
Open

326.18
271.54

24.735
17.038

0.121
–0.403

3.194
2.531

The category of open cross-sections in Table 4 prac-
tically represents a column with spatial axial curvature 
modelled using the stochastic finite element model de-
scribed above, in which the position of the incision is 
generated using a random number from one to four in 
each simulation run. Practically, the statistical moments 
in the category of open cross-sections can also be calcu-
lated from the set of 248 realizations of LCC, which are 
all the calculated realizations from categories II, III, IV 
and V. 

The comparison of the random LCC of columns with 
hollow and open cross-section is clearly shown in Fig-
ure 10 after approximation using Gauss and Hermite pdfs 
in the software Statrel 3.10. Hermite pdf is a four-param-
eter pdf, which respects not only the arithmetic mean and 
standard deviation, but also the skewness and kurtosis of 
valid observations. Methods for introducing the third and 
fourth parameter of the Hermite pdf are mathematically 
described and discussed in Kala (2016a). Differences be-
tween the Gauss and Hermite pdfs are small in the case 
of the hollow cross-section, but high in the case of the 
open cross-section, see Figure 10.

Fig. 9. Correlation among LCC cases and yield strength fy
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In order to calculate the design quantiles, we test if 
the realization of LCC fits Gauss, lognormal or Hermite 
pdf. LCC realizations are subjected to three probabili-
ty distribution tests at the critical 5% significance level. 
Statistical evaluation is performed using the program 
Statrel 3.10. Five sets each with 62 realizations of LCC 
are compared one by one with Gauss, lognormal and 
Hermite pdfs. The selected goodness of fit tests are: a) 
Kolmogorov-Smirnov test (Massey 1951); b) Chi-Square 
test (Pearson 1900); c) Anderson-Darling test (Ander-
son, Darling 1952, 1954). If the test determines that “the 
hypothesis should not be rejected”, the corresponding 
symbol a), b), c), is added to the numerical value of the 
quantile, see Table 5. Otherwise, the data is not from the 
respective pdf.

Table 5. 0.1 percentiles of LCC (design values)

Cross-
section

Gauss pdf
[kN]

Lognormal 
pdf

[kN]

Hermite pdf
[kN]

I.
II.
III.
IV.
V.

249.74abc 
220.68ac

219.17abc

217.7abc

217.99abc

257.39abc

224.85ac

223.57abc

222.23abc

222.47abc

246.24abc

206.60ac

201.19abc

–
209.57ac

Table 5 contains the design values of LCC, which 
are calculated as 0.1 percentiles according to the Europe-
an standard EN 1990. Calculation of the 0.1 percentile is 
based on the semi-probabilistic approach of standard EN 
1990 (2003) and represents the basic reliability targets 
for design values for ultimate limit states recommended 
in EN 1990 for a reference period of 50 years (Sedlacek, 
Müller 2006). Comparison of the 0.1 percentile with the 
design value calculated according to EN 1993-1:2005 is 
the fundamental approach to statistical verification of the 
reliability of steel structures (Kala et al. 2009, 2016). If 
the response of the structure fits the Gauss pdf, the struc-
tural reliability can be verified by comparing the calcu-
lated reliability index β with the target reliability index 
βd = 3.8 (see e.g. Sedlacek, Kraus 2007; Vainiūnas et al. 
2015; Kamiński, Świta 2015). The target reliability index 
βd = 3.8 corresponds to a target failure probability 7.2E-5 
and design LCC calculated as 0.1 percentile, see EN1990. 
In the case that the calculated failure probability is greater 
than the target value, the structure is considered unsafe 
(see e.g. Kala 2015). Semi-probabilistic design reliability 
conditions of standard EN 1990 (2003) permits the evalu-
ation of the 0.1 percentile using Gauss pdf or lognormal 
pdf, which is usually acceptable in cases where the skew-
ness is close to zero and the kurtosis is close to three.

The statistical analysis of LCC presented here shows 
that the skewness is not equal to zero and the kurtosis is 
not equal to three, and thus it is necessary to respect these 
parameters during the statistical evaluation of the design 
values, see Table 5.  One approach is the application of 
the Hermite pdf (Kala 2016a), which effectively takes 
into account small values of skewness and kurtosis and 

works well for values of kurtosis that are greater than 
three, however certain combinations of skewness and 
kurtosis may be inadmissible for values of kurtosis much 
less than three, see case IV in the last column of Table 5. 

Table 6. 0.1 percentiles of LCC (design values)

Cross-
section

Gauss pdf
[kN]

Lognormal 
pdf

[kN]

Hermite pdf
[kN]

Hollow
Open

249.74abc 
219.19ac

257.39abc

223.53ac
246.24abc

203.92c

Table 6 contains a generalization of the design val-
ues for the category of open cross-section, which was ob-
tained (similarly as in Table 4) by merging categories II 
to V into a set and evaluating the 0.1 percentile from the 
set of 248 realizations of LCC. Design LCC of the col-
umn with hollow cross-section is 14 to 20 percent greater 
than in the case of the column with open cross-section, 
see Table 6.

Fig. 10. LCC of columns with open and hollow cross-sections

Conclusions

LCC of a steel column under compression with spatial 
axial curvature may be significantly influenced by tor-
sion, which is transferred more effectively in hollow 
cross-sections than in open cross-sections. The torsional 
performance of the cross-section of such a column may 
be as important as the performance under compression or 
bending, which is shown in the entire spectrum of ran-
dom realizations of initial axial curvatures. The initial 
spatial axial curvature due to random fields has a large 
influence on the statistical variance of the results.

LCC of columns with (i) open square cross-section 
is approximately 15% lower than LCC of the same col-
umns with (ii) hollow cross-section, which applies to 
both the mean and design values. Between cases (i) and 
(ii) are large differences in the obtained values of skew-
ness and kurtosis of LCC. LCC of columns (i) has skew-
ness of –0.4 and kurtosis 2.5 in contrast to (ii), where 
the skewness is 0.1 and kurtosis is 3.2. The correlation 
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is approximately 0.72 between the LCC of columns with 
(i) and (ii). A very strong correlation exists between LCC 
of columns (i) whose cross-sections have incisions on the 
opposite side. Lower values of the LCC of columns (i) 
are accompanied by a different distribution of von Misses 
stress, which includes lower stress from axial compres-
sion (due to lower LCC), a different bending stress distri-
bution (due to higher deformations and different positions 
of the cross-section upon reaching yield strength) and es-
pecially higher and differently distributed stress due to 
torsion. On the contrary, columns (ii) exhibit higher val-
ues of LCC due to higher stiffness of the cross-section 
in torsion and lower more favourably distributed stress 
in torsion.

Large differences in the behaviours of columns with 
(i) open and (ii) hollow cross-sections are also evident 
from the buckling trajectory of the sixth node in the mid-
length of the column. The increasing compression load 
moves the node (i) along the curve or (ii) along the line 
segment, see Fig. 8. It holds for the results that the dif-
ference between realizations of columns (i) and (ii) is 
only in the torsional stiffness due to the varying warping 
section constant Iω and torsion constant It, see Table 1. 
Movement along the straight section implies that the 
section (ii) has high torsional stiffness. On the contrary, 
movement along the curve implies that the cross-section 
(i) has low torsional stiffness. Deformation (i) is up to 
twice higher than deformation (ii) upon reaching LCC. 
Columns whose cross-sections have incisions on opposite 
sides have similar deformation curves.

The above described effects of torsion on LCC are 
caused by the spatial axial curvature and are observed in 
cross-sections with the same principal second moments 
of area. Consequently, the sensitivity of the LCC to phe-
nomena associated with torsion of cross-sections in com-
pression is high, because buckling is not predetermined 
in the direction of major axis bending. The question is 
whether and to what extent the conclusions presented 
here can be generalized for columns in compression with 
open cross-sections whose principal second moments of 
area are different.
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