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Abstract. This research proposes a Bayesian belief network-based approach to measure the project complexity in the con-
struction industry. Firstly, project complexity nodes are identified for model development based on the literature review. 
Secondly, the project complexity measurement model is developed with 225 training samples and validated with 20 test 
samples. Thirdly, the developed measurement model is utilized to conduct model analytics for sequential decision mak-
ing, which includes predictive, diagnostic, sensitivity, and influence chain analysis. Finally, EXPO 2010 is used to tes-
tify the effectiveness and applicability of the proposed approach. Results indicate that (1) more attention should be paid 
on technological complexity, information complexity, and task complexity in the process of complexity management; (2) 
the proposed measurement model can be applied into practice to predict the complexity level for a specific project. The 
uniqueness of this study lies in developing project complexity measurement model (PCMM) with the cause-effect relation-
ships taken into account. This research contributes to (a) the state of knowledge by proposing a method that is capable of 
measuring the complexity level under what-if scenarios for complexity management, and (b) the state of practice by pro-
viding insights into a better understanding of causal relationships among influencing factors of complexity in construction 
projects. 

Keywords: project complexity measurement model (PCMM), Bayesian belief network, sensitivity analysis, influence chain 
analysis. 

Introduction

In recent years, rapid growth in the construction industry 
has led to an increase in size and complexity of the pro-
jects (Luo et al., 2016; Qazi et al., 2016). However, con-
struction projects are usually beset with serious waste and 
cost overruns (Applegate & Tien, 2018; Thomas & Mengel, 
2008; Zhu & Mostafavi, 2017). Underestimating the pro-
ject complexity is the main reason, which is the state of 
being involved and intricate as a result of including varied 
interrelated parts within a subject (Gao et  al., 2018; He 
et  al., 2015; Luo et  al., 2017). Therefore, with an aim to 
manage the complexity of construction projects efficiently, 
researchers and industry experts concentrate on measur-
ing project complexity (Bakhshi et al., 2016; Coenen et al., 
2018; Luo et al., 2017; Wallner, 1999). 

Accordingly, numerous studies have been conducted 
on measuring project complexity from different perspec-
tives (Bosch-Rekveldt, 2011; Lebcir & Choudrie, 2011; 

Qazi et  al., 2016). However, most studies focus on the 
framework of project complexity and ignore the cause-ef-
fect relationships between project complexity and its influ-
ential factors. In addition, the existing models cannot be 
used to model the project complexity under different sce-
narios. Therefore, it is necessary to propose an approach 
that can measure the project complexity considering the 
cause-effect relationships.

Bayesian Belief Network (BBN), a graphical frame-
work for modeling uncertainty, incorporates a unique 
feature for capturing the interaction between elements 
(Wu et al., 2015; Zhang et al., 2014). BBN has been ap-
plied in various domains, including root cause analysis 
(Diallo et  al., 2018; Wee et  al., 2015), risk management 
(Dikmen et al., 2018; Wang & Zhang, 2018; Zhang et al., 
2014), and decision making (Pan et al., 2019; Wang et al., 
2018). The BBN has several advantages: (1) It can describe 
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the probability relationship (causality) between variables 
combining the Bayesian probability theory with the graph 
theory; and (2) It can compute the probabilities with given 
evidence under different scenarios (Zhang et  al., 2016). 
A BBN-based project complexity measurement model 
(PCMM) is proposed in this study to measure the project 
complexity by revealing the cause-effect relationships be-
tween the project complexity and its influential variables. 
Thus, key factors influencing the project complexity level 
are identified, and the corresponding recommendations 
are suggested based on the research results. 

The main research questions include: (i) How to build 
an effective PCMM, associated with the consideration of 
causal relationships among complexity factors? (ii) How 
can the developed model be used to measure the com-
plexity level of a construction project? In this study, the 
proposed BBN-based method measures the level of proj-
ect complexity with the causality among various factors 
taken into account. This novelty of this research lies in 
(a) the state of knowledge by proposing a method that is 
capable of measuring the complexity level under what-if 
scenarios for complexity management, and (b) the state 
of practice by providing insights into a better understand-
ing of causal relationships among influencing factors of 
project complexity in construction projects. The proposed 
approach can be used as a decision tool to provide support 
for complexity management in construction projects.

The paper is organized as follows. Section 1 reviews 
recent works on measurement methods of project com-
plexity. Section 2 proposes a novel BBN-based project 
complexity measurement method. Section 3 develops the 
project complexity measurement model, including model 
design and validation. Section 4 presents the model ana-
lytics including predictive analysis, diagnostic analysis, 
sensitivity analysis, and influence chain analysis. Section 5  
discusses the model implication from theoretical and 
practical perspectives.

1. Literature review on project  
complexity measurement

The concept of project complexity has been discussed for 
years, but there is a lack of consensus on what constitutes 
project complexity since it is a term that is difficult to de-
fine and even harder to quantify (Luo et al., 2017; Vidal 
et al., 2011a). Baccarini (1996) defined project complex-
ity as “consisting of many varied interrelated parts”. Wil-
liams (1999) divided project complexity into structural 
complexity (the number and interdependence of those 
components) and uncertainty in goals and means. Other 
researchers regard project complexity as a subjective and 
highly dynamic concept. For instance, Vidal et al. (2011b) 
proposed that project complexity is difficult to be under-
stood, foreseen and kept under control its overall behav-
ior, even when given reasonably complete information 
about the project system. Xia and Chan (2012) pointed 
out that it is not appropriate to use the same variables to 
measure project complexity since construction projects 

include various categories of projects. Generally, project 
complexity is one of the most fundamental properties of 
the project, which results from the interactions of struc-
tural, dynamic, and uncertain elements (Mihm et  al., 
2003; Xia & Chan, 2012). 

Project complexity is an emerging but critical topic 
in construction project management. Researchers have 
increasingly recognized the importance of complexity 
measurement in project diagnosis and sought to measure 
project complexity from multiple perspectives (Baccarini, 
1996; Bakhshi et al., 2016). Literature review on project 
complexity measurement is summarized in Table 1. As the 
project complexity is difficult to be quantified precisely, 
many researchers identified complexity factors to build 
a framework describing the project complexity qualita-
tively. For instance, Sinha et  al. (2006), Bosch-Rekveldt 
et al. (2011), Xia and Chan (2012), Lessard et al. (2014), 
Maylor et  al. (2008), Gransberg et  al. (2012), Vidal and 
Marle (2008), Owens et al. (2012), Jarkas (2017), and Luo 
et  al. (2016) mainly focus on the framework of project 
complexity from different views. In addition, several at-
tempts have been made to propose methods to measure 
the project complexity quantitatively such as Vidal et al. 
(2011b), Nguyen et  al. (2015), He et  al. (2015), Shafiei-
Monfared and Jenab (2012), Lu et al. (2015), Qureshi and 
Kang (2015), and Ellinas et al. (2018). 

In general, existing studies have addressed some 
frameworks of project complexity, and some scholars pri-
marily adopted quantitative methods in measuring proj-
ect complexity. However, project complexity results from 
interactions of numerous elements which are required to 
further measure the cause-effect relationships. In addi-
tion, the existing models have the limitation of measuring 
the complexity under what-if scenarios. For instance, the 
aforementioned FAHP, AHP, FANP, and SEM can measure 
complexity from one aspect, but cannot be used to mea-
sure the magnitude of project complexity under different 
scenarios. Accordingly, this study proposes a simulation 
model for measuring the magnitude of the project com-
plexity considering the cause-effect relationships in con-
struction projects. 

2. Research methodology

BBN offers an effective modeling technique for uncer-
tainty (Qazi et al., 2016), which can be used in measur-
ing the project complexity with interdependency taken 
into account. Flowchart for implementing project com-
plexity measurement model using BBN is shown in Fig-
ure 1. This approach consists of four main phases. The 
first phase of model development is the identification of 
project complexity nodes. The second phase involves the 
construction of the network structure, structure optimiza-
tion, and determination of conditional probability table 
(CPT) followed by model validation in the third phase. 
In the fourth phase of the model analytics, the developed 
PCMM is utilized to conduct model reasoning which in-
cludes predictive analysis, diagnostic analysis, sensitivity 
analysis, and influence chain analysis. 
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2.1. Identification of project complexity nodes

The first phase of model development is to identify the 
complexity nodes, which can be obtained in three steps: 
literature review, data collection, and data transformation. 
Based on the literature review, 26 complexity factors are 
chosen as the nodes of PCMM in this study (Table 2). These 
complexity factors were verified through literature review, 
Delphi questionnaires, correlation analyses, and explorato-
ry factor analysis considering the characteristics of complex 
construction in China in the study of Luo et al. (2016). The 
questionnaire survey is then conducted including 26 com-
plexity factors and project complexity with a 5-point Likert 
scale as “1 = simple, 2 = mildly complex, 3 = moderately 
complex, 4 = highly complex, and 5 = extremely complex”. 
The Likert scale has been adopted in some research. For 
instances, Santana (1990) used 0 to 10-point Likert scale 
to quantify the variable of complexity category. Vidal et al. 
(2011a) asked participants to evaluate the contribution of 
each factor to project complexity on 5-level Likert scales. 
He et al. (2015) measured the complexity of mega construc-

Table 1. Literature review on project complexity measurement

Author (year) Measurement 
method Results

Sinha et al. (2006) Qualitative 
method

Proposed a framework for measuring project complexity based on the Shannon 
information theory

Vidal and Marle (2008) Qualitative 
method

Defined the project complexity framework as project size, project variety, project 
interdependence, and elements of context

Maylor et al. (2008) Qualitative 
method

Reported a grounded model with an investigation of the perceptions of project 
managers

Bosch-Rekveldt et al. 
(2011)

Qualitative 
method

Developed a framework for characterizing project complexity as technical, 
organizational and environmental complexity

Vidal et al. (2011b) Quantitative 
method

Used the Analytic Hierarchy Process (AHP) to formulate a project complexity measure 
model for assisting project managers’ decision making

Gransberg et al. (2012) Qualitative 
method

Developed the “complexity footprint” based on an international research team’s 
detailed study of eighteen complex projects

Owens et al. (2012) Qualitative 
method

Developed a five-dimensional complexity model including cost, schedule, design, 
context, and finance

Shafiei-Monfared and 
Jenab (2012)

Quantitative 
method

Combined managerial and technical graphs and the complexity design structure 
matrix to measure the relative complexity of design projects

Xia and Chan (2012) Qualitative 
method Identified several key parameters for measuring building project complexity

Lessard et al. (2014) Qualitative 
method

Built a house of project complexity to understand complexity in large infrastructure 
projects

He et al. (2015) Quantitative 
method

Utilized a Fuzzy Analytic Network Process (FANP) approach to measure the 
complexity of mega construction projects 

Lu et al. (2015) Quantitative 
method Adopted a simulation model to measure project complexity with the hidden workload

Nguyen et al. (2015) Quantitative 
method

Employed the Fuzzy Analytic Hierarchy Process (FAHP) method to measure the 
overall project complexity

Qureshi and Kang 
(2015)

Quantitative 
method

Used a Structural Equation Modeling (SEM) technique to measure the organizational 
factors of project complexity

Luo et al. (2016) Qualitative 
method Classified six dimensions of project complexity including 26 factors 

Jarkas (2017) Qualitative 
method

Recognized uncertainty, organizational complexity, and inherent complexity as the 
most significant principles of the project complexity

Ellinas et al. (2018) Quantitative 
method

Proposed a quantitative assessment with empirical activity networks to deal with one 
aspect of project complexity-structural complexity

Figure 1. Flowchart for implementing project complexity 
measurement using BBN
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Table 2. 26 complexity factors based on the literature review

Classification Factors Description References

Information 
complexity (IC)

Trust among project 
organization (IC1)

Complexity in developing trust 
among organizations

Girmscheid and Brockmann (2008), Maylor et al. 
(2008), Bosch-Rekveldt et al. (2011)

Sense of cooperation 
(IC2)

Complexity in improving the 
sense of cooperation

Vidal et al. (2011a), Maylor et al. (2008), Vidal 
and Marle (2008)

Capacity of transferring 
information (IC3)

Complexity in transferring the 
information Maylor et al. (2008)

Degree of obtaining 
information (IC4) 

Complexity in obtaining the 
information Maylor et al. (2008), Vidal and Marle (2008)

Cultural differences (IC5) Complexity associated with the 
cultural differences

Vidal et al. (2011a), Maylor et al. (2008), 
Remington et al. (2009), Vidal and Marle (2008)

Level of processing 
information (IC6)

Complexity in processing the 
information Maylor et al. (2008)

Experience of participants 
(IC7)

Complexity due to insufficient 
experience of participants

Baccarini (1996), Maylor et al. (2008), 
Remington et al. (2009), Vidal and Marle (2008)

Information uncertainty 
(IC8)

Complexity involved with the 
information uncertainty Xia and Chan (2012)

Uncertainty of project 
management methods 
and tools (IC9)

Complexity involving the 
uncertainty in the project 
management methods and tools

Vidal et al. (2011a), Maylor et al. (2008), Bosch-
Rekveldt et al. (2011), Remington and Pollack 
(2016), Vidal and Marle (2008), Williams (1999)

Task complexity 
(TAC)

Dependence of 
relationship among tasks 
(TAC1)

Complexity in the dependency 
among tasks

Baccarini (1996), Vidal et al. (2011a), Bosch-
Rekveldt et al. (2011), Remington and Pollack 
(2016), Vidal and Marle (2008)

Diversity of technology in 
the project (TAC2) 

Complexity in the diversity of 
technology

Baccarini (1996), Vidal et al. (2011a), Maylor 
et al. (2008), Remington and Pollack (2016), 
Vidal and Marle (2008), Williams (1999)

Diversity of tasks (TAC3) Complexity in the diversity of 
tasks

Baccarini (1996), Vidal et al. (2011a), Maylor 
et al. (2008), Bosch-Rekveldt et al. (2011), 
Remington and Pollack (2016), Vidal and Marle 
(2008)

Technological 
complexity 
(TEC)

Novelty of construction 
products (TEC1)

Complexity in implementing the 
novel technology in construction 
products

Luo et al. (2016), Puddicombe (2011), Tatikonda 
and Rosenthal (2000)

Risk of using highly 
difficult technology 
(TEC2)

Complexity in adopting highly 
difficult technology

Maylor et al. (2008), Bosch-Rekveldt et al. 
(2011), Remington and Pollack (2016), 
Remington et al. (2009), Vidal and Marle (2008), 
Xia and Chan (2012)

Knowledge of new 
technology (TEC3)

Complexity in gaining knowledge 
about new technology Luo et al. (2016)

Availability of resources 
and skills (TEC4)

Complexity in attaining the 
resources and skills

Vidal et al. (2011a), Maylor et al. (2008), Bosch-
Rekveldt et al. (2011), Vidal and Marle (2008), 
Xia and Chan (2012)

Organizational 
complexity 
(OC)

Number of organizational 
structure hierarchies 
(OC1)

Complexity linked to 
organizational structure 
hierarchies

Baccarini (1996), Vidal et al. (2011a), Maylor 
et al. (2008), Remington et al. (2009), Vidal and 
Marle (2008), Williams (1999)

Number of organizational 
units and departments 
(OC2)

Complexity linked with 
organizational units and 
departments

Baccarini (1996), Vidal et al. (2011a), Maylor 
et al. (2008), Remington et al. (2009), Vidal and 
Marle (2008), Williams (1999)

tion projects with a 5-point Likert rating scale. It can be 
concluded that the Likert scale is suitable for collecting data 
regarding the project complexity.

To ensure the representativeness and objectivity of the 
opinions collected from the experts, the choices of respon-
dents were also controlled. The experts have at least two 
years of work experience, and they are asked to report 
about their most recently completed complex construction 
project (Luo et al., 2016). Finally, a total of 314 question-

naires were handed out and 245 valid questionnaires were 
collected with a 78% effective recovery rate. Demographic 
details are demonstrated in Figure 2. In this sample, the 
main respondents are male (76.7%), project manager 
(29.8%), and have less than five years of work experience 
(44.5%). The data are mainly collected from residential 
projects (49.8%), projects with a size of 100~500 million 
RMB (40%), and projects with a duration between 25 and 
36 months (37.6%).
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Classification Factors Description References

Environmental 
complexity (EC)

Environment of changing 
policy and regulation 
(EC1)

Complexity related to changing 
policy and regulation

Vidal et al. (2011a), Bosch-Rekveldt et al. (2011), 
Remington and Pollack (2016), Remington et al. 
(2009), Vidal and Marle (2008), Xia and Chan 
(2012)

Environment of changing 
economy (EC2)

Complexity related to changing 
economy

Vidal et al. (2011a), Bosch-Rekveldt et al. (2011), 
Remington and Pollack (2016), Remington et al. 
(2009), Vidal and Marle (2008), Xia and Chan 
(2012)

Changes in the project 
construction environment 
(EC3)

Complexity related to changes in 
the construction site

Remington and Pollack (2016), Remington et al. 
(2009), Vidal et al. (2011a), Bosch-Rekveldt et al. 
(2011), Vidal and Marle (2008), Xia and Chan 
(2012)

The influence of external 
stakeholders (EC4)

Complexity due to the impact of 
external stakeholders Luo et al. (2016)

Goal complexity 
(GC)

Number of stakeholder 
requirements change 
(GC1)

Complexity related to the change 
in the stakeholders’ requirements Luo et al. (2016)

Change of project 
organization (GC2)

Complexity due to the change in 
project organization Luo et al. (2016)

Uncertainty of goals 
(GC3)

Complexity associated with the 
uncertain goals

Maylor et al. (2008), Remington and Pollack 
(2016), Remington et al. (2009), Williams (1999), 
Xia and Chan (2012)

Complexity of the 
contractual relationship 
(GC4)

Complexity involved with the 
contractual relationship Luo et al. (2016)

End of Table 2

Figure 2. Demographic details of the returned 245 valid questionnaires by: (a) respondents’ gender; (b) respondents’ work 
experience; (c) respondents’ designation; (d) project type; (e) project duration; (f) project size
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2.2. Complexity model design

(1) Construct the network structure
A total of 225 training samples and expert knowledge 
are used to construct the network structure by structural 
learning. Structural learning is the process of construct-
ing the BBN topology by analyzing the logical relation-
ship between node variables from multiple angles. The K2 
algorithm is chosen in this study to grading search. The 
calculation process consists of the definition of the scoring 
function and the setting of the search strategy (Cooper & 
Herskovits, 1992). The K2 algorithm proposed by Cooper 
and Herskovits (1992) uses posterior probability P(G/D) 
as the scoring standard, also known as CH scoring func-
tion. The K2 algorithm uses a given order containing all 
node variables and a maximum number of parent nodes 
to limit the search space as the search constraint. Thus, the 
search space of the algorithm and computational work-
load can be reduced. 

(2) Optimization of the structure
Machine learning is carried out according to the K2 al-
gorithm, and the initial Bayesian network structure is 
obtained after completion. However, there will be unrea-
sonable causality among the results of machine learning. 
Therefore, it is necessary to further optimize the network 
structure by judging the causal relationship between vari-
ables through expert knowledge on the basis of the initial 
structure. An expert group is used in this study to adjust 
the network structure. The expert group consists of three 
project managers, each with more 15 years of working ex-
perience in construction projects. Even if the judgments 
of experts are subjective, it is more reliable than individual 
statements, thus, more objective in its outcomes (Xia & 
Chan, 2012). After discussion and combining with ex-
perts’ opinions, the logical relationship between complex 
factors is modified and improved to optimize the network 
structure.

(3) Determination of the conditional probability table
On the basis of establishing the optimal BBN structure, 
the parameter learning of BBN can be further carried out 
to calculate the CPT of each node variable. In general, 
there are two methods of parameter learning, including 
Bayesian Estimation (BE) and Maximum Likelihood Es-
timation (MLE). MLE has high computational efficiency 
and no prior probability needs to be defined artificially. 
The MLE is selected in this study for parameter learning 
to obtain the CPT of nodes. The principle of the MLE 
method is to determine the network parameters accord-
ing to the maximum likelihood degree of sample data and 
network parameter. 

2.3. Model validation

After the structure and the cause-effect relationships are 
developed, the cross-validation is used for model valida-
tion in this study (Vehtari et al., 2017). Two principles are 

followed to divide the dataset into a training set and a 
test set. The first principle is to estimate the number of 
samples in the training set, generally at least 50% of the 
total number of samples. The second principle is that two 
sets must be sampled uniformly from the total samples. 
The dataset is randomly divided into a training set (225 
data) and a test set (20 data), in which the 20 data is uti-
lized for model validation. The processes are carried out 
as follows: i) input the evidence information into the de-
veloped PCMM of one sample record; ii)obtain the prob-
ability distribution of project complexity through model 
reasoning; iii) compare the simulation state and real level 
to get the validation results within allowance error range; 
iv) repeat these steps and verify the other 19 data respec-
tively; v) finally get the validation results comprehensively. 
The model can be regarded as effective once the validity is 
above 80% (Cooper & Herskovits, 1992).

The accuracy of model measurement means that the 
result of the model measurement is consistent with the 
real level of project complexity under given variable con-
ditions. The specific calculation principle of measurement 
accuracy is as follows: To the data i, the real level of com-
plexity is represented as Ri. The probability distribution of 
project complexity can be obtained by PCMM, the state 
corresponding to the maximum value in the probability 
distribution is taken as Si1, the state of second-largest 
probability is taken as Si2. Following the optimal Bayesian 
decision theory, the state with the largest probability of 
probability distribution is regarded as the final decision 
(Berger, 2013; Yukalov & Sornette, 2015). Since the real 
level is gotten by individual grade from experts, this study 
has an allowable error range due to expert knowledge that 
the state of the second-largest probability is also taken 
into account. This study makes the following provisions: 
If Si1 = Ri, then the measurement result is completely accu-
rate; If Si1 ≠ Ri, and Si2 = Ri, then the measurement result is 
considered to be within the allowable error range; If Si1 ≠ 
Ri and Si2 ≠ Ri, then the measurement result is considered 
to be inaccurate. When all the test data is fed into the 
model, respectively, the ratio of the accurate number of 
measurement results to the total number of test data is the 
accuracy rate of the measurement model. The accuracy 
rate of model measurement is then expressed in Eqn (1):

1 ,

n
ii

X
P

n
==

∑
  (1)

where Xi represents the measured result which is accurate 
or within the allowable error range, i = 1, 2, …, n repre-
sents the number of test data. 

2.4. Model analytics

The model reasoning of a BBN is the process of calculat-
ing the probability. According to different reasoning di-
rections, the reasoning modes widely used can be divided 
into the following three types: forward reasoning (predic-
tive analysis), backward reasoning (diagnostic analysis), 
and explanation reasoning (sensitivity analysis and influ-
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ence chain analysis). Predictive analysis is able to forecast 
future outcome when given evidence (Wee et al., 2015). 
Diagnostic analysis can diagnose the possible causes and 
influence by identifying the change of posterior probability 
of the target nodes (Wee et al., 2015). Sensitivity analysis 
attempts to calculate the occurrence of some causes result-
ing in a certain consequence and can be used to identify 
the suspected causes (Zhang et al., 2016). Influence chain 
analysis is used to study the degree of mutual influence 
between nodes to find the most possible way to cause the 
result to happen. Based on the developed PCMM, four 
types of what-if scenario analysis are performed to meas-
ure the magnitude of the project complexity. According 
to the results of model analytics, more suggestions can be 
proposed for pre-control of the project complexity.

3. Model development and validation 

3.1. Factor identification 

According to the literature review, 26 complexity factors 
are chosen as the project complexity nodes for PCMM. To 
simplify the calculation in this study, the 225 training sam-
ples collected from the questionnaire are processed into 
three states of complexity level. Low state stands for the 
levels of simple and mildly complex, Moderate state stands 
for the level of moderately complex, and High state stands 
for the levels of highly complex and extremely complex. 
The statistical distribution of states of complexity factors 
after transformed is shown in Table 3. Specifically, the Low 
state is defined as a state where the complexity level is in 
the negligible area. Thereby, measures to reduce the com-
plexity level are not required. The complexity level in the 
Moderate state is acceptable even though some complexity 
factors in the project management process exist. There-
fore, limited measures are required to reduce complexity. 
The High state is defined as a state that the system is very 
complex and immediate measures are needed to reduce 
the complexity level. 

3.2. Network structure and CPT determination

Empirical research is undertaken to explore the current 
state of complexity management practices to identify the 
interdependencies between relevant project complexity 
factors within construction projects. The topology con-
struction of a BBN is a complex process. It is difficult to 
depict the learning process through mathematical mod-
els purely by means of data promotion, which has certain 
limitations in reality. Therefore, in the process of struc-
tural learning, the software GeNIe 2.0 is used in this study 
to construct the BBN topology by integrating machine 
learning with expert knowledge. 

During the modeling process, the aforementioned 26 
complexity factors and the target variable project com-
plexity are used as BBN nodes. Firstly, based on the expert 
background knowledge, the initial BBN structure is ob-
tained by machine learning using the 225 training samples 
as the inputs. Secondly, the causal relationship analysis is 

adjusted by the expert group on the basis of the initial 
network structure. For instance, the causal relationship is 
added from TAC1 to project complexity. Hence, the sci-
entific and accuracy of the network structure is improved 
and the BBN-based project complexity measurement 
model that conforms to the objective reality is obtained. 
Finally, on the basis of the established Bayesian network 
structure, the parameter learning of Bayesian network is 
further done to obtain the CPT of each node variable in 
the network. Its function is to obtain the CPT of all the 
nodes, in order to provide the basis for the later model 
reasoning. 

Following the above-mentioned procedures, the prob-
ability distributions of the complexity level and the specif-
ic complexity factors under three states are obtained, and 
the result is shown in Figure 3. It concludes from Figure 
3 that the probability of the project complexity being the 
Low state is 27%, being the Moderate state is 49%, and be-
ing the High state is 25%. In recent years, the construction 
industry has seen rapid growth in projects of increasing 
size and complexity (Luo et al., 2017). This condition is 
proven by the results obtained through this research. It is 
noteworthy that the probability of the parameter learning  

Table 3. Statistical distribution of complexity nodes  
under different states

Complexity nodes Low state Moderate state High state
IC1 48.0% 32.9% 19.1%
IC2 44.9% 35.1% 20.0%
IC3 42.2% 31.1% 26.7%
IC4 37.3% 38.2% 24.4%
IC5 41.3% 39.1% 19.6%
IC6 44.4% 31.1% 24.4%
IC7 42.7% 34.7% 22.7%
IC8 44.4% 33.3% 22.2%
IC9 50.2% 28.4% 21.3%

TAC1 8.0% 36.0% 56.0%
TAC2 12.4% 34.2% 53.3%
TAC3 12.9% 32.4% 54.7%
TEC1 28.4% 43.6% 28.0%
TEC2 36.9% 40.9% 22.2%
TEC3 32.4% 39.6% 28.0%
TEC4 39.6% 37.3% 23.1%
OC1 23.6% 35.6% 40.9%
OC2 19.1% 34.7% 46.2%
EC1 42.7% 35.1% 22.2%
EC2 35.1% 40.4% 24.4%
EC3 26.7% 40.9% 32.4%
EC4 29.3% 28.0% 42.7%
GC1 16.9% 39.1% 44.0%
GC2 41.3% 32.9% 25.8%
GC3 59.6% 22.7% 17.8%
GC4 24.0% 40.4% 35.6%
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is the conclusion under extensive investigation with a 
large number of data statistics, which reflects the overall 
situation of the complexity level of construction projects, 
not the complexity of one specific construction project. 

3.3. Model validation

Through the above research, the BBN-based PCMM is 
constructed, and the CPT of all nodes is calculated in 
construction projects. On this basis, the 20 test samples 
are the inputs for model validation. The purpose of model 
validation is to prove the logical relationship and condi-
tional probability of the nodes in the model are consistent 
with the complexity of the actual construction projects. 
The real level of 26 complexity factors of one data is fed 
into PCMM to calculate the probability distribution of 
project complexity. This iteration is repeated for the 20 
test samples, and the result of the probability distribu-
tion of project complexity is illustrated in Figure 4. The 

largest possibility of project complexity is regarded as the 
predicted state. Figure 5 reveals a comparison of the pre-
dicted state and real value for the model validation. 

It can be seen from Figure 5 that the simulation state 
of project complexity of ten data (No. 1, No. 3, No. 4, No. 
7, No. 10, No. 12, No. 14, No. 15, No. 16, and No. 17) 
matches the real level. For example, the probability dis-
tribution of project complexity is 3% Low, 43% Moderate, 
and 54% High for No. 1 in Figure 4. It concludes that the 
largest possibility is a High state, which is consistent with 
the real level “4” (highly complex). Thus, it is regarded as 
matching totally in this study. Further, compared the sec-
ond-largest probability of others data with the real level, 
it can be found that six data (No. 2, No. 5, No. 6, No. 9, 
No. 13, and No. 19) is within the allowable error range. 
Hence, the effective rate is 16 / 20 = 80%. This proves the 
validation of the model. Therefore, the network structure 
and CPT can be verified through the model validation, 
which can be used for model analytics. The complexity 
measurement model established in this study is feasible 
and can provide a reference for the complexity measure-
ment of construction projects. 

The reason for choosing the allowable error range of 
these six data is further explored. For example, the prob-
ability distribution of project complexity is 33% Low, 59% 
Moderate, and 8% High for No. 5 in Figure 4. It concludes 
that the largest possibility is a Moderate state, and the sec-
ond-largest possibility is a Low state, which is consistent 
with the real level “2” (mildly complex). Therefore, it is 
regarded as matching in this study. This can also be proved 
by No. 2, No. 6, No. 9, No. 13, and No. 19. The reason is 
that the real level is obtained from the questionnaire, and 
one data is achieved only by one expert, thereby, there 
exists an error range due to expert knowledge about com-
plexity estimation. Accordingly, choosing appropriate ex-
perts is very important to avoid bias, and the best way is 
to get the mean value through an expert group.

Figure 4. Results of BBN-based project complexity 
measurement model validation

Figure 3. BBN-based PCMM in construction projects using machine learning and expert knowledge
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4. Model analytics

Adopting the inference function in BBN, PCMM is used 
to measure the magnitude of the project complexity with 
given evidence under different scenarios. Four types of 
what-if scenario analysis, predictive, diagnostic, sensitiv-
ity, and influence chain analysis are performed to measure 
the magnitude of the project complexity. Accordingly, the 
optimization strategies can be made for managing com-
plexity in construction projects.

4.1. Predictive analysis

Predictive analysis is also known as the forward reason-
ing, which can reason the result according to the direc-
tion of the directed arc of the connecting nodes based on 
updating the reason information. Predictive analysis aims 
to forecast future outcome under different scenarios given 
evidence (Wee et al., 2015). In PCMM, the propagation 
of evidence of complexity factors allows an update of the 

probability distribution of project complexity in the net-
work in the light of the newly found evidence. Six dimen-
sions of project complexity are set as different scenarios to 
forecast the project complexity, and the result is shown in 
Table 4 and Figure 6.

 From the scenarios of a single dimension, when all 
the factors of technological complexity (TEC) are set to 
evidence, the project complexity has the largest probability 
with 38% High state. The second-ranking is information 
complexity (IC), which leads to the probability distribu-
tion of project complexity as 17% Low, 50% Moderate and 
33% High. Other four dimensions have a similar predic-
tive result of project complexity. It concludes that tech-
nological complexity has the largest influence on project 
complexity, and information complexity is the second-
largest dimension. Thus, six dimensions of project com-
plexity are classified into three groups as TEC, IC, and 
TAC/OC/GC/EC to further explore the predictive analysis 
of combinational dimensions under ten scenarios.

Figure 5. Comparison of the predicted state and real value for the 20 test samples

No.1

5

No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.10 No.16No.9 No.17 No.20No.18 No.19

4

3

2

1

High

Moderate

Low

Re
al

 v
al

ue
 

Pr
ed

ic
te

d 
st

at
e 

Represents the real value Represents the predicted state

High

Low

Not matching

Not matching

No.11 No.12 No.13 No.14 No.15

Table 4. Results of the predictive analysis under different scenarios

Scenarios High 
state Evidence Results

(Low, Moderate, High)

Si
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n 1 IC = High 17%, 50%, 33%

2 TAC = High 25%, 49%, 26%
3 TEC = High 15%, 47%, 38%
4 OC = High 26%, 49%, 25%
5 EC = High 25%, 49%, 26%
6 GC = High 27%, 49%, 25%
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7 TEC = High, IC = High 4%, 67%, 29%
8 IC = High, TAC = High 17%, 50%, 33%
9 TEC = High, TAC = High 14%, 48%, 39%

10 TAC = High, OC = High 25%, 48%, 27%
11 TEC = High, IC = High, TAC = High 4%, 67%, 29%
12 TAC = High ,OC = High ,GC = High 25%, 48%, 27%
13 TEC = High, IC = High, TAC = High, OC = High 4%, 67%, 29%
14 TAC = High, OC = High, GC = High, EC = High 23%, 48%, 29%
15 TEC = High, IC = High, TAC = High, OC = High, GC = High 4%, 67%, 29%
16 TEC = High, IC = High, TAC = High, OC = High, GC = High, GC = High 4%, 67%, 29%
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From the result of combinational dimensions, compar-
ing scenarios 10, 12, and 14, the probability distribution of 
project complexity is similar to the single dimension when 
any combinational dimensions of TAC/OC/GC/EC are set 
to High state. Thus, it can be verified that TAC/OC/GC/
EC does not have much influence on project complexity. 
Comparing scenarios 7, 11, 13, 15, and 16, all the prob-
ability distribution of project complexity is 4% Low, 67% 
Moderate, and 29% High, which means that the predictive 
result of project complexity depends on the technologi-
cal complexity and information complexity and no mat-
ter the states of the other four dimensions. Comparing 
scenarios 8 and 9 with a single dimension of scenario 1 
and 3, respectively, it could be found that the probability 

distribution of project complexity is similar to the single 
dimension. Thus, it can prove that task complexity does 
not impact project complexity. Comparing scenario 7 with 
scenarios 1 and 3, respectively, it can be found that the 
probability distribution of project complexity of combi-
national dimensions is lower than the single dimension 
of information complexity and technological complexity. 
This represents that information complexity and techno-
logical complexity have a negative impact on each other. 
Accordingly, the major focus of concern for complexity 
management is technological complexity and information 
complexity in construction projects. 

4.2. Diagnostic analysis

Diagnostic analysis is also known as backward reason-
ing. Setting evidence on a domain variable may affect the 
probability distribution of domain factors by propagating 
backward against the direction of the link. Hence, BBN 
is able to diagnose the possible causes and influence by 
identifying the change of posterior probability of the tar-
get nodes (Wee et al., 2015). It is assumed that the target 
node “project complexity” at the High state is set to 100%. 
Therefore, when the project complexity is at the level of 
highly complex and extremely complex, the factors with 
the most significant influence on the project complexity in 
the Bayesian network can be identified. These factors are 
then set to the High state gradually to perform diagnostic 
analysis under different scenarios, and the result is dem-
onstrated in Figure 7.

Figure 6. Probability distribution of project complexity of the 
predictive analysis under different scenarios
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Figure 7. Probability distribution of the eight factors in diagnostic analysis under different scenarios: (a)TAC1; (b) TAC3; (c) TAC2; 
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It can be indicated that the increase in project com-
plexity is likely caused by eight factors. When the prob-
ability of “project complexity” being High state is 100%, 
eight factors are diagnosed as the key factors influencing 
project complexity: Dependence of relationship among 
tasks (TAC1), Diversity of tasks (TAC3), Diversity of tech-
nology in the project (TAC2), Number of organizational 
units and departments (OC2), Number of stakeholder re-
quirements change (GC1), The influence of external stake-
holders (EC4), Number of organizational structure hier-
archies (OC1), and Information uncertainty (IC8). These 
eight factors are ranked by the probability of being High 
state and are set to a High state to simulate the different 
scenarios, respectively. 

From the Figure 7, comparing the scenarios 2~5, the 
probability of the High state of every cause factor increas-
es when the TAC1, TAC3, TAC2, and OC2 are set to a 
High state, step by step. It concludes that TAC1, TAC3, 
TAC2, and OC2 are the main causes to project complex-
ity. Accordingly, more attention is required to the causing 
factors TAC1, TAC3, TAC2, and OC2 during complexity 
management. After that, comparing scenarios 6, 7 and 8, 
the probability distribution of other causing factors main-
tains the same ones, which indicates that these factors 
GC1, EC4, OC1, and IC8 are not the main causes under 
these scenarios. In addition, factors TEC1 and TEC3 have 
a high probability of High state and become likely caus-
ing factors. Accordingly, the major focus of concern for 
complexity management can be shifted among different 
scenarios during the process of project management.

4.3. Sensitivity analysis

Sensitivity analysis attempts to calculate the occurrence of 
some causes resulting in a certain consequence and can 
be used to identify the suspected causes once an accident 
occurs (Zhang et  al., 2016). The purpose of sensitivity 

analysis in this study is to identify which complexity fac-
tors have the greatest influence on the project complexity 
when subjected to change. It can help managers to focus 
on tracking the complexity factors that can cause a sig-
nificant change in the probability of project complexity 
with a slight change. The probability of each node is set to 
change to the same degree, and then the influence on the 
posterior probability of the target node can be calculated. 
The network nodes are colored to indicate sensitive pa-
rameters, and the result is shown in Figure 8.

It could be found from Figure 8 that the sensitive fac-
tors influencing the project complexity which are colored 
in red. These sensitive factors include Novelty of construc-
tion products (TEC1), Risk of using highly difficult tech-
nology (TEC2), Information uncertainty (IC8), Level of 
processing information (IC6), Diversity of tasks (TAC3), 
Diversity of technology in the project (TAC2), Knowledge 
of new technology (TEC3), Changes in the project con-
struction environment (EC3), Uncertainty of project man-
agement methods and tools (IC9), Degree of obtaining 
information (IC4), Capacity of transferring information 
(IC3). Small changes in the above factors may have a large 
impact on the project complexity. Hence, special attention 
should be paid to these sensitive factors and correspond-
ing measures should be taken to improve the capacity of 
complexity management.

The sensitive factors can be ranked according to the 
exact sensitive value of the variable. The rank is following: 
Risk of using highly difficult technology (TEC2) > Novelty 
of construction products (TEC1) > Information uncer-
tainty (IC8) > Knowledge of new technology (TEC3) > Di-
versity of tasks (TAC3) > Level of processing information 
(IC6) > Diversity of technology in the project (TAC2) > 
Changes in the project construction environment (EC3) > 
Uncertainty of project management methods and tools 
(IC9) > Degree of obtaining information (IC4) > Capac-
ity of transferring information (IC3). It concludes that 

 Figure 8. Result of the sensitivity analysis of BBN-based project complexity measurement model
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these sensitive factors can be classified into dimensions 
of technological complexity, information complexity, and 
task complexity, which is consistent with the above result.

4.4. Influence chain analysis

The strength of influence chain analysis is used to depict 
the degree of mutual influence between nodes. Influence 
chain analysis describes the dependence degree between 
conditional probabilities, with the aim of exploring the 
most possible way which leads to the result. The width of 
the directional arcs describes the influence intensity be-
tween the node variables it connects, which is the influ-
ence of the parent on the child node. If several nodes with 
strong influence relations form a link, and the target node 
exists in the link, then the link is the maximum influence 
causal chain. In this study, the state of project complexity 
is set to “High = 100%”, and then the strength of influence 
analysis is carried out, and the result is shown in Figure 9.

From Figure 9, it can be seen that two influenc-
ing causative chains appear as shown as the thickened 
link. The first one is “Novelty of construction prod-
ucts (TEC1)→Diversity of technology in the project 
(TAC2)→Information uncertainty (IC8)→Project com-
plexity”. According to the results, the novelty of construc-
tion products will influence the diversity of technology 
in the project, which will influence project complexity 
through information complexity. It concludes that techno-
logical complexity and task complexity play an important 
role in project complexity, which proves the consistency 
with the above conclusion.

The second one is “Experience of participants 
(IC7)→Cultural differences (IC5)→Trust among project 
organization (IC1)→Sense of cooperation (IC2)→Degree 
of obtaining information (IC4)→Capacity of transfer-
ring information (IC3)→Level of processing information 
(IC6)→Uncertainty of project management methods and 

tools (IC9)→Project complexity”. The result means that 
the experience of participants will influence cultural dif-
ferences and trust and sense of cooperation, which leads 
to the difficulty of information management. All these 
factors belong to the dimension of information complex-
ity, which is consistent with the result that information 
complexity has an impact on project complexity. Thereby, 
the strategy of complexity management is offering training 
courses for the project team to enhance their knowledge 
and skills, and choosing the professional participants and 
encouraging close collaborations between project stake-
holders during the early phase of the project (Hwang 
et al., 2018).

5. Discussions

5.1. Theoretical implications

Project complexity has been regarded as vital to the 
achievements of project success (Luo et  al., 2016). Al-
though researchers have realized the importance of meas-
uring the project complexity in construction projects, 
effect methods for addressing the challenges are limited. 
The existing research forms an endeavor to narrow the 
gap, in which the magnitude of complexity and its causal 
relationships are investigated with the BBN-based PCMM 
approach.

Initially, the contribution of the study lies in the ad-
vancement of the body of knowledge of complexity man-
agement in construction projects. The study has resulted 
in the development of a simulation model that can clearly 
depict the interrelationships among factors of project 
complexity as shown in Figure 3. Such descriptions could 
largely extend the understanding of complexity factors 
and how the factors influence project complexity. As stat-
ed by He et  al. (2015), project complexity is a result of 
composing many interconnected parts within a project. 

Figure 9. Results of influence chain analysis of BBN-based project complexity measurement model
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Comparing with existing research, this study improves the 
complexity theory considering the cause-effect relation-
ships of complexity factors in construction projects. 

Furthermore, this study proposes a novel simulation 
approach for measuring project complexity under dif-
ferent scenarios based on BBN. According to the litera-
ture review, most of the current research cannot measure 
project complexity under what-if scenarios such as FAHP 
(Nguyen et  al., 2015), AHP (Vidal et  al., 2011b), FANP 
(He et al., 2015), and SEM (Qureshi & Kang, 2015). In this 
study, BBN-based PCMM approach is capable of measur-
ing the magnitude of project complexity under different 
scenarios. In addition, on the basis of the machine learn-
ing of collected data, the BBN simulation approach in this 
study can reduce the errors and biases of expert judgments 
in the PCMM development compared with existing BBN 
method.

5.2. Practical implications

Complexity management is the ultimate goal of complex-
ity research. The BBN-based PCMM developed in this 
study is useful for measuring the project complexity and 
managerial effort can be adjusted accordingly for better 
management of construction projects. There are some 
practical implications for this developed approach.

First of all, PCMM has flexible simulation capacities to 
explore the interrelationships among factors of project com-
plexity, which is clearly demonstrated by the model valida-
tion and analytics. The comparison between the different 
analysis helps deepen project practitioners’ understanding 
of interactions among complexity factors, as well as how 
such factor interrelations would affect the project complex-
ity. This can help raise their awareness about the impor-
tance of interactions. Hence, the project complexity can be 
managed with the help of the PCMM as it allows project 
managers to measure the project complexity under differ-
ent scenarios. By doing so, practitioners can use the find-
ings of this study to improve project management practices. 

In accordance with the results of model analytics, ad-
ditional attention is required on technological complexity, 
information complexity, and task complexity in the process 
of complexity management. The results are approved by 
other researches and practices. For instance, Puddicombe 
(2011) demonstrated that technological complexity is a key 
characteristic of projects that have distinct effects on proj-
ect performance. Luo et al. (2016) concluded that informa-
tion complexity has significant negative effects on project 
success. To address technological complexity and task com-
plexity, it is recommended to execute standard procedures 
that provide consistency to the team in terms of members’ 
interaction with one another and the accomplishment of 
tasks (An et al., 2018). To address information complex-
ity, it is recommended to utilize the central program con-
trol information system to realize timely collection and 
analysis of progress information and meet the information 
needs of decision-makers (He et al., 2015; Ma et al., 2018). 

Besides, the PCMM can be applied easily and conve-
niently into practical cases. The network and CPT in BBN-

based PCMM are determined based on a general survey 
of project practitioners in construction projects. Thus, the 
model has a wide range that can be applied to measure 
complexity. In this study, the construction project of World 
EXPO 2010 Shanghai China (EXPO 2010) is chosen as a 
case study for model application. The reason for choosing 
EXPO 2010 is that it involves various participants with 
cultural differences and coordinating difficulty due to 
complex relationships (He et al., 2015). The mean score 
of 26 complexity factors in He et al. (2015) is used for the 
application of PCMM, in which 20 managers participated 
in the EXPO 2010 are invited to rate the complexity level 
from 1 to 5. The complexity level is transformed into three 
states (tabulated in Table 5), and the reasoning result is 
demonstrated in Figure 10. It can be found from Figure 
10 that the probability distribution of project complexity 
is 3% Low, 48% Moderate, and 48% High. The finding is 
consistent with He et al. (2015) that the overall complexity 
level of the EXPO 2010 is highly complex, and the com-
plexity could also be controlled at a moderately complex 
level if proper strategies are developed and carried out. 
Thus, PCMM can be applied to measure the complexity 
level of a particular construction project.

Table 5. Complexity variables information of the EXPO 2010 
Shanghai China project

No. Factors Mean 
value

Complexity 
level

States

Low Moderate High
1 IC1 3.7 4 √
2 IC2 3.7 4 √
3 IC3 3.1 3 √
4 IC4 3.4 3 √
5 IC5 3.4 3 √
6 IC6 3.1 3 √
7 IC7 3.3 3 √
8 IC8 3.2 3 √
9 IC9 3.1 3 √
10 TAC1 3.3 3 √
11 TAC2 3.1 3 √
12 TAC3 3.1 3 √
13 TEC1 3.0 3 √
14 TEC2 3.5 4 √
15 TEC3 3.0 3 √
16 TEC4 3.1 3 √
17 OC1 3.0 3 √
18 OC2 3.9 4 √
19 EC1 3.3 3 √
20 EC2 3.1 3 √
21 EC3 3.0 3 √
22 EC4 3.2 3 √
23 GC1 3.2 3 √
24 GC2 3.8 4 √
25 GC3 3.1 3 √
26 GC4 3.9 4 √

Note: If the mean value has a decimal, then the value is round-
ed to the nearest whole number as the complexity states. 
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Conclusions and future works

A BBN-based PCMM is proposed to measure the project 
complexity with the causal relationships among complex-
ity factors taken into account. In this study, 26 project 
complexity nodes are identified for model development 
based on the literature review. The PCMM is then con-
structed with 225 training samples and is validated with 
20 test samples. On the basis of developed PCMM, predic-
tive, diagnostic, sensitivity, and influence chain analysis 
are carried out for decision making. This contribution of 
this research lies in proposing a method that is capable of 
measuring the complexity level in construction projects 
considering cause-effect relationships. It can help predict 
the level of project complexity and facilitate stakeholders 
to take appropriate management actions to reduce the po-
tential risks that might be induced to different levels of 
project complexity.

In terms of the empirical studies, the obtained research 
findings are presented as follows. (1) Based on the ques-
tionnaire survey and expert knowledge, the BBN based 
PCMM is established, and the model is further validated 
with 20 test samples, which proves that the PCMM model 
established in this study is effective. (2) PCMM that re-
flects the causal relationship between complexity factors 
and project complexity, can forecast the complexity level 
through predictive analysis, and identify the most likely 
possible causes through diagnostic analysis. In addition, 
it can discern the sensitive factors and the most general 
chain of causes affecting the project complexity. The re-
search results indicate that more attention should be paid 
on technological complexity, information complexity, and 
task complexity in the process of complexity management. 
(3) The EXPO 2010 is chosen as a typical case for PCMM 
application. It proves that the model proposed in this 
study is feasible and applicable, and provides an effective 
and convenient predicting tool for the complexity level of 

construction projects. According to the PCMM, the level 
of project complexity can be measured for better resource 
utilization in the process of project management. 

However, the developed PCMM method has some 
limitations. The PCMM in this study is constructed based 
on the survey data from all the construction projects. It 
never differentiates the types of construction projects like 
public projects, private projects, and hybrid projects. Con-
sidering that the construction projects can be classified 
into various categories of projects (Xia & Chan, 2012), the 
complexity of different types of projects varies in the key 
influencing factors, sensitive factors, and influence chain. 
Therefore, the characteristics of different project types 
should be considered in the future to measure the com-
plexity of the specific type of projects.
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