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Abstract. As one of the most high-risk sections, the construction industry has traditionally been the research hotspot. Yet 
little attention has been paid to macro-level accident situations of the entire industry. Therefore, this study develops a com-
prehensive assessment model on accident situations of Chinese building industry, aiming at assisting the government to 
better understand and improve accident situations of the entire industry. Based on China conditions, six indicators related 
to accident situations are firstly selected to establish an indicator system; then structure entropy weight method is proposed 
to determine indicator weighs, with dynamic classification method to explore the characteristics of accident situations. The 
results demonstrate that the provinces with poor accident situations account for 53% of all provinces, and they are mainly 
distributed in the central and western regions of China where there exist the underdeveloped economy. Meanwhile, some 
provinces experience poor accident situations that could be out-of-control, especially for Hebei. Provinces in the south-
eastern and northeastern regions of China perform relatively well, but they still have much improvement room for accident 
situations. The findings validate the rationality of the developed model and can provide valuable insights of safety regula-
tion strategies for the government from the macro-level perspective.

Keywords: construction industry, accident situation, structure entropy weight method (SEWM), dynamic classification 
method (DCM), macro-level perspective.

Introduction

The construction industry always plays a significant role in 
promoting the development of national economy (Dong 
et al., 2015; N. Prascevic & Z. Prascevic, 2017; Zhou, Goh, 
& Li, 2015), but it, as one of the most hazardous sections, 
is responsible for 30–40% of fatalities in the world (Poh, 
Ubeynarayana, & Goh, 2018; Sunindijo & Zou, 2012;  
W. Zhang, X. Zhang, Luo, & Zhao, 2019). As shown on 
the web of the Ministry of Housing and Urban-Rural De-
velopment [MHURD] of China, the number of fatal ac-
cidents has a dramatic increase of 66.1% in the past few 
years, namely from 442 in 2015 to 734 in 2018 (MHURD, 
2019a). Besides lots of casualties, enormous socio-eco-
nomic consequences are always caused by construction 
accidents (Forteza, Carretero-Gomez, & Sese, 2017; Wang 
et al., 2018a). Generally, the accident occurrence is highly 
connected with the construction enterprise’ effort in safety 
management and the government’s effort in safety regula-
tion (Hausken & Zhuang, 2016; Wang, Wu, Kang, Huang, 

& Pan, 2018b; Wang et al., 2018d), while national/provin-
cial safety regulation strategies influence the action of the 
enterprise in safety management and afterwards influence 
the accident rate in the construction industry (Ma & Zhao, 
2018; Wang, Wu, Kang, Reniers, & Huang, 2018c). Poor 
accident situation of the entire industry has brought great 
safety regulation pressure to the government (e.g., nation-
al/provincial administrative department headers and min-
isterial safety department management personnel). Under 
such severe circumstances, it is urgent for the government 
to effectively lower accident/incident rates and improve 
construction accident situation. 

Currently, many studies focused on the occurrence, 
evolution, assessment and prevention of accidents from 
the construction-site/project/accident level, such as con-
struction safety management process (Wu, Liu, Zhang, 
Skibniewski, & Wang, 2015; Xiahou, Yuan, Li, & Skib-
niewski, 2018), the impact of individual and group char-
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acteristics on construction safety (Hasanzadeh, Esmaeili, 
& Dodd, 2017; E. Kim, Yu, K. Kim, & K. Kim, 2011), and 
construction accident causation mechanism (Fang, Ding, 
Luo, & Love, 2018; Zheng, Zhou, Wang, & Chen, 2018). 
Notably, previous research findings mostly benefit from 
detailed accident cause and scenario analysis, and can 
help safety management personnel of the enterprise (e.g., 
frontline supervisors, frontline safety managers and up-
per management personnel) understand and improve the 
accident situation at the construction-site level through 
ascertaining recommended measures with the potential to 
prevent construction accidents. But for the government, 
they can hardly obtain adequate information from those 
findings to grasp the accident situation of the entire con-
struction industry, such as accident situations in different 
regions. Generally, the formulation of safety regulation 
strategies and the improvement of the regional/provin-
cial accident situations benefit more from understanding 
macro-level accident situations in the building industry 
(Tam, Zeng, & Deng, 2004; Wang et al., 2018a; Yassin & 
Martonik, 2004). Thus, the government could pay more 
attention to accident situations of the building industry 
from the macro-level perspective. For instance, several 
Chinese ministerial administrative departments have set 
June as national safety production month since 2002, aim-
ing at accident prevention and socio-economic sustainable 
development. During the period, safety-related activities 
should be more strictly conducted and more closely su-
pervised from the national level, as well as stiffer penalties 
if accidents occurring. The fact that June hardly saw too 
poor accident situations is a proof of macro-level focus 
on accident situations. However, there are few studies on 
macro-level accident situations. This study aims to assess 
accident situations in China building industry from the 
macro-level perspective and provide valuable directions of 
safety regulation strategies for the government. 

The accident situation is regarded as the barometer 
that can reflect the danger level in the construction in-
dustry (Coates, 2011). It is usually measured by some in-
dicators related to construction accident rate such as the 
fatality rate per 100,000,000 yuan of gross domestic prod-
uct (FGDP) (Shao, Hu, Liu, Chen, & He, 2019; Wang et 
al., 2018c) and the fatality rate per 100,000 construction 
practitioners (FCP) (Eteifa & El-adaway, 2018). Generally, 
these indicators can be used independently to assess/com-
pare accident situations of the building industry, but the 
results vary with different indicators (Shao et al., 2019). 
For example, Beijing and Hubei experienced the FGDP 
of 1.366 and 0.841 in 2015 respectively, while the FCP 
of 0.013 and 0.035 for them respectively. These indicate 
that Beijing had worse accident situations than Hubei for 
FGDP, but Hubei had worse accident situations than Bei-
jing for FCP. One-indicator-based results could mislead 
the government’s decision-making in safety regulation. 
Furthermore, multi-dimensional characteristics of acci-
dent situations could be overlooked when only using one 
of these indicators. How to understand accident situations 
from multiple perspectives is very essential for the for-

mulation of safety regulation strategies, but the researches 
based on this idea are currently rare. Therefore, this study 
attempts to make it possible by establishing a comprehen-
sive assessment model including various indicators related 
to accident situations. 

Various evaluation methods can be implemented in 
the comprehensive assessment model of accident situa-
tions (Davoudabadi, Mousavi, Saparauskas, & Gitinavard, 
2019). These methods can be divided into two kinds of 
qualitative and quantitative evaluation methods (Li et al., 
2011), in which the sorting method is usually adopted by 
many researchers (Bao, Ruan, Shen, Hermans, & Jans-
sens, 2012). This method can intuitively assess accident 
situations in different regions, but it cannot figure out 
characteristics of accident situations in different regions. 
Especially when involving too many regions, assessment 
results based on the method are deficient for the govern-
ment to further explore the characteristics of different re-
gions. Compared to the sorting method, the classifying 
method is another widely-used assessment technique that 
seeks to map accident elements into homogeneous clus-
ters (Depaire, Wets, & Vanhoof, 2008; Hola & Nowobilski, 
2018). Through the clustering analysis, some significant 
features of original data can be identified and mined in 
depth (Fahad et al., 2014). Generally, clustering algorithms 
can be classified into partitional methods and hierarchical 
methods (Horta & Camanho, 2014). Among them, auto-
matically determining the number of clusters has been 
one of the most challenging problems in data classifica-
tion (Jain, 2008). To solve the issue, this study proposed 
DCM based on clustering idea. This method is used to 
mine and clarify the characteristics of accident situations 
in the building industry, and it can reasonably determine 
the number of classifications by using an error function 
(S. Chen, Shao, Y. Chen, & Zheng, 2015). Notably, every 
indicator is considered equal weight in DCM, ignoring 
indicator weighting (Lin, 1989). However, the indicators 
related to accident situations contain different accident 
information. Generally, these indicators have different 
weights when conducting a comprehensive assessment 
on the accident situations. To address this issue, indicator 
weighting should be considered in DCM.

Currently, there are two main approaches of indica-
tor weighting, namely subjective weighting and objective 
weighting (F. Liu, Zhao, Weng, & Y. Q. Liu, 2017). The 
former depends on the experts’ experience and prefer-
ence, such as Delphi survey and analytic hierarchy process 
(AHP) (Lai et al., 2015; N. Prascevic & Z. Prascevic, 2017; 
Zhao, Guo, Huang, & Zhong, 2017); the latter is applied in 
weight calculation by means of the original and objective 
data, such as principal component analysis and entropy 
weight (Cai et al., 2016; Wu, Wang, Z. P. Yang, Li, & Y. P. 
Yang, 2018). Yet both the two weighting techniques have 
their advantages and disadvantages. The subjective weight-
ing owns highly explanation, but it could lack objectivity; 
the objective weighting can present higher accuracy, but it 
could be discordance with the actual conditions. To solve 
this problem, some researchers attempt to calculate indi-
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cator weights through combining subjective weighting and 
objective weighting (Lai et al., 2015; Wu et al., 2018). Al-
though this combination could, to some extent, integrate 
the advantages of the two traditional techniques, it may 
involve two aspects of shortcomings (G. Li, J. Li, Sun, & 
Zhao, 2017): (1) the combining formula lacks consistent 
and scientific expression (Dong, Shen, Jia, & Sun, 2018; 
Wu et al., 2018); (2) the calculation process of combined 
weight is too much complicated when conducting scientif-
ic deduction of the combining formula (Cui, Feng, Jin, & 
Liu, 2018; Dai & Niu, 2017; Lai et al., 2015). Considering 
that the rationality and simplicity of the combined weight 
cannot be addressed clearly, this study introduced SEWM 
to determine indicator weights. SEWM is developed based 
on the Delphi survey and entropy theory, and integrates 
subjective information and objective information in the 
process of weight calculation (Zheng, Shao, L. Chen, S. 
Chen, & Ge, 2014). This method cannot only simplify the 
calculation process, but also increase the reasonableness of 
weight determination (Liu et al., 2017; Zhao et al., 2017). 

Therefore, this study is conducted to propose the com-
prehensive assessment model on accident situations in the 
building industry through establishing an assessment in-
dicator system and integrating SEWM and DCM, aiming 
to provide targeted insights of safety regulation strategies 
for the government. The contribution of this study lies 
in three aspects: 1) establishing an assessment indicator 
system that can reflect accident situations of the build-
ing industry from different perspectives; 2) developing 
a comprehensive assessment model that can be used to 
classify the characteristic features of accident situations of 
the building industry; and 3) providing some insights for 
people who are concerned about safety regulation of the 
building industry from the macro-level perspective. 

The rest of the paper is organized as follows. The re-
search on indicators measuring accident situations is re-
viewed in Section 1. The comprehensive assessment model 
of accident situations is developed in Section 2, including 
the selection of indicators and the introduction of SEWM 
and DCM. Section 3 presents the study case and results. 
Result analysis and relevant discussion are conducted in 
Section 4, followed by Conclusions and future research.

1. Literature review

The accident situation is the barometer to reflect the extent 
of the danger related to the construction industry (Coates, 
2011). A good understanding of macro-level accident situ-
ation can help explore potential practices of construction 
accident prevention (Yassin & Martonik, 2004). To figure 
out accident situations, the first step is to ascertain how to 
quantify them. Traditionally, the accident situation can be 
mostly measured by a series of basic indicators such as the 
number of accidents and the number of casualties (Hola, 
2009). However, it may vary with different non-accident 
indicators such as the economic development level and 
construction practitioners (Shao et al., 2019). For example, 
the US construction industry saw the highest number of 

fatalities among industries, but the fourth highest fatal-
ity rate when considering the full-time equivalent worker 
(Karakhan, Rajendran, Gambatese, & Nnaji, 2018). There-
fore, the basic indicators cannot be employed to sufficient-
ly compare/assess relative level of accident situations.

To address the issue, some studies focus increasing-
ly on developing composite accident situation indicator 
(CASI), which is considered to be an analytical measure-
ment approach for interpreting accident data (Coates, 
2011). CASI is mostly a mathematical aggregation of two 
or more basic indicators that can reflect production situa-
tion of the construction industry. On the whole, CASIs are 
divided into three categories: accident frequency, accident 
severity and accident trend (Dong et al., 2011; Sari, Selcuk, 
Karpuz, & Duzgun, 2009; Soltanzadeh, Mohammadfam, 
Moghimbeygi, & Ghiasvand, 2017). From the accident 
frequency level, fatal injury rate per 100,000 full-time 
equivalent workers are widely used to estimate annual 
average fatalities based on construction time perspective 
(Marsh & Fosbroke, 2015; Mendeloff & Burns, 2013); fatal 
injury rate per 100,000 construction practitioners can be 
considered to explain the average fatalities of construction 
practitioners based on construction personnel perspective 
(Coates, 2011; Eteifa & El-adaway, 2018); fatal injury rate 
per 100,000,000 yuan of GDP in the construction industry 
is always selected to reflect the harmonious level between 
the construction industry and economic development 
based on construction output value perspective. From the 
accident severity level, Bellamy (2015) used the ratio of 
serious injuries to fatalities (RSF) to calculate the acci-
dent lethality, and the lower the RSF is, the more severity; 
Wang et al. (2018c) described fatality rate per one accident 
by the ratio of the fatality toll to the number of accidents 
(RFA), but the lower the RFA is, the less severity; Soltan-
zadeh et al. (2017) declared that accident severity rate can 
be measured by dividing working days-lost (multiplied by 
2000) by all hours-worked considered. From the accident 
trend level, the ratio of the number of fatalities during 
one given period to that during another can be regarded 
as an expression of change trend of the number of fatal 
injuries, with the calculation similar to change trend of the 
number of accidents (Dong et al., 2011; Hola, 2009; Kang, 
Siddiqui, Suk, Chi, & Kim, 2017). 

Notably, the connotation of these CASIs are highly 
self-explanatory, and they can be independently used to 
assess accident situations of regions from the macro-level 
perspective (Wang et al., 2018c). However, assessment re-
sults of accident situations may be different when using 
different CASIs. Ambiguous or unreliable results could 
provide inappropriate decision-making information for 
the government (Wang et al., 2018c). In addition, only us-
ing one of these CASIs to evaluate accident situations may 
ignore the diversity of accident situation characteristics in 
one region. To solve the problem, a set of CASIs in the 
building industry can be considered for the comprehen-
sive assessment of accident situations from the macro-lev-
el perspective. Based on China’s national conditions, this 
paper aims to propose a comprehensive evaluation model 
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on the accident situation of the building industry through 
selecting the CASIs from different perspectives and help 
improve the understanding of China accident situations in 
construction safety regulation strategies.

2. Methodology and research process

This study firstly selected six CASIs from different per-
spectives to establish the assessment indicator system of 
accident situations based on China national conditions; 
afterwards, SEWM was applied to determine the weights 
of all indicators through comparing their impacts on ac-
cident situations; DCM was then proposed to mine and 
clarify the characteristics of accident situations in China 
building industry by means of classifying China provinces. 
The proposed comprehensive assessment model integrat-
ing SEWM and DCM is depicted in Figure 1 and in fol-
lowing subsection.

2.1. Establishing assessment indicator system

To explore the characteristics of accident situations in 
China provinces, the first step is to select reasonable indi-
cators that can be used to measure accident situations in 
China building industry. Following a wide review of the 
literature and interviews with safety experts, various indi-
cators related to construction accident rate have been used 
to assess accident situations of the building industry in 
many countries. However, each country generally chooses 
different indicators based on its own national condition. 
For instance, the fatality rate per 100,000 full-time equiva-
lent workers is widely adopted in many developed coun-
tries, but it is not a statistical indicator in China due to 
its current condition in the building industry (Shao et al., 
2019). Considering the availability and acceptable quality 
of original data of the indicators at the current develop-
ment stage of China, six indicators measuring accident 
situations were chosen from three perspectives includ-

ing fatal accident frequency (FAF), fatal accident severity 
(FAS) and fatal accident trend (FAT), as listed in Table 1.

Among the six indicators, there are three indicators 
that reflect the fatal accident frequency in the building in-
dustry, namely the fatality rate per 100,000 practitioners 
(IS1), the fatality rate per 1,000,000 m2 of floor areas (IS2), 
fatality rate per 100,000,000 yuan of GDP (IS3). The IS1 
is widely applied in many countries (Irumba, 2014) and 
indicates the level of occupational risks associated with the 
implementation of construction works (Hola & Szostak, 
2015). Due to the rapidly growing development of China 
real estate industry in recent years, the IS2 is regarded as a 
relatively scientific indicator and has been applied in China 
building industry (Ma, Chen, & Liu, 2015). The IS3 is an 
important indicator to measure whether a region actually 
integrates safety production policies into the overall plan-
ning of regional economic and social progress and strictly 
implements them (Liu & Wu, 2011). It indicates the level 
of production safety under certain economic conditions in 
the building industry. Moreover, there is one indicator that 
reflects the fatal accident severity in the building industry, 
namely fatality rate per one fatal accident (IS4). The IS4 
can present the average lethality of fatal accidents (Wang 
et al., 2018c). At last, the rest indicators can reflect the 
fatal accident trend in the building industry, namely the 
change trend of the number of fatal accidents (IS5) and 
the change trend of the number of fatalities (IS6). They 
are frequently used to describe temporal characteristics of 
accident situations in given regions (Marsh & Fosbroke, 
2015). The calculation method of selected indicators is 
shown in the fourth column of Table 1.

1.1. Weighting indicators based on structure 
entropy weight method

Determining the weights of indicators is the key to the 
comprehensive assessment of accident situations. The rea-
sonableness of weight determination directly affects the 

Figure 1. Framework flowchart of comprehensive assessment model on accident situations of the construction industry
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merits of assessment results. SEWM is a method com-
bining qualitative analysis and quantitative analysis. Its 
basic idea is to gather experts’ typical ranking related to 
the indicators, and calculate their entropy value based on 
entropy theory. Meanwhile, this method can eliminate the 
uncertainty in the indicator cognition by the blind degree 
analysis, and retain the reasonable part of the subjective 
influence (Ding, Chen, Cheng, & Wang, 2015; Liu et al., 
2017). The calculation steps are as follows: 

Step 1: Collecting experts’ opinions for typical ranking 
Based on Delphi survey, a questionnaire form is designed 
for experts to determine qualitative rankings of indica-
tors. Notably, the experts are invited to anonymously fill 
in the questionnaires in groups, with ranking the relative 
importance of indicators by means of to their knowledge 
and experience. More important the indicator is, more 
forward its ranking is. Besides, some indicators could be 
recognized as equally important and they would have the 
same ranking. Considering the differences of experts’ cog-
nitions on the indicators, several experts from different 
knowledge background are generally assembled a group to 
decide the final ranking of the indicators, which is called 
“typical ranking”.

Step 2: Analyzing the blind degree of typical ranking
To reduce the uncertainty of expert ranking (blind de-
gree), the entropy value was calculated based on the en-
tropy theory. Assuming there are p expert groups partici-
pating in the survey of n indicators, which is marked as 

{ } ( )( )n= ∈1 2, , , , , , 1,2, ,k nY Y Y Y Y k  { } ( )( )n= ∈1 2, , , , , , 1,2, ,k nY Y Y Y Y k    , all the ques-
tionnaires can be recovered. The typical ranking from 
sth expert group is recorded as { } ( )( )∈1 2, , , , , , 1,2, ,s s sk snI I I I s p  

{ } ( )( )∈1 2, , , , , , 1,2, ,s s sk snI I I I s p   , and Isk stands for the ranking number of 
experts’ judgment on indicator Yk, which can be any natu-
ral number that is no more than n. For p expert groups, 
the matrix of typical rankings can be expressed as follows: 
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Then the typical rankings can be transformed into 
quantitative entropy values through the membership func-
tion e(I):

( ) ( ) ( )= −λ ln .k ke I u I u I   (2)

Setting ( ) ( ) ( )= q − q−/ 1ku I I  and ( )λ = q−1/ ln 1 , the 
Eqn can be derived as:

( )
( )
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( ) 1 .

1 ln 1
IIe I

 
(3)

Assuming q− − = q − 
1 ( ) ( )

1
Ie I g I , then

( ) ( ) ( )= q − q−ln / ln 1g I I . (4)

In above formulas, q stands for the conversion param-
eter, which is defined as q = n + 2. g(I) is the membership 
function of ranking number I. When putting the qualita-
tive ranking number Isk into the formula, the quantita-
tive converted value of Isk can be obtained by ( )=sk skb g I
, which is the membership degree of ranking number Isk. 
Correspondingly, the matrix ( ) ×

= sk p nB b  is defined as the 
membership degree matrix:
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   (5)

Then the average cognition degree on the indicator Yk 
from p expert groups, marked as bk, is calculated by the 
Eqn (6), which can reflect experts’ consistent opinions:

( )= + + +1 2 / .k k k pkb b b b p

 
(6)

The uncertainty caused by experts’ cognition on Yk is 
defined as cognition blind degree Qk. Obviously, Qk > 0.

( ) ( ) = + − 1 2 1 2max , , , min , , , / 2k k k pk k k pk kQ b b b b b b b 

( ) ( ) = + − 1 2 1 2max , , , min , , , / 2k k k pk k k pk kQ b b b b b b b  .    (7)

Table 1. Indicators measuring accident situations

Perspective Indicator Symbol Calculation method

FAF

Fatality rate per 100,000 practitioners IS1 Fatalities / Construction practitioners  
(one hundred thousand persons)

Fatality rate per 1,000,000 m2 of floor areas IS2 Fatalities / Floor areas (one million square meters)

Fatality rate per 100,000,000 yuan of GDP IS3 Fatalities / GDP of building industry  
(one hundred million yuan)

FAS Fatality rate per one fatal accident IS4 Fatalities / Fatal accidents 

FAT

Change trend of the number of fatal 
accidents IS5 (Fatal accidents (this year) – Fatal accidents (last year)) / 

Fatal accidents (last year)

Change trend of the number of fatalities IS6 (Fatalities (this year) – Fatalities (last year)) / Fatalities 
(last year)

Note: The indicators are selected from representative literature (Liu & Wu, 2011; Hola & Szostak, 2015; Irumba, 2014; Ma et al., 2015; 
Marsh & Fosbroke, 2015; Wang et al., 2018c).
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Step 3: Calculating the overall cognition  
degree of all indicators
For Yk, the overall cognition degree vk can be calculated by 
the Eqn (8). Therefore, ( )= 1 2, , , , ,k nv v v vv    represents 
overall cognition degrees for all indicators, respectively:

( )= −1 .k k kv b Q    (8)

Step 4: Determining the weights of all indicators
Normalizing ( )= 1 2, , , , ,k nv v v vv    by means of the 
Eqn (9), the weight of each indicator can be obtained, 
namely the weight vector ( )= 1 2, , , , ,k nw w w ww    and 

=

=∑
1

1
n

k
k

w
 
.

=

= ∑
1

/ .
n

k k k
k

w v v   (9)

2.3. Clustering provinces based on dynamic 
classification method

The proposed DCM is a quantitative multi-indicator nu-
merical classification method, which is applied in the clas-
sification of rock stability for the first time (Lin, 1989). The 
basic idea is “cluster analysis” that considers the sample 
as a point in classification space. According to the spe-
cific regulation, the nearest points of the “distance” are 
classified through repeated iterations, and the classifica-
tion results of the sample are obtained when the error is 
the smallest. The reason why DCM is used to classify the 
accident situations in China building industry is: First, 
previous researches generally depend on the known grad-
ing standards, and DCM can cluster the data in the case 
of unknown grading standards. Second, the method can 
make full use of the objective historical data of building 
construction accidents, reflecting the objectivity of grad-
ing. The detailed steps are as follows.

Step 1: Distance definition
The calculated parameters form the basis for classifying 
provinces with the use of cluster analysis. To perform the 
classification, it is necessary to measure the distances be-
tween the assessment samples. This study uses Euclidean 
distance dij to characterize the difference between the ith 
sample and the jth sample:

( )
=

= −∑
2

1

,
n

ij ik jk
k

d x x    (10)

where n represents the number of indicators, xik repre-
sents the characteristic value of the indicator Yk of the ith 
sample.

Step 2: Normalized treatment
Due to the different measured scales of the selected indi-
cators, the data need be normalized to assure good com-
parability between indicators. Meanwhile, to reflect the 
different influence of different indicators on the assess-
ment objects, it is necessary to rationally allocate indica-

tor weights. Thus, the raw data is processed by the range 
method, combined with the weight of each indicator. The 
characteristic values of the indicators of all samples are 
normalized as follows:

−
′ =

−
min

,
max min

ik k
ik k

k k

x
x w

x
x x

   (11)

where ′ikx  is the characteristic value of Yk for the ith sam-
ple after normalized treatment, xik is the original value of 
Yk for the ith sample, xk is the vector of the original value 
of Yk for all samples.

Step 3: Clustering iteration
1) The number of clusters. As mentioned above, DCM is 

suitable for the situation where there is no clear grading 
standard, so the determination of the optimal classifica-
tion number needs to be analyzed by comparing differ-
ent classification results. The number of clusters is often 
determined according to classification requirements of 
the actual situation, and it should not be too detailed 
or too rough, because it is too detailed to manage and 
too rough to have practical significance.

2) Clustering initialization. Firstly, calculate the composite 
value of the ith sample:
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.
n
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k

s i x
 

(12)

Then, when the number of clusters is D, the initial 
clustering of the ith sample belongs to: 

( )
( ) ( ) ( )

( ) ( )
≤ ≤

≤ ≤≤ ≤

  − −    = + + 
− 

  

1

11

1 max
0.5 1,

max min
i m

i mi m

D s i s i
N

s i s
ixi F

i

 

(13)

where Fix() represents the rounding function.
3) Calculation of gravity center for each clustering. The 

gravity center of the kth indicator of the rth clustering 
is calculated as follows:

( )
( )

= =

 =′= δ δ δ =  ≠
∑ ∑,

1 1

1,
/ , .

0,

n n

r k ik
i i

N i r
C x

N i r
  (14)

4) Clustering update. Calculate the sum of distances from 
indicators of the ith sample to ,r kC :

( )
=

=

′= −∑ 2
, ,

1

.
k n

i r ik r k
k

d x C   (15)

Update the clustering of the ith sample according to 
the proximity principle:

( ) { } ( )′ = ∈ = ,1 ,2 ,, 1,2, , : min , , , ,i,l i i i rN i l l r d d d d    (16)

where ( )′N i  is the new clustering of the ith sample.
5) Iteration output. Repeat the processes of 2–4 and con-

stantly compare the difference value of the gravity cent-
er before and after the iterations. If the value is smaller 
than the specified error value or the value is no longer 
changing, the final clustering result will be output.
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Step 4: Determination of optimal number  
of the clustering
The sum of the distances from all samples to the gravity 
center of their clustering is defined as a clustering function 
Cf, which is essentially an error function:

=

=∑ ,
1

.
n

i r
i

Cf d    (17)

The optimal number of the clustering can be deter-
mined by comparing the change of the function value with 
respect to the number of clusters.

3. Comprehensive assessment on accident 
situations of China provinces

According to the MHURD of China, the housing and 
municipal construction industry encounters continuous 
increase in construction accidents, and 2018 experienced 
the highest number of fatalities (840) in recent five years, 
with daily 2.3 fatalities. Poor accident situation has posed 
a great challenge to the government’s safety supervision. 
Effective safety regulation strategies are thus much urgent. 
In the case study of China provinces, this section presents 
the application of the comprehensive assessment model 
on accident situations, aiming at providing valuable in-
sights of safety regulation strategies from the macro-level 
perspective. 

According to the calculation method of each indicator 
in Table 1, the data to be collected includes the number 
of fatal accidents, the number of fatalities, the building 
construction population, the floor areas and the GDP of 
the building industry in each province. Considering the 
availability and acceptable quality of original data, the 
data in 2015 was applied in the comprehensive assessment 
model on accident situations in China building industry. 
Among them, accident data of each province in 2015 (in-
cluding the number of fatal accidents and the number of 
fatalities) came from MHURD (2019b), which conducts 
short reports of construction fatal accidents in China. 
The rest data came from the National Bureau of Statistics 
[NBS] of China (NBS, 2019), which is mainly responsible 
for publishing statistical data related to China social and 
economic development. Considering the deficiency or in-
completeness of the data from Tibet, Hong Kong, Macao 
and Taiwan, the data in 30 Chinese provinces were finally 
used for detailed analysis in this study.

3.1. Determination of indicator weights

It should be noted that the selection of safety experts is the 
key to reasonably determine the weight of indicators. In 
this study, the selected experts should work for over five 
years and perform well in the field of construction safety 
management/research. When conducting the importance 
ranking of indicators that can measure accident situations 
in the building industry, totally 12 experts were invited to 
anonymously fill in the typical ranking on all indicators in 
Table 1. These experts came from Wuhan University (2), 

China Three Gorges University (2), Hubei Anyuan Safety 
and Environmental Protection Technology Company Lim-
ited (3), Wuhan Hanyang Municipal Construction Group 
Corporation (3), Changjiang Institute of Survey, Planning, 
Design and Research (2), respectively. To reasonably and 
efficiently offer quantitative judgments on the importance 
of the indicator set, these experts were divided into four 
groups, with three experts in each group. Based on the 
consultation and discussion of each group, the ranking 
results from the four expert groups were collected in the 
second-fifth columns of Table 2. Eventually, the weights of 
the six indicators were obtained according to the calcula-
tion steps, as listed in the last column of Table 2.

Table 2. Calculation of the weights of indicators

Indicator
Typical ranking

Weight
Group 1 Group 2 Group 3 Group 4

IS1 2 2 2 3 0.1879
IS2 6 5 4 4 0.1192
IS3 4 4 4 5 0.1395
IS4 1 1 1 2 0.2060
IS5 5 3 5 1 0.1516
IS6 3 1 3 1 0.1959

3.2. Clustering results of provinces

To explore the characteristics of the accident situations in 
Chinese provinces, DCM was used to classify provinces 
with regards to their accident situations. The first step of 
the classification was to determine the number of clus-
ters, but the number should not be too small or big when 
involving a large database (Raviv, Fishbain, & Shapira, 
2017). Therefore, this study firstly assumed that the clus-
tering number D ranges from 2 to 9 (C2–C9). According 
to the calculation process in Subsection 2.3, the clustering 
results in different values of D were obtained by using the 
Matlab software, as shown in Figure 2. It can be seen that 
the classification results varied with different values of D, 
but their change trends were highly consistent. 

Meanwhile, the values of the clustering function cor-
responding to different classification number were calcu-
lated, as presented in Figure 3. The figure showed that the 
Cf function (error function) was well fitted by the function 

−= 0.65570.2223y x , and the power function indicated that 
the Cf values (classification errors) decreased moderately 
as the classification number increased, namely smaller and 
smaller classification errors. Especially when the classifica-
tion number was big enough, the classification error could 
gradually approach zero, which accords with the actual 
situation.

Moreover, the reduction percentages of the classifica-
tion errors were considered to determine the appropriate 
number of clusters. As shown in Figure 3, the curve of 
the reduction percentage had the smallest value when the 
classification number was only equal to four. Meanwhile, 
the absolute value of the slope of the fitting curve when  
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2 ≤ D ≤ 4 was too much bigger than that when 4 ≤ D ≤ 9, 
which meant that the clustering effect would not change 
much after D = 4. Based on above facts, four clusters were 
the most appropriate to minimize the outliers and classify 
each cluster efficiently. Eventually, the classification results 
were presented in Table 3.

4. Discussion

The result reliability is the key to the comprehensive as-
sessment model of accident situations. Indicator weights 
for SEWM and clustering results for DCM are thus vali-
dated by the actual condition of the building industry. 

Result analysis is further carried out to clarify the charac-
teristics of accident situations in China building industry. 
The findings can be significant references to safety regula-
tion strategy for the government. 

4.1. Method validation

4.1.1. Indicator weighting
There are many methods that can calculate indicator 
weights. In this study, SEWM is used to determine the 
weights of indicators in China provinces. Considering that 
the data in this study can be used to calculate entropy 
weights of indicators, only the entropy weight method 

Figure 2. Dynamic classification results corresponding to different classification number
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Figure 3. Error function diagram

Table 3. Classification results of provinces for D = 4

Province Classification Province Classification Province Classification
Hainan Cluster 1 Hubei Cluster 3 Guangxi Cluster 4
Ningxia Cluster 1 Shandong Cluster 3 Heilongjiang Cluster 4
Qinghai Cluster 1 Shanxi Cluster 3 Hunan Cluster 4
Xinjiang Cluster 1 Sichuan Cluster 3 Jiangsu Cluster 4
Gansu Cluster 2 Tianjin Cluster 3 Jiangxi Cluster 4
Hebei Cluster 2 Yunnan Cluster 3 Jilin Cluster 4
Shaanxi Cluster 2 Anhui Cluster 4 Liaoning Cluster 4
Guangdong Cluster 3 Beijing Cluster 4 Neimenggu Cluster 4
Guizhou Cluster 3 Chongqing Cluster 4 Shanghai Cluster 4
Henan Cluster 3 Fujian Cluster 4 Zhejiang Cluster 4

–0.6557y = 0.2223x
2R  = 0.9650
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(one of the most common objective weighting) is chosen 
to compare with SEWM. Therefore, the objective weights 
of indicators are obtained by the entropy weight method 
according to the original data. The weighting results in 
the two methods, namely SEWM and entropy weight, are 
listed in Table 4. 

It can be observed that weighting results are quite dif-
ferent. In reality, the fatality rate per one fatal accident 
(IS4) is an indicator that people can intuitively feel by de-
scribing the fatal accident severity, which is the most direct 
appearance of the accident situation in the building indus-
try. Generally, the IS4 can be greater significance on the 
comprehensive assessment results of accident situations 
compared to other indicators. Moreover, the fatality rate 
per 1,000,000 m2 of floor areas (IS2) is, to some extent, a 
controversial indicator in China, which indicates that the 
IS2 should not have a dominant influence on assessment 
results (Yuan, 2005). Only based on the two indicators, 
SEWM weights are highly in line with the actual situa-
tion, but the entropy weights not. Therefore, the entropy 
weight method is not suitable for this study, although it 
makes indicator weights more objective. Compared to the 
entropy weights, SEWM weights of the two indicators are 
more reasonable. 

Besides, the range from 0.1192 to 0.2060 suggests 
that the difference of the impacts of SEWM weights on 
accident situations is not too big compared with entropy 
weights. It is a rather proof that the six indicators are al-
ways selected to assess the accident situations in the build-
ing industry despite different assessment results. AHP is 
one of the most common subjective weighting, but the 
consistency test can hardly be satisfied when involving 
too many indicator elements (Mahmoudzadeh & Bafan-
deh, 2013). Due to no use of the consistency test, SEWM 
has more concise computing process compared to AHP. 
Therefore, SEWM can be considered more suitable for in-
dicator weighting in this study.

4.1.2. Classification of provinces

In this study, DCM is proposed to classify Chinese prov-
inces that have different accident situations in the build-
ing industry. Notably, classification results by using vari-
ous methods could never be identical (Wegman & Oppe, 
2010). The K-means method, one of the most commonly 
clustering methods, is adopted to verify the rationality 
and applicability of DCM, which is a quite necessary job. 
As shown in Table 5, the classification results from DCM 
and K-means method are highly similar. On the whole, 
the similarity of their results reaches 83.3%. Especially 
for Cluster 1 and Cluster 2, the results of DCM are the 
same as that of K-means method. The only difference is 
the case that five provinces including Guangdong, Henan, 
Hubei, Shanxi and Tianjin, belong to Cluster 3 for DCM, 
but Cluster 4 for K-means method.

The characteristics of accident situations that can be re-
flected by the values of the gravity center for different clus-
ters are obtained, as shown in Figure 4. Obviously, Cluster 
1 experienced higher FAF, while higher FAT for Cluster 2  

Table 4. Comparison of weighting results between SEWM and entropy weight.

Weighting method IS1 IS2 IS3 IS4 IS5 IS6
SEWM 0.1879 0.1192 0.1395 0.2060 0.1516 0.1959
Entropy weight 0.1871 0.2681 0.2481 0.1405 0.0726 0.0836

Table 5. Comparison of classification results between DCM and K-means

Classification
Clustering method

DCM K-means method
Cluster 1 Hainan, Ningxia, Qinghai, Xinjiang Hainan, Ningxia, Qinghai, Xinjiang
Cluster 2 Gansu, Hebei, Shaanxi Gansu, Hebei, Shaanxi
Cluster 3 Guangdong#, Guizhou, Henan#, Hubei#, Shandong, 

Shanxi#, Sichuan, Tianjin#, Yunnan
Guizhou, Shandong, Sichuan, Yunnan

Cluster 4 Anhui, Beijing, Chongqing, Fujian, Guangxi, 
Heilongjiang, Hunan, Jilin, Jiangsu, Jiangxi, Liaoning, 
Neimenggu, Shanghai, Zhejiang

Anhui, Beijing, Chongqing, Fujian, Guangdong#, Guangxi, 
Heilongjiang, Henan#, Hubei#, Hunan, Jilin, Jiangsu, Jiangxi, 
Liaoning, Neimenggu, Shanghai, Shanxi#, Tianjin#, Zhejiang

Note: #indicates that the provinces have different classification in two methods.

Figure 4. The characteristics of accident situations  
in different clusters
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and higher FAS for Cluster 3. On the whole, Cluster 4  
reflects relatively good accident situations compared to 
other clusters. As for the above-mentioned five provinces, 
they highly accord with the characteristics of Cluster 3. 
There are two levels of reasons: 1) for the five provinces, 
their IS4 (1.5000, 1.5000, 1.4667, 1.3889 and 1.3750) are 
more than the average IS4 in all provinces (1.3408), which 
indicates that the five provinces have higher FAS than en-
tire average level; 2) for Cluster 3, when the five provinces 
are not considered, the average IS4 is 1.8806 for Cluster 3 
and 1.1019 for Cluster 4, which implies that Cluster 3 is 
characterized by higher FAS and Cluster 4 by lower FAS 
compared to entire average level. It is thus objective that 
the five provinces should belong to Cluster 3 rather than 
Cluster 4. Compared to K-means method, clustering re-
sults of DCM are, to a large extent, more suitable for the 
actual condition. Therefore, proposed DCM can be re-
garded as a reasonable classification method.

4.2. Result analysis

This study classified Chinese provinces through estab-
lishing the assessment indicator system and integrating 
SEWM and DCM. The results show that 30 provinces 
in China are classified into four clusters based on their 
accident situations. Moreover, the characteristics of acci-
dent situations in different clusters are further explored to 
clarify the similarities and differences within and between 
clusters at a provincial level. The average values of indica-
tors in different clusters are presented in Table 6.

Obviously, there is a big difference in the distribution 
of the averages in different clusters. Cluster 1 provinces 
see higher FAF including IS1, IS2, and IS3, which are over 
four times more than that of other clusters, respectively. 
In other words, poor accident situations in Cluster 1 prov-
inces mainly result from the higher FAF. Notably, the three 
FAF indicators are the mathematical aggregation of basic 
indicators such as the number of fatalities and GDP, and 
their values were easily influenced by that of basic indica-
tors, but not necessarily (Wang et al., 2018c). Taking IS3 

for example, if the fatalities and GDP remained the same 
proportional change, IS3 would be unchanged. Moreover, 
practitioners, floor areas and the GDP of the building in-
dustry have no significant linear correlation with IS1, IS2, 
and IS3 respectively (–0.492,  –0.356,  –0.369), but they 
have the most backward rankings in Cluster 1 provinces 
except Xinjiang, as shown in Table 7. This implies that 
one province could encounter higher FAF when the three 
factors of the province rank the bottom in all provinces. 
However, to some extent, GDP can influence the level of 
IS3 for one region, but the influence mechanism is very 
complicated due to so many factors and their relationship 
involved (Liu & Wu, 2011). There exist similar situations 
for practitioners and IS1, and floor areas and IS2. There-
fore, it’s difficult for Cluster 1 provinces to give a plausible 
reason why they have higher FAF, maybe for the small 
economic volume or for others. But one thing for sure is 
that the government should balance the development of 
the economy and the construction industry, introduce ad-
vanced construction techniques and learn advanced safety 
management methods from better-performing regions. 

Furthermore, Cluster 2 provinces have higher FAT in-
cluding IS5 (86.67%) and IS6 (160.00%). The shocking in-
creases should arouse the vigilance from other provinces, 
although the IS5 and IS6 have overall declining rates of 
16.02% and 15.78% respectively. The growth percentages 
even indicate that accident situations in Cluster 2 provinces 
are almost out of control compared to that last year. Con-
sidering that the building industry is the pillar section of 
the economic development, some provinces may radically 
pursue rapid growth of GDP at the cost of construction 
safety. However, the above economic development idea 
could be inconsistent with the actual situation. Especially 
for Hebei, its IS5 and IS6 have big growth, but its GDP has 
a declining rate of 7.48% compared to that last year. The 
same situation is, to a certain extent, suitable for Gansu 
(–0.97%) and Shaanxi (–0.15%). The facts could be caused 
by two reasons: one is that current construction safety 
regulations have serious drawbacks in these provinces;  

Table 6. Distribution of average values of indicators in each cluster

Classification Number IS1 IS2 IS3 IS4 IS5 IS6 Feature
Cluster 1 4 5.9934 0.3454 0.0294 1.3983 12.59% 7.33% High FAF
Cluster 2 3 1.2400 0.0586 0.0052 1.4833 86.67% 160.00% High FAT
Cluster 3 9 0.9728 0.0472 0.0047 1.6392 –30.94% –17.16% High FAS
Cluster 4 14 1.4350 0.0696 0.0062 1.1019 –15.95% –23.85% Normality
Total/Average 30 1.8846 0.0985 0.0087 1.3408 –16.02% –15.78% –

Table 7. Characteristics of Cluster 1 provinces

Factor Ranking Pearson correlation

Hainan Ningxia Qinghai Xinjiang IS1 IS2 IS3
Practitioner 30/30 28/30 29/30 26/30 –0.492
Floor area 29/30 28/30 30/30 24/30 –0.356
GDP 29/30 28/30 30/30 21/30 –0.369
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the other is that these provinces loosely implement exist-
ing construction safety policies. Therefore, the first step to-
wards improving the poor accident situations in Cluster 2  
provinces should be to focus on the supervision level of 
construction administrative departments and clarify the 
actual reason of percentage increases, avoiding the vicious 
circle of poor situations in the long term.

Moreover, Cluster 3 provinces have experienced high-
er FAS (IS4) of 1.64 deaths, which is approximately 50% 
more than that of Cluster 4 provinces. There are two main 
situations for the serious outcome: 1) personal death is 
immediately caused by construction accidents; 2) the in-
jured persons whose deaths should have been avoided 
eventually die after the accidents due to inappropriate 
first-aid measures. For the first situation, those construc-
tion activities which could cause serious deaths (e.g., exca-
vation of deep foundation pit, installation and demolition 
of large lifting machinery) should not be conducted until 
the allowance of expert demonstration. For example, the 
installation of the tower crane generally involves a certain 
number of persons who are working at height, and the ac-
tivities probably pose safety hazards to these workers, even 
threatening other persons around the tower crane. The 
scheme of the installation thus has to be demonstrated in 
detail. Therefore, the government should think about how 
to strictly implement demonstration procedures of highly 
serious construction activities in Cluster 3 provinces. For 
the second situation, policies of accident emergency res-
cues should be further improved to avoid more dispens-
able casualties. Considering that the IS4 is an indicator 
that people can intuitively feel by using accident casualties 
in the building industry, the government should pay more 
attention to Cluster 3 provinces and reduce the severity of 
accidents, avoiding negative effects on industry reputation 
and social stability.

Additionally, the rest of provinces seem to have no 
salient features except the lowest IS4 and IS6, which rep-
resent relatively good/normal accident situations. Con-
sidering that Cluster 4 provinces account for about half 
of all provinces (14/30), the normal/good accident situa-
tions could be, to a certain extent, regarded as the most 
common in the Chinese provinces. Although Cluster 4 
provinces could provide successful experience for other 
worse-performing provinces in China, they still have 
much more room for the improvement of accident situa-
tions compared to some developed countries.

According to different characteristics of accident situ-
ations in different clusters, the four clusters are defined as 
high FAF, high FAT, high FAS and normality respectively, 
as listed in the last column of Table 6. Additionally, acci-
dent situations in different clusters also present the char-
acteristics of regional distribution at a provincial level, as 
shown in Figure 5. It is clearly found that provinces with 
normal/good accident situations are mainly distributed in 
the southeastern and northeastern regions of China. The 
worse-performing provinces with high FAF and high FAT 
are mainly distributed in the northwest region of China. 
Provinces with High FAS are mainly distributed in the 
southwestern and central regions of China. Therefore, the 
government should focus on accident situations of the 
building industry in the central and western regions of 
the underdeveloped economy. Especially at the national 
level, progressive policies such as resource allocation and 
economic development strategies should be inclined to 
these regions, with inspiring participants in the building 
industry to improve safety management level together. 
Furthermore, accident situations in the provinces vary 
with different safety management levels, and the better-
performing provinces can generally provide successful ex-
perience for other worse-performing provinces in China.  

Figure 5. Regional distribution of accident situations in different clusters

Note: Tibet, Hong Kong, Macao and Taiwan were not considered in this study due to their incompleteness or/and deficiency of the 
data. Data source: National Bureau of Statistics (NBS, 2019), Ministry of Housing and Urban-Rural Development (MHURD, 2019b).
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Therefore, regional information sharing mechanism of 
safety regulation strategies, especially for what has proved 
to be successful in one province/country, should be ad-
vocated around the world, and more interaction and ex-
change of accident situations should be made between 
academia and industry.

Conclusions and future research

Due to the inherently hazardous nature, the construction 
industry experiences the bad record of the high accident 
rate in many countries, especially in China. Severe ac-
cident situation has posed serious challenges to the gov-
ernment safety regulation in the recent years. This study 
develops a comprehensive assessment model based on 
SEWM and DCM to clarify the characteristic features 
of accident situations in the building industry, aiming at 
providing valuable insights of safety regulation strategies 
from the macro-level perspective. The model is applied to 
assess accident situations of the China building industry. 
Through result analysis and discussion, the following find-
ings can be concluded: 
1. Based on China national condition, six indicators meas-

uring accident situations are selected to establish an as-
sessment indicator system. These indicators reflect the 
accident situations of the China construction indus-
try from FAF, FAS and FAT perspectives, respectively. 
Among them, fatality rate per one accident (IS4) has 
the biggest representativeness on the accident situation, 
followed by the change trend of the number of fatalities 
(IS6).

2. SEWM and DCM used in this study are validated by 
the actual condition of China. Compared to traditional 
indicator weighting such as AHP and entropy weight 
method, SEWM is more suitable for this study due to 
concise calculation process and practical interpreta-
tion of weights. Meanwhile, clustering results of DCM 
are considered more reasonable compared with the K-
means method. On the whole, the proposed model is 
feasible and reliable.

3. Accident situations in Chinese provinces present vari-
ous features, namely high FAF, high FAT, high FAS and 
normality. Notably, the provinces with poor accident sit-
uations account for over half of all provinces (53.33%), 
and they are mainly distributed in the central and west-
ern regions of China where there exists the underdevel-
oped economy. Besides, provinces in the southeastern 
and northeastern regions of China perform better, but 
they still have much more room for the improvement 
of accident situations. Furthermore, the government 
should advocate regional information sharing of safety 
regulation at the national/provincial level.

4. The provinces that experience the lowest number of 
practitioners, floor areas and the GDP of the build-
ing industry could be prone to high FAF, especially for 
Hainan, Ningxia and Qinghai. The government should 
pay greater attention to these regions that have smaller 
scale of the construction industry in China and allocate 

resources to balance the development of the economy 
and the construction industry.

5. Poor accident situations in the provinces with higher 
FAT, namely Gansu, Hebei and Shaanxi, could be al-
most out of control, with the fact that the number of 
fatal accidents still have a big growth despite the de-
cline of GDP. As for these regions, the supervision level 
of construction administrative departments is, to some 
extent, more urgent to improve, and/or safety manage-
ment strategies that could be currently missing must 
be supplemented in time through learning from better-
performing regions.

6. FAT is a perspective that can show the most intuitively 
accident situation, thus the provinces with higher FAT 
should be paid more attention to safety warning and/or 
emergency plans before and after one accident occur-
ring, such as irregularly publishing the lists and hazard-
ous factors of those construction activities which could 
cause serious deaths. 
This study may have some research limitations. Re-

search results comply with current national conditions 
in China, but they are generally influenced by some fac-
tors such as the number of selected provinces/regions and 
the change of indicators. Thus the results could change 
if other regions (e.g., Hong Kong and Taiwan) or/and 
other indicators (e.g., the fatality rate per 100,000 full-
time equivalent workers) are considered in the future 
work. Meanwhile, the comprehensive assessment model 
has some extensibility/flexibility, namely the indicators 
and regions contained can be increased or reduced based 
on the actual conditions of accident situations in the as-
sessment regions/countries. Therefore, the model needs 
appropriate improvement when applied in other regions/
countries. Moreover, the model is used to analyze static 
characteristics of provincial distribution of accident situa-
tions based on the one-year data (2015), but the accident 
situation is generally regarded as a dynamic phenomenon. 
Therefore, future work can be conducted to explore the 
dynamic property of the accident situation by using two- 
or more-year data. Furthermore, the influence mechanism 
of GDP on IS3 has been the research hotspot, but it is 
highly complicated because GDP is not the only factor af-
fecting IS3. This kind of research topics can be conducted 
in the future. Nevertheless, current findings obtained from 
the macro-level perspective could provide some insights 
for people who are concerned about accident prevention 
of the entire industry.
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