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Abstract. Due to a considerable amount of information required to support the decision-making processes, an increasing 
number of infrastructure owners use computerized management systems. Bridges, being complex and having significant 
impact on society, have often been the foundation for the development of these systems. In order to manage bridges 
effectively, condition prediction models are incorporated to the core of decision-making processes. Many of developed 
and applied stochastic prediction models show certain limitations. The impact of these limitations on deterioration pre-
dictions cannot be objectively evaluated without direct comparison of prediction results. Hence, several stochastic pre-
diction models based on condition ratings obtained from visual inspections of bridge decks are compared in this article. 
Models are described and implemented on the data of around 1100 reinforced concrete bridge decks from the ‘Infraes-
truturas de Portugal’, a state owned Portuguese general concessionaire for roadways and railways. The statistical analy-
sis of different models revealed significant deviations, particularly in higher condition ratings. Results indicate limited 
prediction capability of a simple homogeneous Markov chain model when compared with time- and space-continuous 
models, such as the gamma process model.
Keywords: stochastic prediction models, Markov process, gamma process, bridge management system, condition rating, 
visual inspection.

Introduction 

Transport is essential for the development because it ena-
bles trade between people and plays an important part 
in economic growth and globalization. A transportation 
network is a realisation of a spatial network consisting 
of fixed installations (Barthelemy 2011). Being such in-
stallations, bridges are crucial segments of roadway and 
railway transportation networks, and require timely deci-
sion making for Maintenance, Repair and Rehabilitation 
(MR&R) activities. To cope with demands of huge net-
works, Bridge Management Systems (BMSs) have been 
developing since the early 1990’s to manage bridges reli-
ably (Bu et al. 2011). The fundamental objective of these 
systems is to help the operators establish an effective op-
eration strategy as a compromise between technical and 
social factors, such as maximization of network perfor-
mance, minimization of life-cycle costs, and minimiza-
tion of the probability of failure (Bortot et al. 2006).

The forecast of long-term performance expressed 
through a deterioration model is one of the main com-
ponents of BMSs. Numerous deterioration models are 

developed to both determine the bridge remaining us-
age period and to meet MR & R needs (Karunarathna 
et al. 2013). Deterioration models can be divided into 
mathematical (statistical), empirical and physical, where 
among mathematical models Markovian models are most 
frequently used. Most of BMS software utilizes Marko-
vian models that are based on condition ratings of bridge 
components or of an overall bridge in a network (Mir-
zaei et al. 2014). Condition ratings are obtained in visual 
inspections and assigned to different scales by different 
organizations. 

There are several important issues concerning the 
use of a homogeneous Markov chain for management op-
timization. These issues can be found described in detail 
by Frangopol et al. (1997) and Agrawal et al. (2010) and 
it can be summarized as follows:

 – in Markov chain the condition state is not continu-
ous, but discrete and finite;

 – transition probabilities in the transition matrix are 
difficult to assess non-subjectively;
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 – Markov chain assumes discrete transition time inter-
vals, constant bridge population, and stationary tran-
sition probabilities, which are sometimes deemed 
impractical;

 – Markovian chain models currently implemented in 
advanced BMSs use the first-order Markovian deci-
sion process that assumes duration independence for 
simplicity, i.e. the future facility condition depends 
only on the current facility condition and not on the 
facility condition history, which is unrealistic;

 – transition probabilities assume that the condition of 
a facility can either stay the same or decline.
Due to the shortcomings of Markov chain in model-

ling deterioration represented by condition ratings, scien-
tific community has invested significant effort in develop-
ing new stochastic models. Part of the effort was directed 
at adapting and using Bayesian optimisation techniques 
and Artificial Neural Network (ANN) techniques, but it 
was mostly directed at adapting different types of Markov 
processes. In order to objectively assess the advantages 
and disadvantages of prediction models, the results of 
prediction need to be compared. Therefore, the main ob-
jective of this article is a comparison of several stochas-
tic prediction models using the same database. Namely, 
the Markov homogeneous and inhomogeneous chain, 
Markov process with exponential and Weibull distribu-
tion and gamma process. In addition to comparison, this 
article focuses on the problematics of scarce input data, 
this being one of the major shortcomings in deterioration 
modelling, and it also indicates the possibility of using 
continuous-time and continuous-state space models, such 
as the gamma process model, as an alternative to the pre-
dominantly used Markov chain models.

1. Bridge decks

The bridge decks data used in this article were acquired 
from the “Infraestruturas de Portugal” (IP), a state owned 
Portuguese general concessionaire for roadways and rail-

ways. The data consist of assigned condition ratings from 
Principal visual inspections of roadway concrete bridge 
decks. Visual inspections in Portugal are divided to Rou-
tine and Principal, the latter being conducted every 5 
years. The condition ratings are allotted on the scale of 0 
to 5, 0 being the best condition and 5 the worst (Freire, 
Horta 2012). 

In order to generate a unique data set that is appro-
priate for all of the models presented in this article, sev-
eral constrains are introduced. Since IP uses the philoso-
phy of considering the condition state 4 as being critical, 
meaning that the structure has to be subjected to a repair 
action until the next inspection, this philosophy results 
in infrequent occurrence of condition state 5. Therefore, 
the condition rating 5 is affiliated to condition rating 4, 
and the condition rating 4 is considered to be the up-
per threshold. The bridge decks older than 80 years as 
well as bridge decks with unknown age are discarded. 
In conjunction with the age constrain, the constraint of 
non-decreasing condition rating and the constraint of con-
dition rating not increasing for more than one grade per 
inspection are introduced. Furthermore, only bridge decks 
with two consecutive inspections are used for calculation 
of probabilities of transition. Considering all identified 
constraints, the data set of 1127 bridge decks is gener-
ated, as shown in Table 1.

Table 1. Occurrence of events (condition ratings) at first and 
second inspection

Period CR 0 CR 1 CR 2 CR 3 CR 4 CR 5 ∑
First 
inspection 88 597 364 76 2 0 1127

Second 
inspection 5 590 431 96 4 1 1127

Besides condition ratings, data comprise additional 
information such as structural and bridge type, material 
and distance to the sea, as presented in Table 2. For each 

Table 2. Information for bridges regarding the structure and bridge type, distance to the sea and material, with assigned number 
of bridges in each category

Structure Type No. Bridge type No. Distance to  
the sea No. Material No.

Multiple span 508 Overpass bridge 238 <2 km 22 Reinforced  concrete 759
Frame bridge 202 Bridge 230 2–10 km 109 Pre-stressed concrete 368
Simply supported (single span) 174 Underpass bridge 226 10–50 km 515
Box culvert 106 Culvert 226 50–100 km 249
Precast arch 68 Cattle creep 115 >100 km 232
Arch (single/ multiple span) 38 Viaduct 57
Mixed solution (more than one type) 12 Footbridge 33
Gerber beam 10 Tunnel 1
Widening deck over arch 6 Other 1
Suspension bridge 1
Other 1
Not known 1
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category of information in Table 2, a number of bridges 
belonging to the category are assigned.

Consecutive inspections were performed during the 
period from 2005 until the end of 2015, the period be-
tween inspections being approximately 5 years long (±2 
years). In Figure 1, the years of bridge decks construction 
are presented. As it can be seen, most of them were built 
between 1990 and 2005.

2. Markov chain

2.1. Introduction
Markov processes, in general sense, describe random 
occurrence of changes over time by means of Markov 
property. This property implies that the future condition 
depends only on the present condition, not the sequence 
of events that proceeded (Feretic 2014). Markov chain is 
used to calculate the probability indicating the element 
such as a bridge deck will, at a given time, be in a par-
ticular condition state. More detailed assumptions and re-
strictions included in order to optimize the Markov chain 
model for bridge assessment can be found in works of 
Puz et al. (2010) and Kleiner (2001).

When the process with a number of conditions states 
k is considered, the probability vector p(tn), at any given 
moment tn, shows the probability that the process will 
assume one of the condition states k. This vector can be 
expressed by the following equations:

 ( ) ( )0 * n
np t p P= ; (1)

 ( ) ( ) ( ) ( ) ( ){ }1 2 3           ,n n n n k np t p t p t p t p t= …  (2)

where: p(tn) is the condition state probability vector; p(0) 
is the initial condition state probability vector; P is the 
transition probability matrix; pi(tn) is the probability that 
the process will be in the condition state i at the moment tn.

In case of condition ratings, the initial condition 
state vector is formed on the basis of the latest performed 
deck inspections, following the Eqn (3):

 ( ) ( ) ( ) ( ){ }1 20 0    0      0kp p p p= … , (3)

where: pi(0) is the probability that the process will be in 
the condition state i at the initial moment.

In addition to the initial condition state vector the 
transition probability matrix P should also be known. The 
transition probability matrix P is a square matrix of the 
kth order with elements pij. If during a single period of 
time (from tn to tn+1) the process can either pass on to the 
next higher condition state or remain in the same condi-
tion state, then the transition probability matrix takes the 
following form:
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, (4)

where: pij is the probability that the process will pass 
from the condition state i to the condition state j during 
the time period from tn to tn+1; pii is the probability that 
the process will remain in the condition state i during the 
time period from tn to tn+1.

2.2. Homogeneous Markov chain

More commonly used Markov chain where transition 
probabilities pij are not time-dependent is called the ho-
mogenous Markov chain. Conversely, in the inhomoge-
neous Markov chain the transition probabilities pij(t) are 
time-dependent.

In order to form the transition matrix P, the relative 
frequency of occurrence of events under study needs to 
be determined. This is done by using the data introduced 
in Table 1. After determining the relative frequencies, the 
transition matrix P takes the form:

 

0.06 0.94 0 0 0
0 0.85 0.15 0 0
0 0 0.94 0.06 0
0 0 0 0.96 0.04
0 0 0 0 1

P

 
 
 
 =
 
 
  

. (5)

Fig. 1. Years of construction of decks used as the input for some of the models presented
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2.3. Inhomogeneous Markov chain
In the Markov inhomogeneous chain, the time depend-
ency of probability of changing the condition states is 
taken into consideration. Thus, the condition state prob-
ability vector from the Eqn (1) takes the form:

 ( ) ( ) , 1 1, 2 1,* * * *t t t t t k t kp t k p t P P P+ + + + − ++ = … , (6)

where each time-dependent probability matrix Pt,t+1 can 
be expressed as:
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. (7)

To determine the time dependent probability ma-
trix Pt,t+1 the condition state is associated with the age 
of decks. The transition probabilities are calculated by 
grouping bridge decks from the entire data into smaller 
groups, depending on the age of decks. Decks are di-
vided into eight groups, with a 10-year period between 
the groups, as presented in Table 3. According to  Table 3 
each individual age dependent probability matrix Pt,t+1 
is made.

3. Markov processes

3.1. Homogeneous Markov process with exponential 
distribution
A continuous-time Markov process is a type of stochastic 
processes which passes from one state to another form-
ing a Markov chain. The process is in a particular state 
for a random length of time distributed depending on the 
state (Ng, Moses 1998). For more detailed description of 
characteristics of Markov process with exponential dis-
tribution see Puz et al. (2010, 2013). A basic equation of 
the Markov process where k possible conditions exist is:

 
( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 2 20 * 0 *

0 * ,
j j j

k kj

p t p p t p p t

p p t

= + +…+

 (8)

where: pj(t) is the probability that process is in stage j in 
time t; pi(0) is the probability that process begins (t = 0) 
from stage i; pij(t) is the probability of transition from i 
to j in time t.

Transition probabilities pij(t) are derived from the 
durations during which bridge elements remain in a given 
condition state called “sojourn times” (also called holding 
times or waiting times). If sojourn times are considered 
as being exponentially distributed, the transition prob-
abilities can be solved using the properties of exponen-
tial random variables (Feretic 2014). These properties are 
described in Eqns (9) and (10), where α represents the 
duration of the first condition rating (first sojourn time). 
The same principle is applied to durations of higher con-
dition ratings.

Let α be a real number and α > 0. If the random vari-
able W has probability density function (PDF):

 ( )
0     0

1  *      0
t

for t
f t

e for tα
α

−

<
= 

≥


, (9)

then W has the exponential distribution with parameter α. 
Written as W ~ Exp (α).

Let W ~ Exp(α). Then for t ≥ 0:

 ( )
t

P W t e α
−

≥ = . (10)

One of the possible ways of deriving the information 
of sojourn times is by using the principle presented in Puz 
et al. (2013). The other solution, the one that is used in 
this article, is to calculate sojourn times by taking into 
account the probabilities shown in Eqn (5). Where the 
element is considering staying in certain state until the 
probability of transition increases above 0.5. Calculated 
sojourn times are presented in Table 4.

Table 4. Sojourn times of condition states for the exponential 
Markov process model

Condition rating CR 0 CR 1 CR 2 CR 3 CR 4
Sojourn time [y] 5 20 45 65 ∞

Table 3. Transition probabilities pij dependent on the age of a deck, derived for the inhomogeneous Markov chain

Age classes of bridge decks [y]
<10 11–20 21–30 31–40 41–50 51–60 61–70 71–80

Tr
an

si
tio

n 
st

at
es

0–0 0.25 0.03 0.05 0.00 0.00 0.00 0.00 0.00
0–1 0.75 0.97 0.95 1.00 1.00 1.00 1.00 1.00
1–1 0.91 0.91 0.82 0.75 0.70 0.79 0.70 0.70
1–2 0.09 0.09 0.18 0.25 0.30 0.21 0.30 0.30
2–2 0.92 0.97 0.93 0.97 0.82 1.00 0.92 0.81
2–3 0.08 0.03 0.07 0.03 0.18 0.00 0.08 0.19
3–3 – 1.00 1.00 0.83 1.00 1.00 0.83 0.83
3–4 – 0.00 0.00 0.17 0.00 0.00 0.17 0.17
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3.2. Markov process with Weibull distribution
In the Markov process with Weibull distribution, as well 
as in the previously presented Markov process based on 
exponential distribution, duration in each state is assumed 
to be a random variable with known probability distribu-
tions. The difference is that the distribution assigned to 
these variables is Weibull distribution, the process is not 
stationary, and the procedure of deriving the parameters 
of distribution differs. For comprehensive explanations 
of mathematical equations of the Markov process with 
Weibull distribution see Kleiner (2001).

Here, as well as in the inhomogeneous Markov 
chain, the condition state probability vector can be ex-
pressed through Eqn (6), and the transition probability 
matrix through Eqn (7). The probabilities that the process 
will pass from one state to the next subsequent one are 
calculated based on Eqn (11) and used to populate the 
transition probability matrix. If the process is in the state 
i at time t, the conditional probability that it will transit 
to the next state in the next time step is expressed by:

 ( ) ( )
( ) ( ) ( )

0
, 1

0 0 1

i
i i

i i

f t
p t

S t S t
→

+
→ → −

=
−

, (11)

where: f0→i(t) is the cumulative density function (CDF) 
of the sum of sojourn times; S0→i(t) is the survival func-
tion (SF) of the sum of sojourn times.

The CDF and SF of particular sojourn times are ex-
pressed as:

 ( ) ( ) ( )1
i

it
i iS t F t e

βλ−= − = ; (12)

 ( ) ( ) ( ) ( ) i
i iti

i i i i
F t

f t t e
t

ββ λλ β λ −∂
= =

∂
. (13)

To derive parameters λi and ßi based on the historical 
observations and visual condition assessments of bridge 
decks at least two information sets in different times are 
to be known. The information should contain the prob-
ability (parameters xi,u and xi,v) of the decks staying in 
the certain condition state for the certain duration of time 
(parameters u and v). In the case of the data set from 
IP, the data from expert judgement were replaced by the 
data derived from the relative frequency of events, calcu-
lated similarly as for the Markov process with exponen-
tial distribution. For detailed description of procedure of 
deriving the parameters presented in Table 5, see Kleiner 
(2001).

The sum of the sojourn times is denoted as follows:

 
1

, 1
1

k

i k j j
j

t t
−

→ +
=

= ∑ , (14)

where: i = {1, 2, …, n – 1}; k = {2, 3, …, n}.
The fi→k (ti→k) and the Si→k (ti→k) of the sum of the 

sojourn times cannot in general be calculated analytically, 
therefore Monte-Carlo simulations are used to calculate 
these functions numerically.

4. Gamma process model

Unlike previous presented models, the gamma process 
model is both continuous-time and continuous-space 
model, and it has not yet been used for the prediction of 
condition states based on visual inspections. The gamma 
process is a process with independent and gamma distrib-
uted increments and it implies that deterioration progress-
es with frequent occurrences of small increments (Abdel-
Hameed 1975). Comprehensive mathematical aspects of 
gamma process can be found in Dufresne et al. (1991) 
and Ferguson and Klass (1972).

Although represented by a discrete-space condition 
rating, physical processes causing structural deterioration 
(without maintenance actions) follow a non-negative and 
continuous function. Likewise, they are not independent 
of previous time-steps and consequently cannot be real-
istically described by the duration-independent stochastic 
processes. Therefore, the gamma process as a non-nega-
tive continuous function can serve as a very simple and 
effective method for establishing consistent deterioration 
models for structures subjected to inspections (Abdel-Ha-
meed 1975). Deterioration affecting bridge decks can be 
wear, fatigue, corrosion, crack growth, creep, swelling, 
etc. If the condition ratings from visual inspections can 
be matched with the corresponding deterioration phenom-
enon, the gamma process can be easily modelled for each 
specific phenomenon. In that case, due to different rates 
of deterioration under various conditions, data would 
have to be partitioned into groups containing relatively 
consistent characteristics.

A random variable X that follows gamma distribu-
tion can be described using the shape parameter a > 0, 
the rate parameter ß > 0 and the following probability 
density function (PDF):

 ( ) ( ) ( )1, ·Ga x x exp x
α

αβα β β
α

−= −
Γ

. (15)

Table 5. Input parameters for the Markov process with Weibull distribution

State [CR] u [years] xi,u [%] v [years] xi,v [%] βi 1/λi λi

0 30 3.36E-08 50 3.51E-13 1 1.743 0.574
1 30 0.375 50 0.195 1 30.599 0.0327
2 30 0.676 50 0.521 1 76.603 0.0131
3 30 0.785 50 0.668 1 124.150 0.0081
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When modelling deterioration in terms of a gamma 
process, the question that arises is how expected deterio-
ration increases over time. Empirical studies show that 
the expected deterioration at time t is often proportional 
to a power law (Ohadi, Micic 2011):

 ( ) * bt c tα = . (16)

van Noortwijk and Pandey (2004) recommended using a 
constant exponent b which can be adapted according to 
the considered deterioration process. In the case of dete-
rioration represented by condition ratings, the parameter 
b = 0.22 is obtained by fitting the power law formulation 
to the trajectory of sojourn times given in Table 4. The 
parameters c and ß are unknown and need to be adapted 
through expert knowledge or statistical analyses such as 
the Maximum Likelihood Method, the Method of Mo-
ments or Bayesian Statistics. For that reason, the inspec-
tion periods on the transformed time axis are defined as:

 1
b b

i i iw t t −= − , (17)

and the deterioration increments on the transformed time 
axis are defined as:

   
1X X .i i iγ −= −  (18)

If the deterioration increment γi corresponds to a 
gamma distribution with a shape factor c∙wi and a rate 
parameter ß for i = 1, 2, ..., n, then the population pa-
rameters can be obtained through one of the aforemen-
tioned statistical methods. Based on these assumptions, 
van Noortwijk (2009) recommends the following formu-
lations for the form parameters:
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∑ ∑
∑

. (20)

The results obtained from the gamma process com-
putation are continuous-space results, and not countable 
and finite-space results. Thus, in order to compare the 
results with the previously presented models, the finite 
space results made of discrete condition ratings are ob-
tained by introducing the boundaries in continuous-space 
results at 0.5, 1.5, 2.5, and 3.5.

5. Advantages and drawbacks of presented models

Among the limitations of Markov chain model described 
in the introduction, the most significant effect on dete-
rioration rates is thought to be within the stationarity of 
transition probabilities and duration independence. Mark-
ov inhomogeneous chain and Markov Weibull processes 
presented the possibility of overcoming the stationarity of 

transition probabilities, but they fail to take into account 
the dependence of duration. Conversely, the Markov ex-
ponential process does not include the age of the deck, 
just the probability of staying in a certain state for a cer-
tain sojourn time. Since most of the bridge decks were 
built between 1990 and 2005, the data are unfavourable 
to models with time dependent transition probabilities, 
especially when determining the transition probabilities 
of older decks. Although the input is significant when 
considering an overall number of decks, it is still marked 
with a low number of decks with high condition ratings, 
especially in some of the age classes. Therefore, in the 
case of the Markov inhomogeneous chain, the data did 
not present the possibility to model the time dependent 
transition probabilities enough convincingly, which can 
be seen by observing the Table 3. Both the exponential 
and Weibull Markov process use the sojourn times that 
have to be based on expert judgement or statistically de-
rived from input data. Theoretically, sojourn times can be 
improved by comparing the statistical model with physi-
cal models, i.e. with one of the models used for service 
life calculation according to fib Bulletin 34 (Schiessl 
2006) and Bulletin 76 (Gehlen 2015). Although estimates 
of the time frame during which an element will stay in a 
certain condition resemble more to the engineering way 
of thinking than the concept of transition probabilities, 
these estimates are stil highly subjective and their influ-
ence on the outcome of prediction is crucial. Another 
drawback of Markov process models is that they do not 
take into account the length of the structural element al-
ready being in current condition state, and presume it just 
entered this state. This characteristic alone can cause the 
shift in prediction results for the whole length of the so-
journ time. According to Morcous (2006), when using the 
Markov chain model variations in the inspection periods 
can result in a 22% error in predicting the service life of a 
bridge deck system, together with 5% of error caused by 
‘memoryless’ assumption. Since variations in inspection 
periods are frequent, continuous-time models have a sig-
nificant advantage compared to discrete-time models. The 
last presented model, i.e. the gamma process model, is a 
time- and space-continuous model, and it is both a non-
stationary and a duration dependent model. It accounts 
for the past events that proceeded the current condition, 
thus considering every bridge deck as being distinct.

The presented models are programmed in the Matlab 
2016 program, and set to summarize the probabilities of 
all the bridge decks in two different time horizons, first in 
year 2030 and second in year 2040. For every particular 
condition state pi(tn) the summation of probabilities of all 
the data is performed, as shown in Eqn (21):

 ( ) ( )
1127

, ,
1

n

i set n i j n
j

p t p t
=

=
= ∑ , (21)

where: pi,set is the probability of every particular condi-
tion state of the whole data set; pi,j is the probability of 
every particular condition state of every bridge deck. 
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The calculated results are compared and presented 
as percentages of all decks in Figure 2, that also encom-
pases an average value of all the models. In Figure 2, the 
results for 2030 are depicted with striped lines. Outlined 
results indicate the percentage of decks being in a certain 
condition state with a presumption that in the interim no 
maintenance or repair intervention was performed. 

All of the models predicted that non of the decks 
will stay in the condition state 0 for both time horizons. 
No significant variance can be seen between the first and 
second time horizon in terms of relative difference be-
tween models. In other words, their comparison remains 
simmilar in changing the time horizons. It can be seen, 
from the results presented in Figure 2 that the homo-
geneous Markov chain predicted the lowest number of 
bridge decks being in condition state 4, with only 3% of 
decks being in condition state 4 by 2040. This is due to 
very low probability of transition from CR 3 to CR 4, of 
only 0.04 (shown in Eqn (5)). Markov inhomogeneous 
chain predicted the highest number of bridge decks be-
ing in condition state 2 by 2040, this being due to very 
high probabilities (even unrealistic for some age classes) 
of staying in the condition state 2 presented in Table 3. 
Markov exponential process in general shows the most 
abrupt transitions to higher condition states among all 
the models. Although the sojourn times in Table 4 are 
more than substantially lengthy, still this model predicts 
the highest results. The Markov process with Weibull 
distribution is in its prediction most alike to the simple 
homogeneous Markov chain. Even though the sojourn 
times are calculated on the same principle as for the ex-
ponential process, and both of these models are based 
on continuous-time processes, the results obtained differ 
noticeably. For the condition state 4, both the Markov ex-
ponential process and the gamma process predict almost 
three times the value of the homogeneous Markov chain. 
To some extent, regarding the gamma process, this can 
be explained by the fact that gamma process does not 
exclude the probabilities of bridge decks progressing for 
more than one condition rating per inspection. 

Conclusions

Several stochastic prediction models based on the input 
data made of visual inspection condition ratings are com-
pared in this article; additionally, an alternative continu-
ous gamma process model was proposed. The comparison 
is made using the input database comprising of condition 
ratings gained from Principal visual inspections of rein-
forced concrete bridge decks provided by “Infraestrutur-
as de Portugal”. Data are characterized by a low count 
of consecutive inspections and a low number of bridge 
decks with high condition ratings, causing difficulties in 
calculating transition probabilities of higher condition 
states. Such a drawback, in case of ample information on 
decks locations being available, could be somewhat miti-
gated by sub-dividing the data into a number of groups 
with a similar environmental impact, in order to differ-
entiate to a greater degree those decks with a high rate of 
deterioration from those deteriorating at a slower pace. 
Moreover, besides accounting for location and environ-
mental impact, models should be further developed to 
take into account repair and preservation methods.

Shortcomings of prediction models, combined with 
a natural variability of deterioration, can cause high vari-
ation in results when compared with real performance 
of structures. To reduce possible errors arising during 
the estimation process, the applied model should be able 
take into account different deterioration phenomena in 
conjunction with a specific historic deterioration path of 
every affected element. Hence, considering all modelling 
advantages, the gamma process model presents a suit-
able alternative to the simple homogeneous Markov chain 
model, as well as other rendered models.

Considering the condition prediction results shown, 
especially for the crucial condition states CR 3 and CR 
4, high deviation in prediction can be seen with different 
models. Depicted results raise doubt when considering 
prediction accuracy of the simple homogeneous Markov 
chain in case of scarce input data. Since it predicts the 
lowest number of bridges that require intervention, irre-
spective of the prediction time horizon, it possibly trig-
gers inadequate selection of maintenance/repair operation 
at an inadequate moment in time. 

Fig. 2. Comparison of the predicted condition of bridge decks by year 2030 (striped) and 
2040, expressed as the percentage of decks being in a certain condition state; with the 
presumption of no interventions being conducted in the meanwhile
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