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Abstract. Stresses of a structure are determined with a first or a second order analysis. The choice of the method is guided 
by the potential influence of the structure’s deformation. In general, considering their low rigidity with regard to those 
of buildings, scaffolding and shoring structures quickly reach buckling failure. Imperfections, such as structural defects 
or residual stresses, generate significant second order effects which have to be taken into account. The main challenge is 
to define these imperfections and to include them appropriately in the calculations. The present study suggests a new ap-
proach to define all the structure’s imperfections as a unique imperfection, based on the shape of elastic critical buckling 
mode of the structure. This study proposes a method allowing to determine the equation of the elastic critical buckling 
mode from the eigenvectors of the second order analysis of the structure. Subsequently, a comparative study of bending 
moments of different structures calculated according to current Eurocode 3 or 9 methods or according to the new method 
is performed. The obtained results prove the performance of the proposed method.
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Introduction

Thin structures are very prone to buckling failure mainly 
caused by compression loads. Structures must be analysed 
using a model and assumptions that reflect their behaviour 
with an appropriate accuracy in relation to limit states. 
Stresses in a structure are determined from a first or a 
second order analysis, according to the potential influence 
of its deformation (Girão Coelho, Simão, & Wadee, 2013). 
Usually, it can be considered that scaffolding and shoring 
structures quickly reach their buckling failure thresholds. 
Our investigation aims to highlight a calculation method 
that is both safe and economical.

Application of a compressive force on a member with 
imperfections generates a bending moment, called second 
order moment, which leads to greater lateral deforma-
tions of this member (Elishakoff, 1978). These deforma-
tions amplify the compressive axial force and the lever arm 
(Shayan, Rasmussen, & Zhang, 2014). The bending mo-
ments cause parasitic effects which limit the load capacity 
of the member (Frey, 2014), explaining the need to take 
into account accurately imperfections of members in the 
structure analysis, either in including imperfections in the 

global analysis, or, in using appropriate criteria taken into 
account the unmodelled imperfections (Maquoi, Boisson-
nade, Muzeau, Jaspart, & Villette, 2001; Eindhoven Uni-
versity of Technology, 2006). 

Due to the fact that imperfections of construction ele-
ments are within the normal tolerances of manufacturing 
lines, they are generally not visible and cannot be quan-
tified precisely in advance. Several approaches have been 
conducted to study the imperfections that can reduce the 
structure resistance (Taheri-Behrooz & Omidi, 2018). 
Kala (2005) proposed a study to determine the influence 
of the imperfections on the resistance of members sub-
jected to axial compression. Taheri-Behrooz, Esmaeel, and 
Taheri (2012), Taheri-Behrooz, Omidi, & Shokrieh (2017) 
analysed the buckling behaviour of composite cylinders 
with cutout. They developed finite element analysis, with 
first or second order approaches, enabling to predict on 
the buckling behaviour of thin cylinders, the effects of ini-
tial imperfections, the effects of the size and the direction 
of a cutout and the effects of combined initial imperfec-
tions and cutout.

http://creativecommons.org/licenses/by/4.0/
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Two methods are suggested by Eurocode 3 (European 
Committee for Standardization [CEN], 2005) to include 
the structural defects in the model of the structure. The 
first is the conventional method, based on the definition 
of a local imperfection and a global imperfection of the 
structure. The second method is based on the definition of 
a unique global and local imperfection whose appearance 
is similar to predominant elastic critical buckling mode of 
the structure. 

Analytical researches have been carried out in the re-
cent years concerning the including of the imperfections 
in the model by means of a unique global and local im-
perfection. Gonçalves and Camotim (2005) proposed 
an approach enabling a better understanding of the con-
cepts involved in Eurocode 3 (CEN, 2005) provisions. 
Agüero, L. Pallarés, and F. J. Pallarés (2015) also proposed 
a method to define the unique imperfection to flexural 
and/or torsional buckling steel structures. Chladný and 
Štujberová (2013a, 2013b), in their articles  on the unique 
local and global imperfection of a structure subjected to 
elastic buckling, defined a tool to determine the shape of 
the buckling mode as an initial unique imperfection. Shay-
an et al. (2014) studied the number and magnitudes of ei-
genmodes to use in the structural analyses to determine 
the initial geometric imperfections of steel frames. Hassan, 
Salawdeh, and Goggins (2018) proposed in their investiga-
tion a comparison of three methods to define geometrical 
imperfections of structural steel hollow sections under cy-
clic axial loading.

The present study suggests a new approach to define 
imperfections as a unique imperfection, using the eigen-
vectors of the second order analysis of the structure. These 
eigenvectors enable to put in equation the elastic critical 
buckling mode of the structure. This alternative method 
changes the approach to Eurocode 3 (CEN, 2005). This 
present article also proposes a comparative study of bend-
ing moments of different structures calculated accord-
ing to current Eurocode 3 (CEN, 2005) or 9 (CEN, 2010) 
methods or according to the new proposed approach.

1. Methods of taking imperfections into account

1.1. Local and global imperfections of structures 
(conventional Eurocode 3 method)

The conventional method of taking into account imperfec-
tions according to Eurocode 3 (CEN, 2005) is translated 
by the definition of a global imperfection and local (see 
Figure 1). These imperfections are represented respective-
ly by: a global initial default balance of the structure; and a 
local deformation in arc. In a structure, the imperfections 
can be introduced either by calculating the coordinates of 
the nodes of the structure with imperfections or by means 
of equivalent loads applied on the structure without im-
perfections.

Eurocode 3 (CEN, 2005) defines:
 – Global initial sway imperfections φ :
φ = φ ⋅α ⋅α0 h m , (1)

where: φ =0
1

200
 as the basic value;αh  is the reduction 

factor for height h applicable to columns:α =
2

h h
 but

≤ α ≤
2 1
3 h ; αm  is the reduction coefficient for the number

of columns:  α = ⋅ + 
 

10.5 1m m
, where m is the number

of columns in a row including only those columns which 
carry a vertical load not less than 50% of the average value 
of the column in the vertical plane considered

 – Local imperfections of members 0e L :
e0 is the bow imperfection for simple columns. Table  1 
gives the ratio e0/l conventionally defined in the European 
buckling curves (Maquoi & Rondal, 1978) depending on 
the type of analysis conducted (elastic or plastic).

Table 1. Design value of the initial local bow imperfection e0/l 
for members

European buckling 
curves

Elastic analysis Plastic analysis
e0 / L e0 / L

a0 1/350 1/300
a 1/300 1/250
b 1/250 1/200
c 1/200 1/150
d 1/150 1/100

Curve a0 corresponds to hot-rolled I-sections with 
thin flange (at most 40  mm) with steel S460, and hot-
rolled hollow sections with steel S460. Curve a represents 
quasi-perfect shapes such as: hot-rolled I-sections (h/b > 
1.2) with thin flange (tf < 40 mm) if buckling is about ma-
jor axis, hot-rolled hollow sections (with other steel than 
S460). Curve b corresponds to shapes with medium im-
perfections such as: most welded box sections, hot-rolled 
I-sections (h/b > 1.2) with thin flange (tf < 40 mm) whose 
buckling is about minor axis, welded I-sections with thin 
flanges (tf < 40 mm) buckling about major axis, L-sections. 
Curve c represents profiles with a lot of imperfections such 
as: cold-rolled hollow sections, U-sections, T-sections, 
solid sections. Curve d corresponds to profiles with maxi-
mum imperfections such as: hot-rolled I-sections (h/b < 
1.2) with very thick flange (tf > 100 mm), welded I-sections 

Figure 1. Global and local imperfection
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with thick flange (tf > 40  mm). Table  6.2 of Eurocode 3 
(CEN, 2005) enables to select the buckling curve accord-
ing to the type of cross-section. 

The main fault of these conventional methods is that 
they rely only on the geometry of the structure. Moreover, 
it is important to consider the most unfavourable form of 
these imperfections. Several combinations of global and 
local imperfections must be considered to find the worst, 
which is one of the disadvantages of this method.

1.2. Unique local and global imperfection of 
structures

In terms of structural mechanics, the elastic critical buck-
ling mode (ηcr) of any given frame allows anticipating its 
local and global behaviour. Indeed, the buckling mode 
expresses the type of deformation that may occur to the 
right of each node of the structure under the effect of a 
load. This being assumed, the prior existence of a struc-
tural imperfection in the direction of future displacements 
means that the structure is subjected to the most unfa-
vourable conditions (Baguet, 2001).

In the case where imperfections must be taken into ac-
count, a unique global and local imperfection similar to 
the most representative elastic critical buckling mode will 
be defined. It is advisable to assign amplitude to this shape 
that is also representative of the desired level of imperfec-
tion. This magnitude can be determined by three methods.

1.2.1. Alternative method of Eurocode 3
This method is based on the determination of a unique 
imperfection (ηinit) which allows the local superposition 
of the critical distortion of the structure that houses the 
critical cross-section and a deformed reference member 
whose geometrical characteristics and critical load are the 
same as those of the critical cross-section of the structure.

The alternative method of Eurocode 3 (CEN, 2005) is 
based on the following requirement: the curvature in the 
critical cross-section of the structure with the initial im-
perfection, based on the elastic critical buckling mode ηcr, 
should be equal to the maximum curvature of the refer-
ence member. 

The factor for amplifying the maximum curvature of 
the elastic critical buckling mode is noted Cnor. This allows 
defining the unique global and local imperfection of the 
whole structure. Indeed, for each node of the structure, 
the unique imperfection is the product of the amplifica-
tion factor and the buckling mode (ηcr) at each considered 
node. 

The normalization factor is given by:

 
 η  = =

η  
 η
  
 

maximum curvature '' of the reference member
,

maximum curvature of the 
'' elastic critical buckling mode 

of the structure

init
nor

cr

e
C  (2)

where: e” is the maximum curvature of the deformed refer-
ence member whose geometrical characteristics and criti-

cal load are the same as those of the critical cross-section 
of the structure; and, η” is the maximum curvature of the 
dominant elastic critical buckling mode of the structure.

Therefore, it is necessary to determine the maximum 
curvature of the elastic critical buckling mode of the struc-
ture. The calculation software only gives displacements 
and rotations at different nodes of the structure. Knowing 
the displacements and rotations of the different nodes of 
a member, an equation is written to reconstruct the shape 
of elastic critical buckling mode of the structure and sub-
sequently to determine the curvatures at all the points of 
the member.

1.2.2. Eurocode 9 method
This method is a derivative of the method developed in 
Eurocode 3 (CEN, 2005). Its purpose is also to define 
a unique global and local imperfection (ηinit) which is 
broadly modelled on the elastic critical buckling mode 
and retained locally on the deformation of the reference 
member.

After defining the reference member, it is assumed that 
at the maximum bending point of the structure member, 
the curvature of the shape of the elastic critical buckling 
mode must be equal to the maximum curvature of the ref-
erence member. As the reference member is modelled with 
the critical load and geometric characteristics of the criti-
cal cross-section of the structure, the maximum bending 
moment at the critical cross-section of the structure must 
be equal to the maximum bending moment obtained in 
the reference member.

Thus, Eurocode 9 (CEN, 2010) approach consists in 
amplifying the maximum second order moment of the 
most heavy-loaded member of the structure so that it is 
equal to the maximum second order moment obtained in 
the reference member. The amplification factor denoted 
Cnor is that which will allow us to define the unique de-
formation of the whole structure. Finally, the unique im-
perfection for each node of the structure is the product of 
the amplification factor by the buckling deformation mode 
(ηcr).

The normalizing factor in the literature is given by:

( ) η

η λ −
= = α ⋅ ⋅
η α − ⋅λ

2
0.2

1
cr

init Rk
nor II

cr cr

M
C

M
. (3)

1.2.3. Origin of similarities in the different definition of 
the unique imperfection
As mentioned previously, the elastic critical buckling 
mode gives us the type of lateral displacements that may 
occur at each node of the structure under the effect of 
compression loads. The unique imperfection is defined ac-
cording to the shape of this elastic critical buckling mode 
amplified by a Cnor factor enabling to achieve the desired 
level of imperfection called ηinit:

η = ⋅ηinit nor crC . (4)

Moreover, the desired level of imperfection is based on 
the behaviour or appearance of a reference member whose 
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geometrical characteristics and critical load are the same 
as those of the critical cross-section of the structure.

The Cnor amplification factor can be defined thanks to 
the comparison between:

 – the maximum curvature of the reference bar and that 
of the critical cross-section of the structure:

 
 η  = =

η  η  
 

Maximum curvature '' of the reference member

Maximum curvature of the '' elastic critical buckling mode

init
nor

cr

e
C ; (5)

 – the maximum second order bending moment of the 
reference bar and that of the critical section of the 
structure:

η

η

 
 η  = =

η  
 
 

Maximum second order bending 
moment of the reference member

;
Maximum second order bending 
moment in the structure

init

cr

II

init
nor

cr II

M
C

M
 

 (6)
 – the maximum initial deformation of the reference bar 
and that of the critical section of the structure:

 
 η  = =

η  
 
 

0
Maximum deformation 
of the reference member

Maximum deformation of 
the virtual bar of the structure

init
nor

cr

e
C

e
. (7)

Expressions of the bending moment in a member with an 
initial deformation

In this part, we sought to express the maximum sec-
ond order bending moment of a simply supported mem-
ber (see Figure  2) as a function of the maximum initial 
curvature ''

0,maxe due to its initial imperfection ( )e x . Ini-
tial imperfection of the member is defined as sinusoidal:

( )  π ⋅
= − ⋅   

 
0 sin

cr

xe x e
L

. (8)

Consequently: 
      π ⋅ π ⋅

= ⋅ =                  

= =

max 0 0
max max

sin with sin

1 for .
2

cr cr

cr

x xe e e
L L

L
x  (9)

Conventionally, in a simply supported member initial-
ly assigned of a unique imperfection ηinit , the application 
of a compressive load NEd at its ends creates a maximum 
second order bending moment given by the expression:

α
= = ⋅ ⋅

α −maxmax 0 1
crII II

Ede
cr

M M N e . (10)

The critical load of this member is defined by the fol-
lowing expression:

π
=

2

2cr
cr

EIN
L

. (11)

By multiplying both sides by e0, we obtain:
π

⋅ = ⋅
2

0 02cr
cr

EIN e e
L

. (12)

Then:
π

⋅ ⋅ = ⋅
2

0 02
cr

Ed
Ed cr

N EIN e e
N L

. (13)

Considering the fact that α = cr
cr

Ed

N
N

, the previously 
equation becomes:

π
α ⋅ ⋅ = ⋅

2

0 02cr Ed
cr

EIN e e
L

. (14)

By multiplying both sides of this equation by 

α −
1

1cr
, we obtain:

α π
⋅ ⋅ = ⋅ ⋅

α − α −

2

0 02
1

1 1
cr

Ed
cr crcr

EIN e e
L

, (15)

in other words: π
= ⋅ ⋅

α −max

2

02
1

1
II
e

crcr

EIM e
L

. (16)

From Eqn (8), the expression of the curvature of the 
member is the following:

( )  π π ⋅′′ = ⋅ ⋅   
 

2

0 2
sin

crcr

xe x e
LL

, (17)

thus: 
  π π⋅′′ = ⋅ ⋅ =      

2

max 0 2
max

sin
crcr

xe e
LL

  π π⋅
⋅ = =      

2

0 2
max

sin 1
2
cr

crcr

Lxe with for x
LL

. (18)

Therefore Eqn (16) becomes:

′′= ⋅ ⋅
α −max max

1
1

II
e

cr
M EI e . (19)

Figure 2. Simply supported member
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Finally:

 

( )

α
= ⋅ ⋅ =

α −

×

max 0 1
Moment obtained

manually
Force  Lever arm

crII
Ede

cr
M N e



′′⋅ ⋅
α −max

1
1

Expression of the bending moment as a function 
of the maximum curvature obtained from 

numerical calculation of a member assigned 
of an initial imperfection as same shape as the 

elastic

cr
EI e .

 critical buckling mode

 . (20)

According to Eqn  (22), the curvature in the critical 
cross-section m of the structure with the initial imperfec-
tion can be expressed as follows:

η
′′ ′′η = ⋅η

η
,max

, ,
,max

init
init m cr m

cr
, (25)

therefore Eqn (24) becomes:

η = ⋅ ⋅η
′′ηλ

0
,max ,max2

,

Rk
init cr

cr m

e N
EI

. (26)

Thus we find the expression of the unique imperfec-
tion defined in Eurocode 3 (CEN, 2005) and Eurocode 9 
(CEN, 2010):

( ) ( )η = ⋅ ⋅η
′′ηλ

0
2

,

Rk
init cr

cr m

e N
x x

EI
. (27)

2. New approach to define the unique initial 
imperfection

2.1. Principle

Alternative method of Eurocode 3 (CEN, 2005) and Euro-
code 9 (CEN, 2010) consists in comparing the maximum 
bending moment of the most heavy-loaded section of the 
structure to the maximum bending moment of the refer-
ence member. We proposed studying a pinned-base frame, 
of 4  m high and 4  m wide, with a cold formed tubular 
section 60×6  mm, whose cross-sectional characteristics 

Expression of the unique global and local imperfection ηinit

Now we will attempt to find the expression of the 
unique imperfection given in the alternative method of 
Eurocode 3 (CEN, 2005) and Eurocode 9 (CEN, 2010). 
This unique global and local imperfection has the same 
shape as the elastic critical buckling mode. Thus, it pos-
sible to write the following ratio:

( ) ( )η
η = ⋅η

η
,max

,max

init
init cr

cr
x x , (21)

so:

( ) ( )η
′′ ′′η = ⋅η

η
,max

,max

init
init cr

cr
x x . (22)

Taking into account that: = α ⋅cr cr EdN N  and

 λ =
2 Rk

cr

N
N

, Eqn (20) becomes:

′′⋅ = ⋅
λ

0 max2
RkN

e EI e . (23)

As mentioned previously, the alternative method of 
Eurocode 3 (2005) is based on the following requirement: 
the curvature in the critical cross-section m of the struc-
ture with the initial imperfection, based on the elastic crit-
ical buckling mode, should be equal to the maximum cur-
vature of the reference member.
Hence:

′′η = ⋅
λ

0
, 2

Rk
init m

e N
EI

. (24)

Figure 3. Construction of the virtual member
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are: A = 10.18×10–4 m², I = 37.56×10–8 m4, Wel = 12.52× 
10–6  m3. The material of the structure is S320:  
fy = 320 MPa.

A virtual member is defined as a simply supported 
member with a height equal to the buckling length of the 
critical cross-section of the studied structure and with an 
initial imperfection as same shape as the shape of the most 
relevant elastic critical buckling mode. The virtual mem-
ber has the same behaviour as the element of the struc-
ture when it is subjected to a compressive load equal to the 
critical load of the critical cross-section of the structure. It 
was observed, that when the length of the virtual member 
is defined as being the length between two successive in-
flection points of the shape of the elastic critical buckling 
mode of the structure (see Figure 3), the maximum bend-
ing point of the structure does not always correspond to 
the point where the derivative of the curve is equal to zero.

Indeed, in the case of a pinned-base frame the maxi-
mum bending moment, and so the maximum curvature, 
is obtained in the cross-section located at Z = 4.00  m. 
However in the reference member the maximum bend-
ing moment and the maximum curvature are obtained in 
the mid-height cross-section, that is to say at Z = 4.65 m. 
The calculation of the amplification factor according to 
Eurocode 3 (CEN, 2005) and Eurocode 9 (CEN, 2010)  
approaches is performed by comparing two points that 
are not located at the same position. There are other cases 
of structures where the gap these two points is expressed 
even more strongly. This gap can lead to an error in the cal-
culation of the amplification factor and so in the calcula-
tion of the initial imperfection of the structure (Figure 4).

To overcome this problem we propose a new approach 
consists in establishing a mathematical equation of the 
shape of the elastic critical buckling mode of the structure. 
The sine term of the equation of the shape of the critical 
buckling mode of the structure allows us to mathematical-
ly reconstruct it and set its inflection points. These inflec-
tion points allow building a virtual member from which 
the “imaginary” maximum deformation and the “imagi-
nary” maximum curvature of the structure are deduced. 
This maximum curvature (or maximum deformation) will 
be compared to the maximum curvature (or maximum 
deformation) of the reference member. The factor Cnor will 
then be used to amplify the deformation of buckling mode 
(ηcr) and then to obtain the desired unique imperfection.

The equation of the shape of the predominant elastic 
critical buckling mode ηcr of the structure is:

( )
   π ⋅ π ⋅   η = ⋅ + ⋅ + ⋅ +
   
   

cos sincr
f f

z zz A B C z D
l l

. (28)

From the eigenvectors of the predominant elastic 
critical buckling mode of only two nodes of the structure 
(called node1 and node 2), it is possible to set up and solve 
the following linear system of equations and thus deter-
mine the unknown A, B, C and D.

       π ⋅ π ⋅ π ⋅       ⋅ − + ⋅ − = ∆ − ⋅
              


       −π⋅ π ⋅      ⋅ − + ⋅ − = ⋅     π          

= −
∆ = −

1

2 1

1 2

2 1

cos 1 sin

sin cos 1

,

f f f

f
f f

l l lA B RY l
l l l

RY RYl lA B l
l l

l z z
with

UX UX

 

 (29)

where: UX1, UX2, RY1 and RY2 are the eigenvectors of 
the both nodes 1 and 2 of the predominant elastic critical 
buckling mode of the structure.

The expression of the curvature at each point of the 
structure can be obtained by expressing the second deriva-
tive of Eqn (28):

η

η

π ⋅  π   η = − ⋅ ⋅ −
      

π ⋅  π   ⋅ ⋅
      

"
,max

"
,max

2

"
,max

2

cos

sin .

cr

cr

cr
f f

f f

z
A

l l

z
B

l l  (30)

Furthermore, the position of the maximum curvature 
point can be determined mathematically from the deriva-
tive of the curvature. Thus, the following expression enable 
to determine the position of the maximum curvature of 
the predominant elastic critical buckling mode:

η
π  = + ⋅  

 
"

,max
arctan

cr f
f

Bz l
l A

. (31)

Finally, η"
,maxcr

z  is used to determine the “imaginary”
maximum curvature and the “imaginary” maximum de-
formation of the most heavy-loaded section of the struc-

Figure 4. Position of the maximum curvature in the pinned-
base frame and in its reference member
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ture. As the latter is located halfway up from the buckling 
length, it is compared to the maximum curvature or the 
maximum deformation of the reference member, respec-
tively.

2.2. Application to the pinned-base frame

The new approach is applied to the pinned-base frame, 
whose cross-sectional characteristics are given in part 3.1., 
in order to assess its accuracy. Results of other type of 
structures are given in part 4. The portal frame is loaded 
so as to obtain a critical coefficient αcr of 2.

To establish the equation of the shape of the elastic 
critical buckling mode, it’s necessary to use two eigenvec-
tors. The displacements and rotations of the both follow-
ing nodes (Table 2) are used.

Table 2. Eigenvectors of the pinned-base frame

Node UX (m) RY (rad) Z (m)
8 0.97748850 0.104067513 3.5
9 1 0.075917701 4

From the second order analysis of the structure, the 
buckling length is determined as equal to 9.312 m. From 
the system of Eqn (29), we determine the value of the un-
knowns, see Table 3:

Table 3. Values of the unknowns 

−= − × 94.031 10A =1.025B

−= × 81.816 10C −= × 94.031 10D

Then, thanks to Eqn  (31), we determine the po-
sition of the maximum curvature point. We obtain: 

=max 4.656 m.z  From this value and Eqn (30), we deter-

mine the value of the “imaginary” maximum curvature. 
We obtain − −′′ = × 1 1

max 1.167 10 mX .
These values can be read graphically in Figure 5.
On the previous figure, the shape of the elastic critical 

buckling mode of the structure and the theoretical defor-
mation of the virtual member, obtained from mathemati-
cal Eqns  (28)–(31), are superimposed. This overlap en-
ables us to check the physical impact of our approach and 
allows to identify the critical section which may option-
ally be real or fictitious, that is to say outside the structure, 
like the example of the pinned-base structure. Moreover, it 
also allows comparing the reference member and virtual 
member.

On the other hand, we determine the maximum curva-
ture of the reference member. This maximum curvature is 
determined from Eqn (18), with:

( )= α ⋅ λ − ⋅0 0.2 elW
e

A
. (32)

From this value of the maximum curvature of the ref-
erence member and the imaginary maximum curvature of 
the structure, we determine the factor Cnor from Eqn (5). 
We obtain −= × 21.864 10norC . Thus, this factor is deter-
mined from the comparison of two points located in the 
same cross-section in the both members. Thanks to the 
factor Cnor and the shape of the elastic critical buckling 
mode, we determine the coordinates of the initial imper-
fection at each nodes of the structure from Eqn (4). The 
coordinates obtained are given in the Table 4.

3. Numerical examples

3.1. Presentation of the comparative study

A comparative study of the different methods is carried 
out in order to appreciate the impact of our new meth-
od. It concerns the previous pinned-base frame as well 

Figure 5. Determination of the imaginary maximum curvature
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as three other structures (Figures 6(a)–6(e)): a fixed-base 
frame of 4 m high and 4 m wide; a shoring tower of 8 m 
high and 3 m wide; and a façade scaffold of 8 m high and 
1.5 m wide. 

The characteristics of the different cross-sections are 
given in the Table  5. Loads on the structure are applied 
vertically at the top of each column such that the critical 
coefficient is equal to 1.5, 2 or 5.

The purpose of the study is to compare the different 
methods of definition the initial imperfections to the new 
approach, using the virtual member. Five approaches will 
be compared: 

 – Conventional method of Eurocode 3 (CEN, 2005), 
a global imperfection and a local, by calculating the 
coordinates of the nodes of the structure.

 – Conventional method of Eurocode 3 (CEN, 2005), a 
global imperfection and a local, by using equivalent 
loads.

 – Alternative methods of Eurocode 3 (CEN, 2005) and 
Eurocode 9 (CEN, 2010), a unique global and local 

imperfection, by calculating the amplification factor 
Cnor by means of the curvatures.

 – Alternative methods of Eurocode 3 (CEN, 2005) and 
Eurocode 9 (CEN, 2010), a unique global and local 
imperfection, by calculating the amplification factor 
Cnor by means of the bending moments.

 – New approach by using the virtual member in the 
determining of the proportional factor Cnor.

For that we must compare the bending moments ob-
tained in each structure with the different cases of defini-
tion the initial imperfection. Calculations were performed 
using Autodesk Robot Structural Analysis.

3.2. Results and observations from numerical 
examples
The results obtained with the different structures are pre-
sented in Tables 6–10. Figures 7 to 10 enable to compare 
the calculation point with the new approach and the cal-
culation point with Eurocode 3 (CEN, 2005) and Euro-
code 9 (CEN, 2010) methods.

Table 4. Determination of the coordinates of the nodes of the structure with the initial imperfection

Node
Initial coordinates Displacement UX of the 

first buckling mode
(m)

Displacements UX of 
the initial imperfection

(m)

Coordinates with the initial 
imperfections

X (m) Z (m) X (m) Z (m)
1 0 0 0 0 0 0
2 0 0.5 0.172080806 0.003207377 0.003207377 0.5
3 0 1 0.339276929 0.006323709 0.006323709 1
4 0 1.5 0.496842343 0.009260536 0.009260536 1.5
5 0 2 0.640304397 0.011934494 0.011934494 2
6 0 2.5 0.765590780 0.014269680 0.014269680 2.5
7 0 3 0.859145116 0.016199806 0.016199806 3
8 0 3.5 0.948027811 0.017670086 0.017670086 3.5
9 0 4 1 0.018638782 0.018638782 4

10 4 0 0 0 4 0
11 4 0.5 0.172080806 0.003207377 4.003207377 0.5
12 4 1 0.339276929 0.006323709 4.006323709 1
13 4 1.5 0.496842343 0.009260536 4.009260536 1.5
14 4 2 0.640304397 0.011934494 4.011924494 2
15 4 2.5 0.765590780 0.014269680 4.014269680 2.5
16 4 3 0.869145116 0.016199806 4.015199806 3
17 4 3.5 0.948027911 0.017670086 4.017670086 3.5
18 4 4 1 0.018638782 4.018328782 4

Table 5. Cross-sectional characteristics of all structures 

Portal frames Scaffold towers Portal frame in IPE
Section 60×6 mm Section 48.3×2.9 mm Section IPE100
A (m2) 10.18×10–4 A (m2) 4.136×10–4 A (m2) 10.3×10–4

I (m4) 37.56×10–8 I (m4) 10.7×10–8 I (m4) 171×10–8

Wel (m3) 12.52×10–6 Wel (m3) 4.43×10–6 Wel (m3) 34.2×10–6

fy (MPa) 320 fy (MPa) 320 fy (MPa) 235
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3.2.1. Pinned-base frame 4×4 m 
Pinned-base frame 4×4 m was presented in Figure 6(a). 
Figure 5 compares the calculation point with the new ap-
proach and the calculation point with Eurocode 3 (CEN, 
2005) and Eurocode 9 (CEN, 2010) methods of the 
pinned-base frame 4×4 m.

The results obtained with conventional methods of Eu-
rocode 3 (CEN, 2005) are underestimated compared to 
the results obtained with the new approach. The error with 
conventional methods can be up to 25%. 

It should also be noted that the calculation point 
of alternative methods of Eurocode 3 (CEN, 2005) and  
Eurocode 9 (CEN, 2010) is not at the maximum point of 
curvature of the virtual member. Thus, there is also an er-
ror with these methods up to 6%.

3.2.2. Fixed-base frame 4×4 m 
Fixed-base frame 4×4  m was presented in Figure  6(b). 
Calculation points of the fixed-base frame 4×4 m are de-
picted in Figure 7.

The results obtained with conventional methods of Eu-
rocode 3 (CEN, 2005) are underestimated compared to the 
results obtained with the new approach, except in the case 
of αcr = 5, where the results are overestimated. The error 
with conventional methods can be up to 40%. 

It is important to note that only in the case of the fixed-
base frame the calculation point of alternative methods of 
Eurocode 3 and 9 is the same that the maximum point of 
curvature of the virtual member. This explains the small 
error observed with the results obtained from alternative 
Eurocode 3 and 9 method with the bending moments. 
On the other hand, as far as alternative Eurocode 3 (CEN, 
2005) and Eurocode 9 (CEN, 2010) method with curva-
tures is concerned, the error can go up to 18%. Indeed, no 
way to calculate the curvature is indicated in Eurocode 3 
or 9, so depending on the type of equation used (polyno-
mial, sinusoidal, etc.), the error can be more or less im-
portant.

3.2.3. Pinned-base frame 5×5 m in IPE 
Pinned-base frame 5×5  m in IPE was presented in Fig-
ure 6(c). Figure 8 shows calculation points.

Figure 6. Studied structures
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The results obtained with conventional methods of Eu-
rocode 3 (CEN, 2005) are underestimated compared to 
the results obtained with the new approach. The error with 
conventional methods can be up to 13%. 

It should also be noted, one more time, that the calcu-
lation point of alternative methods of Eurocode 3 (CEN, 
2005) and Eurocode 9 (CEN, 2010) is not at the maximum 
point of curvature of the virtual member. Thus, the error 
made with these methods can go, in these cases, up to 13%.

3.2.4. Shoring tower 8×3 m 
Shoring tower 8×3 m was presented in Figure 6(d). Fig-
ure 9 shows calculation points.

Table 6. Results of the pinned-base frame 4×4 m

Alternative EC3 and EC9 methods Conventional EC3 method
New approach

Curvatures Bending moments Manual deformation Equivalent loads
Z* (m) 4 4 – – 4.656

Cnor 0.0322 0.0347 – – 0.0342
αcr = 1.5

MII
Ed (kN.m) 0.5800 0.6259 0.4619 0.4720 0.6167
% Gap –6% +1.5% –25.1% –23.5% 0%

αcr = 2
MII

Ed  (kN.m) 0.2897 0.3138 0.2353 0.2387 0.3080
% Gap –5.9% +1.9% –23.6% –22.5% 0%

αcr = 5
MII

Ed (kN.m) 0.0724 0.0786 0.0630 0.0632 0.0769
% Gap –5.9% +2.2% –18% –17.8% 0%

Note: Z*– altitude of the comparison point.

Figure 7. Calculation points of the fixed-base frame 4×4 m

In the case of the shoring tower, the results obtained 
with conventional methods of Eurocode 3 (CEN, 2005) are 
overestimated compared to the results obtained with the 
new approach. The error with conventional methods can 
be up to 50%.

The calculation point of alternative methods of Euroc-
ode 3 (CEN, 2005) and Eurocode 9 (CEN, 2010) is close 
to the maximum point of curvature of the virtual mem-
ber, which explains the small errors observed with alterna-
tive Eurocode 3 (CEN, 2005) and Eurocode 9 (CEN, 2010) 
methods.
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3.2.5. Façade scaffold 8×0.7 m 
Façade scaffold 8×0.7 m was presented in Figure 6(e). Fig-
ure 10 shows calculation points.

The results obtained with conventional methods of  
Eurocode 3 (CEN, 2005) overestimated compared to the 
results obtained with the new approach. The error with 
conventional methods can be up to 20%. 

It should also be noted, one more time, that the calcu-
lation point of alternative methods of Eurocode 3 (CEN, 
2005) and Eurocode 9 (CEN, 2010) is not at the maximum 
point of curvature of the virtual member. Thus, the error 
made with these methods can go, in the case of the façade 
scaffold, up to 5%.

Table 7. Results of the fixed-base frame 4×4 m

Alternative EC3 and EC9 methods Conventional EC3 method
New approach

Curvatures Bending moments Manual deformation Equivalent loads
Z* (m) 0 0 – – 0

Cnor 0.0264 0.0316 – – 0.0322
αcr = 1.5

MII
Ed (kN.m) 1.0099 1.2094 0.7467 0.7469 1.2300
% Gap –17.9% –1.7% –39.3% –39.3% 0%

αcr = 2
MII

Ed  (kN.m) 0.5037 0.6073 0.4771 0.4816 0.6139
% Gap –18% –1.1% –22.3% –21.6% 0%

αcr = 5
MII

Ed (kN.m) 0.1260 0.1524 0.1626 0.1655 0.1534
% Gap –17.9% –0.7% +6% +7.9% 0%

Note: Z*– altitude of the comparison point.

Table 8. Results of the pinned-base frame 5×5 m in IPE100

Alternative EC3 and EC9 methods Conventional EC3 method
New approach

Curvatures Bending moments Manual deformation Equivalent loads
Z* (m) 5 5 – – 5.821

Cnor 0.028 0.032 – – 0.031
αcr = 1.5

MII
Ed  

(kN.m) 1.4399 1.6683 1.4304 1.4723 1.6401

% Gap –12.2% +1.7% –12.8% –10.2% 0%
αcr = 2

MII
Ed  

(kN.m) 0.7195 0.8363 0.7231 0.7403 0.8197

% Gap –12.2% +2% –11.8% –9.7% 0%
αcr = 5

MII
Ed  

(kN.m) 0.1798 0.2094 0.1913 0.1940 0.2048

% Gap –12.2% +2.3% –6.6% –5.3% 0%

Note: Z*– altitude of the comparison point.

3.2.6. Conclusion of the numerical examples
Through these results, it can be observed that depending 
on whether the first buckling mode of the structure is in 
fixed or sway mode, the classical Eurocode 3 method com-
pared to methods derived from the unique imperfection 
is safe in the first case and underestimated in the other 
cases (Tables 6–10).

For structures whose the first buckling mode is a sway 
mode, the definition of the unique imperfection provides 
safe results almost identical to those of the current alterna-
tive Eurocode 3 (CEN, 2005) method when the buckling 
length is close to the actual length of the member. How-
ever for structures whose the buckling length is superior to 
the actual length of the member, the determination of the 
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amplification factor according to the alternative method 
of Eurocode 3 (CEN, 2005) and Eurocode 9 (CEN, 2010) 
may lead to errors ranging from –18% to +5% in the pre-
sent cases but can lead to larger errors in other cases. 

During the application of each method, it can also be 
seen that those based on the definition of a single defect 
follow the mechanical behaviour of the structure more 
closely. They not only take into account the geometrical 
aspects, but also the boundary conditions of the bars, the 
intrinsic mechanical properties and the load level of the 
structure. As for the current method of applying local and 

global imperfection, it leads to ambiguity when taking 
into account local imperfection in the bars. Moreover, this 
method is mainly based on geometry and does not take ac-
count of the specific properties of the bars.

Conclusions

Our study focused on the development of a method that 
takes into account structural imperfections in the calcula-
tion of scaffolding and shoring structures, since the latter 
have low critical loads and critical coefficients which are 

Figure 8. Calculation points of the pinned-base frame 5×5 m in IPE

Table 9. Results of the shoring tower 8×3 m

Alternative EC3 and EC9 methods Conventional EC3 method
New approach

Curvatures Bending moments Manual deformation Equivalent loads
Z* (m) 5 5 – – 5.021

Cnor 0.011 0.011 – – 0.011
αcr = 1.5

MII
Ed   

(kN.m) 0.8522 0.8011 1.2545 0.9360 0.8381

% Gap +1.7% –4.4% +49.7% +11.7% 0%
αcr = 2

MII
Ed   

(kN.m) 0.4303 0.4187 0.4933 0.4928 0.4233

% Gap +1.7% –1.1% +16.5% +16.4% 0%
αcr = 5

MII
Ed   

(kN.m) 0.1084 0.1080 0.1344 0.1314 0.1078

% Gap +0.6% +0.2% +24.7% +21.9% 0%

Note: Z*– altitude of the comparison point.
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very vulnerable to second order effects. The objective was 
to formulate a calculation method that is both safe and 
economical. 

The conventional methods of Eurocode 3 (CEN, 2005), 
with a global and a local imperfection are based only on 
the geometry of the structure. It was found that the meth-
od based on a unique imperfection has the advantage to 
be simple and clear, easy to apply and derived from realis-
tic mechanical reasoning. However, in Eurocode 3 (CEN, 
2005) and Eurocode 9 (CEN, 2010), the way to determine 

the maximum curvature of the shape of the elastic critical 
buckling mode is not given explicitly. The new approach 
proposed in this article aims to propose a method enabling 
the determination of this maximum curvature. Following 
the structure concerned this maximum curvature can be 
real or imaginary. In all cases, this point of maximum cur-
vature in the structure is the same as the point of maxi-
mum curvature in the reference member. This method 
makes it possible to change the approach to Eurocode 3 
(CEN, 2005).

Figure 9. Calculation points of the shoring tower 8×3 m

Table 10. Results of the façade scaffold 8×0.7 m

Alternative EC3 and EC9 methods Conventional EC3 method
New approach

Curvatures Bending moments Manual deformation Equivalent loads
Z* (m) 6 6 – – 5.897

Cnor 0.0173 0.0159 – – 0.0165
αcr = 1.5

 MII
Ed 

(kN.m) 0.6683 0.6105 0.7642 0.7546 0.6372

% Gap +4.9% –4.2% +19.9% +18.4% 0%
αcr = 2

 MII
Ed 

(kN.m) 0.3334 0.3058 0.3752 0.3662 0.3180

% Gap +4.8% –3.8% +18% +15.2% 0%
αcr = 5

 MII
Ed 

(kN.m) 0.0835 0.0769 0.0917 0.0885 0.0797

% Gap +4.8% –3.5% +15.1% +11% 0%

Note: Z*– altitude of the comparison point.
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