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Abstract. The problem of optimal development of transport network is considered. We have to define a plan of network
development, i.e. a network state at fixed time moments possible the scope of allocated resources such that the total
expenses for reconstruction of the network and construction of its new elements as well as for passenger and cargo trans-
portation be the lowest. Thus the problem considered can be described by the optimization model with a non-linear non-
convex objective function and linear constraints of special structures. Since that is a non-convex problem with a lot of
extreme therefore one can expect to find only an approximate solution, close to a global one, at best. There is no effec-
tive and universal solution methods for this problem even in the sense of a local solution. This paper discusses a method
for solving the problem using the synthesis of static section, that allows us to decompose dynamic problem into the set
of static problems of a smaller volume, and contour optimization methods. The experimental calculation confirm that the
proposed method is suitable for solving problem represented in the paper.
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1. Introduction

The problem considered is formulated as a problem
of optimal development of the transport network the
solution of which determines the dynamics of
multicommodity transport flows and network state
variation in a given period. This problem essentially
consists of two interrelated problems. The first one is
design of the network structure and determination of
the most rational state of its elements in each year of
the considered period. The second problem is
optimization of passenger and cargo flow distribution
in the network. Constantly increasing volumes of
passenger transportation require a constant transport
network development as well as of renewal and
updating of its elements, i.e., improvement of its
technical state. In order to improve and update the
transport infrastructure we need some financial,
material, and other means the volume of which is
limited. Therefore, of all the network extension
variants we have to choose such that satisfies the
needs for transport services best and can be realised
with the available resources. Thus, the problem of
long-term transport network development is an

optimization problem characterized by great volumes,
non-linear relations, one part of variables of which is
continuous, while the other part is discrete.

At present quite a few methods are known for solving
transport problems [1, 2]. Though these problems are
described by optimization models, a direct use of the
known mathematical programming methods is not the
proper way for solving transport problems. It is not
suitable to solve problems even of small volume since
the general methods do not estimate the problem
specifity would be not economical and ineffective. On
the other hand, even special methods oriented to
solving problems of small volume are not always
acceptable to solve practical problems that are
characterized both by non-linear links and great
volume, i.e., by a large number of network elements
and transport flow kinds. Thus, the basic obstacle to
be taken in solving optimal network development
problems that are of importance in practice is their
volume. Requirements to the methods used grow up
respectively, they should be powerful enough to take
this obstacle. The most successful ways for solving
problems under consideration are those that are based
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on decompositional, heuristic principles, or on the use
of interactive simulation modelling systems by
arranging the solution process in an interactive mode
of operation. If very great volume problems are
considered or problem constraints express very
complicated links relations among the problem
variables, then most often it remains the heuristic way
of solution which at best can ensure a good enough
admissible solution only. Heuristic procedures, that
allow for satisfactory solutions in an agreeable
calculation time, are based on the following principles:
simplification of a problem by ignoring a part of
constraints or replacing them by simple ones, most
frequently, by non-linear ones; decomposition of the
initial problem into smaller partial problems ignoring
their interrelations; identification of no good problem
solution trends and their rejection; formation of an
iterative process for improving the initial solution, and
so on. Heuristic procedures have a drawback that the
solution obtained can be far from optimal in the sense
of both, the problem criterion and problem variables.
A better result is achieved if heuristic procedures are
used in interactive systems that operate in the dialog
mode. In this case, dependent on the results obtained
during solution, we are able to change the strategy of
solution and even the model itself. Meanwhile, on a
lower level of a system, particular calculations are
performed relying on heuristic procedures.

Better results are obtained by using decomposition
methods that allow for decomposition of the initial
problem into a sequence of problems of smaller
volume. As usual, a dynamic problem is decomposed
first with respect to the time parameter, i.e., the initial
network expansion problem is replaced by a sequence
of static problems solved at fixed time moments. This
kind of decomposition is natural in case the time
parameter is a discrete variable. If certain conditions
are satisfied, i.e., if flows in the transport network are
not decreasing, then it suffices to solve a sequence of
static problems, called static sections, only once [3].
In the general case, i.e., where the abovementioned
condition may be not fulfilled, one should use iterative
solution procedures of static problems, also, not
always static problems can be solved simply, since
they can be of rather large volume as well. If a static
problem is non-linear, or the objective function is
separable, then linear methods or that integer linear
programming can be applied in the solution of static
problems [4]. However, the latter methods are helpful
only to solve problems of comparatively small volume.

The transport network considered usually has not so
small number of elements (network nodes and arcs),
and its objective function is not separable with respect
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to individual groups of variables. That is why, to solve
static problems, decomposition principles are applied
in turn. One of the possible ways of decomposition is
usage of the linearization method [4]. Since some
variables of the static problem, i.e., the variables that
express the states of network elements are discrete
variables, this problem acquires a combinatorial
character. In order to solve problems whose variables
naturally fall into discrete ones that determine the state
of network elements and continuous ones that express
the flow size in the network, there is a Benders
decomposition procedure [5] that was formulated for
solving linear problems, or its generalizations [6]. In
the general case, the Benders decomposition method
is an iterative procedure, using the optimization
according to separate groups of variables and
consisting of two stages. In the first stage, we optimize
the flow distribution in the network under fixed
technical states of its elements. In the second stage,
we find optimal states of transport elements for the
flow distribution found. The second stage of algorithm
is formulated as a discrete optimization problem that
is efficiently solved if there is only one limited
resource. In other cases, one will have to use general
discrete programming algorithms that are not so
efficient.

Therefore we propose another, more universal way of
solution. This paper discusses a method for solving the
problem of transport network development, using the
synthesis of a static section method and that of contour
optimization developed by the author [7].

2. Statement of the problem

To formulate the problem of transport network
development one has to be familiar with the topology
of transport network in the shape of an oriented or
non-oriented graph, its initial state, i.e., technical -
economic characteristics of its elements represented as
arcs of the graph, data on the transportation volume
in the network, their structure, and variation dynamics
in the considered period. One also has to be aware of
the limit of resources necessary for the network
extension. One has to determine transport flow
volumes and states of network elements per each year
of the given period possible within the limits of the
available resources, so that the summary discounted
expenses for transportation and network development,
were the least at the beginning of the considered
period.

A model of the problem can be written as optimization
model. The objective function of this model is a
function, that expresses the dependence of network
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expenditure, including both the maintenance,
expenditure and that on its development, on the flow
volume in the network and its state. The constraints
of the problem includes the flow continuity conditions,
that relate the network topology, the transport flows
and the volume of transportations and recourse
limitation. Apart from the flow continuity conditions
and resource limitation, the model includes a
conditions that technical states of the transport
networks elements can only increase. That is a natural
condition since the transport objects are usually not
destroyed or demolished, even with a considerable
decrease in traffic intensity. The variables and
parameters, that are contained by the objective
function, and constraints of the model, i.e., transport
flow sizes, the vector of transport network state,
generalized incidence matrix, the vector of
transportation volumes, amounts of resources and their
limits, necessary for the network development and
transportations are time functions. Incidence matrices
describing the network may differ at certain time
moments, because the transport network can be
extended by building new elements of the network
(e.g. by building new auto roads). The graph
corresponding to the transport network represents not
only existing, but also designed, i.e., alternative
objects. Alternative objects can be built or not,
dependent on the calculation results. Possible technical
states of the transport element are determined by
discrete variable integer values of that increase with
an increase in the technical state of this element (e.g.
the technical state of a motor-car road can be defined
by the number of its traffic lines). The volume of
resources for the reconstruction of the transport
element changes jump like with a change in the state
of the transport element (that changes in the same
way). The solution to problem shows, which transport
elements and at what moment have to be reconstructed
as well as optimal transport flows for each year of the
considered period.

A formal model of the problem can be written as
follows

min < F'(X",C")

(e} 2 gy M
SX'=B' t=1,..,T, 2)
cr<ct<Cc™t=1,..,T, (3)
c'>c't=1,..,T, Cc'=cm", 4)
R'(C')eR. (5)

Here ¢ is the index of the current year; 7 is duration
of the considered period in years; X' = (xlt ,...,xi) is

the vector of product flow transported in the network;

X, = (xi’l ey X! ) is the vector of product volume trans-

m

ported via the i-th transport element; xl.’j is the
quantity of the i-th transport element load with the
Jj-th product; L is the number of transport network

elements (arcs); n is the number of products sorts

transported; C' = (Ciw-’CZ) is the vector that defines

the transport network state; ¢; is a discrete quantity

characterizing the technical state of the i-th transport

L
element; F' (X ',C t)= ZE‘I (xzt .G ) is a function that

expresses the dependence of network expenses,
including both the maintenance expenses and that on
its development, on the flow volume in the network

and its state; Fi’(xi’,ci’) is the cost function of the

i-th transport element; (1+E)’ is the coefficient of
discounting; S is a quasidiagonal matrix in the main
diagonal of which there are node-arc incidence
matrices for separate products of the given network
and everywhere else there are zeros; B’ is the vector
of network node loading that defines the volume and
structure of transportations; R/(C") is the vector of
volumes of all kinds of resources necessary for
changing the network state from state C*"! into state
C% R is the set of resource limitation that is made more
concrete when formulating the problem.

The cost function of an individual transport elements
is the sum of the maintenance and capital expenses
(pre-sented in comparison) which in turn are functions
of loading and the technical state of this element, i.e.

F/(cl)=f/ (e )+ E-Ki(c! ), (®

where fi’(xi’,ci’) is the function of maintenance ex-

penses; E is the standard efficiency coefficient of

capital investments; K (c;) is the quantity of capital
investments needed for building the i-th network
element with appropriate technical-economic
characteristics. Under the fixed technical state of a
network element, the function of maintenance
expenses can be expressed rather exactly as a convex
function of the load level x, of this element. Besides,
the maintenance expenses usually grow slower if the
technical level of the element is higher.

Equality (2) expresses flow continuity conditions that
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relate the network topology with its arc and node
loads. The sign of inequality between the vectors in
conditions (3) and (4) denotes that this inequality is
satisfied for all the coordinates of vectors. Condition
(4) means that the states of transport network elements
can increase only. This condition is rather natural since
the transport objects built are usually not destroyed
even with a very low traffic intensity via them. The
solution to problem (1)—(5) is a vector

(XI,CI,--.,XT,CT) showing which transport ele-

ments and at what moment have to be reconstructed
as well as optimal transport flows for each year of the
con-sidered period.

3. The method for problem solving

The problem of long-term transport network develop-
ment is not only problem characterized by great
volumes, non-linear relations, but it is a non-linear
problem with a lot of extreme. Therefore, one can
expect to find only an approximate solution, close to
a global one, at best. This paper discusses a method
for solving the problems using the synthesis of static
sections and contour optimization methods. The static
section method allows us to replace a dynamic
problem by a finite set of static problems, for-mulated
for each year of the considered period. It allows us to
decompose the initial problems into problems of a
smaller volume, too. The way of problem solution de-
pends on how the resource limitation is formulated in
the model of problem.

If the resource limits are set for each year separately,
i.e., constraints of problem (5) are concretized as
follows:

SR(c)SR,t=1,..,T, (7)

b t
icl’,

where I is the set of numbers of the transport
network elements reconstructed, i.e., for which
¢ >cl™ RI(c!) is the vector of volumes of all kinds

of recourses necessary for changing the i-the element

of the network state from state ¢/”' into state c;; R’

is the vector of resance limitation in the #-th year, then
such a sequence of static problems is solved by a
direct recursion method starting from the first year of
the considered period:

min F'(X',C"), (8)
Xx'c
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SX' = B, )
i< om0 = Cmin, (10)

il
foreacht=1, ..., T.

For the first, parameter values that determine the
minimal states of the network also determine the state
of the net-work, while the solution to the static
problem solved determines the initial states of each
new static problem of the sequence. The expense and
resource functions are formed, respectively, taking
account of possible alternation of the state of each
network element from the initial level selected in this
way up to the maximally possible one. Since each
static problem is a non-convex one as shown below,
there is no guarantee that the vector (X’,C") obtained
by any known method is the solution to a static
problem. Therefore, the general vector

{X’,C',tzl,...,T} obtained after solving the

sequence of static problems (8)—(11) is usually not
optimal nut rather a feasible, rational enough solution
to considered problem (1)—(4), (6).

If the limits for all kinds of resources are set for the
whole period considered without dividing them by a
separate year, i.e., constraints (5) are concretized in
the following way

T

Y Y Ri(c)SR, (12)

! iell,

then the dynamic problem is decomposed again into
a sequence of static problems, in this case, however,
this sequence is solved in inverse order. The firs
problem of the sequence is formulated for the last year
of a given period as follows

min F'(X"C"), (13)
xT,cT
SXT = BT, (14)
Ccmin < CT < Cmax, (15)
> R (c/)<R. (16)
ielg

The expense and resource functions here are formed
en-visaging the variation of states of each transport
element from the existing state up to the maximally
admissible one. Having solved this static problem, we
find final state of the network. We also establish
thereby which network elements are to be recons-
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tructed as well as their final states. Time moments at
which these elements are to be reconstructed are
defined when solving the remaining problems of
sequence

min F'(X'Ch, (17)
SX = B!, (18)
Cmin < ¢ < O, (19)

for all t = T-1, 7-2, ..., 1. For each problem of the
sequence, the states of transport elements are bounded
from above, by forming the expense and the resource
functions, respectively. The each static problem of
sequence includes the flow continuity condition and
other constraints described above. These static
problems are solved by the method of contour
optimization described below. The moment of
reconstruction for each element to be reconstructed is

determined as follows. For all the states Cit > ct“‘j“ of

the i-th transport element we fix time intervals [#,,1,],
in which the state does not change. The lower bound
t, of this interval is just the moment of reconstruction

of the i-th element into the state cf .

Static problem can be treated as the problem of flow
distribution in the transport network when technical
states of the network elements can be changed. The
static problem, however, qualitatively differs from the
one as the state of network does not change. In this
case, the dependence of costs of the volume of
transportation will not be convex and the flow
distribution problem itself becomes a multiextremal.
The flow distribution can be described, for this case,
by a non-linear model that includes both continuous
and discrete variables. We propose this problem to
solve in such a way. At first a non-linear discrete
problem is modified by eliminating discrete variables.
After eliminating discrete variables from the objective
function and constraints, we replace the initial static
problem by a non-linear programming with continuous
variables.

Let us consider a case where the limits of resources
are determined for each year separately of the
considered period. We write the conditions of problem
(8)—(10) as follows (for simplicity, we omit the
index f)

min F(X,C)=min min F(X,C) =
X.C XeX ceC

mjn(imiélFi (xi,ci)):

XeX\ ; ¢eC

L .
gugZF (o) = min F™ (X)), (20)
where X is the set of feasible, i.e., satisfying conditions
(9), flows; C is the set of possible network states; Ci
is the set of possible states of the i-th network element;

min

F, 77 (x;) is a function that expresses the dependence
of summary expenses of the i-th transport element on
its load vector x; under optimal states of the element.
This function can be regarded as an operator that finds
such a value of the parameter ci at which we isolate
a function with the lowest value out of a family of
functions

{F}(Xi’ci)’cz‘mjn sc igc’max} @1

under the given load x, of the element. We can

represent the function F™" (x;) graphically as a curve

covered from below of the family of functions (21).
For alternative elements it is discontinuous at the zero
load point.

We assume that in the case of reconstruction, both the
technical state of an element and the quantity of the
resources utilized change jump like (in the opposite
case, we were not able to decompose a dynamic
problem into a sequence of static problems). Thus, the
vector R(c;) of resource quantity utilized is a vector
function of variables x,, i.e.,

Rc) = Ric(x) = R(x), (22)

where dependence I§i (x;) 1s a step like function of the

element load X,

Consequently, we can replace each static problem with
discrete-continuous variables after eliminating the dis-
crete variables ¢; by non-linear a programming
problem

min F™(X), (23)
i_léi(xi) <R. (24)

The dependence of transportation expense, technical
state of network element, consumed resource and the
shape of the function F™"(X) for one-dimensional care
are illustrated in Fig 1.

This problem is a non-convex one and includes a
conditions of resource limitation only. The idea of a
penalty function enables us to avoid constraints of
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fi(x,¢) 4 fi(Xi,Cil) fi(Xi,Ciz) fi(chi})
e )/
F(x)
EK(c)
EK(c)
EK(c/)
X, X X
C 3
1
X, X "X
R(x) 4
X! x; "x

Fig 1. Dependence of discounted expense, technical state
and consumed resource amount on the exted of loading of
transport element

resource limitation in direct form by including that
into the objective function of the problem. The non-
linear problem itself is replaced by sequence of
problems with the objective function modified in this
way. Solution of such a problem is problematic due
to the fact the penalty function is not only non-convex,
but also non-smooth and discon-tinuous and there are
no methods to effectively solve it even in the sense
of a local solution. Since smoothness of the penalty
function in this case is violated on the sets of points
described by linear equations that we call critical
equations, then we can successfully use the contour
op-timization method to solve the problem, because
it disre-gard the indicated properties of the function
minimized.

The method of contour optimization is based on the
idea of modified coordinate descent and properties of
graphs that associate the structures of graphs and
systems of equations describing the flow distribution
in the network. The algorithm of contour optimization
is an iterative procedure at each iteration of which the
distribution of flow of only one product in the network
is optimized, the distribution of all the other products
being invariant. An iteration of algorithm consists of
the one - dimensional minimization procedure of the
summary expense function of contour cyclically re-
peated for each contour. Special graph structure
alternating procedure is used to accelerate the con-
vergence of the algorithm after flow optimization in
each contour in the network.

72

An iteration of algorithm is formally written as follows

. j iy J JAJ
Jmin F(A)= 3 fiall! +eide o5

iel}

here j is the number of the product distributed in a
given iteration; k is the number of a free arc that

formed a contour by joining it to the tree; x;/ is the
i-th arc load with the j-th product; Ax/ is a change

in the free arc load with the j-th product; I} is the

set of numbers of graph arcs that belong to the contour

formed by the k-th arc; e, is a coefficient that is equal
to + 1 if the direction of /-th and k-th arc in the
contour are the same, and to — 1 in the opposite case.
The optimization interval [a,b] is the smallest change

interval of the free arc load with the j-th product, in
which zero load with this product of any arc of the
contour is obtained.

If the flow X obtained by the algorithm described,
satisfies one or several critical equations that are
written as a system of equations

y=Ax+AO, (26)

there is no guarantee that this flow distribution corre-
sponds to the local solution of problem found with a
certain accuracy. In this case, we can go over to the
second stage of algorithm after rearranging beforehand
the system of equations (26) into another shape

X=A +A°, (27)

where the coordinates of basic variable vector X are
part of independent variables of the system of
equations (26), that is solved with respect to
independent variables, while the rest independent
variables of this system are the coordinates' of vector z.

The second stage of algorithm is an iterative procedure
that cyclically repeats one-dimensional optimization
for each independent variable gz, =xl:i, until the
stopping condition of algorithm is satisfied. In this
case, we minimize the summary expense function of
arcs of not a single but of several contours called
connected contours, whose loads change with a change
in the value of z,. The system of equations (27) shows
which arc loads of the contours will change and in
what way will they change. The optimization
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procedure for the second stage of algorithm is written
as follows

min F(Azo)= X f(x(Az,)), (28)

asz s lel,

where [a, b] is the minimal interval of changes Az,
of the independent variable z,, in which we obtain zero
load of any arc of the connected contours with the
product whose flow varies in this arc with the
variation of z;; L, is the set of arcs of all the connected
contours. If after procedure (28) the flow satisfies an
additional critical equation, then we supplement matrix
A of the system of equations (27) with the
coefficients of this equation expressed with
independent variables. Afterwards we rearrange the

vectors X and z by supplementing the vector X of
basic variables with the independent variable z, = x/
removing it from independent variables and by

recalculating the elements of matrix A , respectively.

In this case, we minimize the summary expense
function of arcs of the network of not a single but of
several contours called connected contours, whose
flows change with a change in the value of the
independent variable of problem. In each connected
contour changes flow of only one product but in a
separate contour changes flow of different products.
In the second stage of algorithms the multicommodity
transport flow is optimized in the set of points defined
by a system of the critical equations that satisfies the
transport flow.

The algorithm of contour optimization is rather
efficient in terms of calculation since for one -
dimensional optimization we can use some of very
efficient procedures of univariate optimization. On the
other hand, data needed for solving the problem can
be written in the most compact way using the means
of graphs. Contour optimization method, however, like
any other known optimization method converges only
to the local solution. To improve the solution it is
reasonable to use the synthesis of random search and
contour optimization methods, i.e., to optimize using
a number of randomly generated points.

4. Calculating experiment

Under the abovementioned conditions that are
contained in constraints of the optimal network
development problem under consideration, a dynamic
problem can be replaced by a finite sequence of static
problems. Therefore if suffices to experimentally

define the usability of the method proposed for solving
a static network development problem, as the
parameters characterizing its technical state can be
varying. Also, this static problem is not convex,
therefore the known methods can help find only its
approximate solution without a guarantee of finding
the optimal solution. Thus, there cannot exist a unique
method, absolutely better than all others. The quality
of a solution obtained by some method will depend
on par-ticular conditions, i.e., under certain conditions
one method can be better than another, under other
condi-tions. To determine these conditions is also not
always a solvable problem. In any case, however, the
method should ensure a sufficiently good solution. In
order to define the usability of the contour
optimization method for solving network development
problems of practical importance, an experiment by
calculation has been carried out. The method has been
tested, by using a network that was a part of the real
railway network of the country at the time, as well as
the data described in [3]. The network, illustrated in
Fig 2, consists of 43 transport points und 49 railway
lines, connecting these points, 27 of which are one-
way, represented by a thin line, and 22 two-way lines,
represented by a thick line. The numbers over the lines
that represent railway routes denote their length in
kilometres.

Table presents cargo volumes (correspondences) in
thousands of tons that are sent from the departure
points to their destination. The departure points are
indicated in the rows of the table, and destination
points - in the columns.

Transportation expenses by railway depend on the load
size of a line (i.e., transported cargo volume) and its
technical level, that determines the type of line. Three
railway line types are usually distinguished: a one-way

23 133

£3

174 31 155 286 _16 115
21 20

219 f1693% 98

7

155

6 13,28

210 432 35

146
44
47

41 200 40

S0

o)
[Ras

'
24 N 29 g
37 10 29

(4?
5187 w45 51

Fig 2. Discussed transport network and its initial technical
state
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Matrix of transportation for discussed transport network

Nodes | 1] 2] 3] 4] 5] e 7] 8 o 1o 11] 12| 13| 14| 15| 16| 47| 18] 19| 20| 21| 22| 23] 24] 28] 26| 27 28
1 660] 40| 30 7 7 34 2 55| 25 12l 12| 9] 2 8
2[ 150 24] 12| 15| 40| 15 10| 22| 50| 25 40 50| 75| 15| 7| 15| 35| 25 35| 25| 30| 12 75 430
320 20 10 B 7 2] % 20 ] 40| 65 15 44| 30| 25 30| 25| 25| 10 80 120
430 400] 40 7 20 5 7% 10] 80 120 120 110 _400] 450] 300 220 3040
5[ 7| 250] 230 7 Y 130 240 4 40 300] 300] 200] 340] 250 £ )
615 15 7 7 5_7]_30 8] 350 130]__80]_600] 600 10 20 15
70| 0] 10| 15 15| 6 55| 10 50| 25| 10| 20| 30| 15| 5| 15| 15| 15| 120] 30| 25 25 15| 50 40
820 15 7] 7 55 £ 5175 710 885 30
o 15[ 8 ¢ 7 5[50 500 5 5[ 20 % 0
0] _20] 25 500 5 5 58 10 810 280
1 I 7 W10 18 10 2 4 15[ 15| 18] 12 20
12 750] 8|15 15| 15 22 10| 15 § B 30 7] 4 o[ 55| 60| 15 15| 40| 20
13 700
14 2 2 2 2 13 30 15[ 3| 15| 10| 5| 3] 3| 6| 12 12 620
5 3] 6 Z 64 5 4 6 50 40[ T10[ 50 40| 10| 5| 5| 10| 20] 40 2] 50
16| 7| 18] 8 10| 10| o 16| 4 6_20] 2 35 100 20 8] 170] 20| 100 100 35| 35| 20| 130 30
17 2 2 2 8 [ 2 15| 30| 40 2 6§ 2o 7] 8 %40 360
18 i 2 2 2 2 8 25| 15 6 7 883 20| 20 1530
19 3 2 3 218 3]_e9] 80| 6 15| 45 2 20
2 06 78 320 818 40 8 7] 13 70]_130 200 50
21 6| 5] 8 g 10 5] 15 2 15| 50| 170] 5] 25| 45] 200 110|930 50
22| 5| 15| 8 8 0] 15 5 % 15] 60| 200] 40| 25| 50 220 110|930 50
23 20 20 6 20 2 15 15| 40| 40| 30| 15 380
24] 0] 20 0] 15 15 5_f0]_15] 20 17]_50] 65| 40| 20 210 150 320
25 6] 5 7 10]_10 30]_75]_60] 100] 60 @] _60] 60 450 50[ 120
% 71 15 50[_120 45 8o 25| 330] 410
Pl 20 20 12 8 310[ 200 300
28] 6| 0] 5000 15 15 15 15 g 12 15 10| 7 12] 50 50 420] 550

railway line, one-way line with detours, and a two-way 1 137. 212

. . . . . 2

line. Each variant of these lines is described by the Q;(v;) =—————+6060v; and

. . 14,4 -0,27v,
cost function per 1 km. Expenses for the entire road !
are obtained by multiplying the costs per 1 km. by the
. 2 52,8Vl-
road length. In all cases, the values of the cost function o;(v,)= +130.

depend on the cargo flow size in both directions of
the road, i.e.,

) = £, X)) (29)

where x and x; stand for cargo flow volumes in one

and the other direction of the railway road. If we
calculate the flow distribution by the contour
optimization method, the railway route is represented
in the shape of an oriented graph, and the size of cargo
flows, following in the direction of an arc, is denoted
by x*, while in the opposite direction, - by x™.

When calculating, we followed the conditions, deter-
mined in [3]. In that work, the shape of the cost
function, that expresses the dependence of
transportation expenses in an individual railway line
on two quantities, is as follows:

fi(vi’wi):[(p} (Vi)+(pi2(vi)wi:| l;, (30)

here v, = max(x',x; ), w; = min(x,x; ), [, is the

length of the i-th railway line. The functions ¢! and

¢; depend on the type of line. For a one-way railway

line,
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For a two-way railway line,
¢/ (v;)=660v; and @} (v,)=130.
For a one-way railway line with detours,
@ (v,) =660v, +28,1(v, — 28)* - max(v, — 28;0)

and @’ (v,)=130.

Detours in the one-way line allow trains to pass each
other in the case of an increase in traffic intensity. The
formula presented shows that, in the route with
detours, the transportation expenses are calculated just
like in the two-way line, if v, < 28 (mil. tons/year). If
the cargo flow in the direction of higher transportation
intensity exceeds this quantity, then extra expenses
arise in the route. In [3], it has been established that
if the normative effectiveness value is £ = 0,1, the cost
of construction of 1 km detour is 90 thous. rb, the cost
of building 1 km of a second way is 180 thous. rb,
then, in economic terms, it is reasonable to build
detours, if the cargo volume transported by a one-way
railway line in the direction of its higher loading
exceeds 22,5 (mill. tons/year), or a second way, if the
cargo flow exceeds 32 (mill. tons/year).



A MODEL AND METHOD FOR SOLVING A DYNAMIC TRANSPORT PROBLEM

In the initial version of the network under
consideration there are only two types of railway lines:
one-way railway lines and two-way lines. When
optimizing the transport network state, it is necessary
to envisage a possibility of reconstructing a one-way
railway line into a line with detours, or a two-way
railway line. In [3], the optimal state of the network
considered has been determined using a version of the
linearization method, called a consistent distribution
method, in the scheme of Benders decompositions.

The linearization method makes it possible to define
flow sizes in the network under fixed states of network
elements. That is an iterative procedure, where in each
iteration, network arc loads are decreased by removing
a certain part of all the correspondences from the
network, that afterwards are redistributed by the
shortest routes, in the sense of differential expenses.
Differential expenses are partial derivatives of the
objective function multiplied by the respective arc
lengths. Thus, differential expenses are the measure
of length’ of network arcs. Since a static network
development problem was formulated without source
constant restriction conditions, optimal states of
network elements under the set cargo flow distribution
are defined by a simple rule mentioned above. If the
flow size in the route in the direction of maximal
transportation route exceeds 22,5 mill. tons but is
lesser than 32 mill. tons, then the one-way line should
be reconstructed into a one-way line with detours. If
the flow exceeds 32 mill. tons, then another way ought
to be built in it. It must be admitted that the Benders
decomposition and the method of consistent
distribution are wide used in the solution of problems
in practice and yield good results.

Since resources are not limited in the considered case,
only one static problem was solved by the contour
optimization method. The contour optimization
algorithm was corrected a little in this experiment, -
an iteration of the algorithm was regarded as a single
optimization in all the contours of cargo networks. The
correction enabled us to approximate iteration
structures of both algorithms to some extent and made
it possible to compare them. The initial state of the
network was set the same for both algorithms. After
50 iterations in each, the results obtained for both
algorithms compared were similar. The value of the
optimal criterion, obtained by means of Benders and
consistent distribution algorithms is equal to 89,13 and
by the contour optimization algorithm is 89,31. Flow
distribution in the network also differed but a little,
by several fractions of per cent. One cannot derive any
generalizations from these results, since the iteration
structures of the algorithms compared differ to some

extent. A more important fact is that qualitative
results, obtained by both methods, were coincidental:
the optimal state of the network under a given
transportation volume is achieved by reconstructing
one-way railway lines 5-13 and 6-38 into one-way
lines with detours.

Despite that in the case of the problem with several
extrema, the contour optimization method has certain
advantages as it is not only a strictly local method the
calculation results obtained for the considered problem
are similar, maybe because the problem considered is
unimodal, or the global minimum is expressed
explicitly and has a wide zone of “attraction”.

It is possible to estimate the algorithms universally
only in the process of multiple solution of real
problems, however, the calculation results for this
particular case show that the contour optimization
algorithm ‘works’ rather well and can be used for
calculation in practice. This is the main conclusion of
the experiment. However, some of the features of the
algorithm are quite obvious. In the vicinity of the
solution, first or second-order algorithms (the
consistent distribution algorithm is attributed to the
former) converge faster than the zero-order algorithms
to which the proposed algorithm is attributed. On the
other hand, since the practical data are not absolutely
exact, it is hardly reasonable to strive for a higher
order calculation accuracy than the error of data.
Therefore, a decrease in the rate of convergence in the
surroundings of the solution is not the essential
shortcoming of the algorithm proposed. The consistent
distribution algorithm consumes the largest share of
calculation time to find the shortest routes and this
share is relatively increasing with an increase of
volume of the problem [3], meanwhile the calculation
duration of the contour optimization algorithm is
predetermined by the cost function. The more complex
the objective function, the faster the calculation
duration increases. This drawback can be avoided, by
using a piecewise linear objective function
approximation. It is worthwhile to iterate calculations
by specifying ever more the objective function
approximation in the vicinity of the solution. If we
approximate nearly to the solution, the last cycle of
calculations should be performed with the given
objective functions. This way of arranging calculations
would allow us to diminish the calculation time
duration up to the agreeable quantity.

5. Conclusions

As the experimental calculations have shown, the
proposed method, based on the synthesis of static
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sections and contour optimization methods, also
applies to solve problems of practical significance.
The method proposed has its own advantage. While
the Benders decomposition is effective in the case,
where there is only one recourse restriction, the
contour optimization algorithm is effective for any
number of resource restrictions. On the other hand, its
effectiveness is not decreased by lack of smoothness
and discontinuity of the objective function. Using the
piecewise linear approximation of the objective
function which allows us to diminish the calculation
time, the proposed method also applies to solve
problems of rather a great volume as well as in the
case, where the transportation costs and variables of
the problem are related by complex dependences.
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