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Abstract. One of the main problems in modern economy is to construct an efficient organizational hierarchy allowing
to control the firm with minimal cost. This paper describes the mathematical model of optimal hierarchies in firms. Optimal
hierarchies for several classes of cost functions are obtained. Particularly, sufficient conditions for tree optimality, 2hier-
archy (any manager has two immediate subordinates) optimality and two-tier hierarchy optimality are defined.
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1. Introduction

Any firm is an organization of economic agents (em-
ployees)1. In the organization employees conform to
some rules (mechanisms) regulating their activity and
providing the achievement of the general goal of the
firm.

The employees in the organization are specialized.
Therefore, they are more efficient than the set of self-
employed (non-organized) agents. But the employ-
ees with different specialization must be coordinat-
ed to achieve the general goal. Coordination is a
fundamental problem of any organization because
activity of a team must be planned and monitored,
individual goals must be coordinated, etc. Some or-
ganizational hierarchy2 is created to fulfill the coor-
dination functions (administrative labor) in the firm.

On the one hand, the hierarchy increases efficiency
of the employees’ interactions (for example, due to
the planning and monitoring informational, material
and other flows). On the other hand, the performance
of coordination (control) functions is costly. In modern
economy organizations become increasingly more
complex. As a result, the proportion of managers in
organizations may exceed 40 % (see, for instance,
Radner, 1992). So, the key factor of firm’s efficien-
cy is the optimality of the hierarchy.

Two-tier hierarchy can be optimal for small firms. In
this hierarchy workers on the first (lowest) tier are
immediately subordinated to a single manager. As the
firm grows, the single manager can not control all
interactions between the workers. Therefore, one has
to hire several managers to the second tier of the
hierarchy and to delegate them the responsibility to
control business interactions (flows) within the sub-
ordinated groups of workers. But interactions between
subordinated groups cause interactions between the
managers on the second tier. Several managers on the
third tier must control these interactions, etc. In such
a way multi-tier hierarchy arises. A superior manag-

1 Below we use the terms “organization” and “firm” as syno-
nyms.

2 The employees on higher tiers of the hierarchy have more au-
thority than the employees on lower tiers. It allows to control
the firm even when conflicts between the employees exist.
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er in the hierarchy has an authority over his or her
subordinates (managers or workers) and a subordi-
nate provides the information to and follows the in-
structions from his or her superiors.

The design of the hierarchy is one of the aspects of
organization design. The process of organization
design (and re-engineering) is divided into three
phases3 (see, for instance, Mintzberg, 1979, William-
son, 1975):

I. Technology design: the number of workers, their
functions and interaction rules are determined.

II. Hierarchy design: the number of managers and their
subordination are determined.

III. Mechanism design: superiors’ authorities over their
subordinates are determined4.

Typically, an expert in the appropriate field performs
the technology design (phase I).

There are many mathematical models of control
mechanisms (phase III). Two-tier hierarchy mecha-
nisms (principal-agent problems) have been researched
in detail (see, for instance, Hart and Holmstrom, 1987;
Grossman and Hart, 1982 and 1983). There exist the
models of control mechanisms in some types of multi-
tier hierarchy (e.g. Melumad, Mookherjee and Re-
ichelstein, 1995) explore the delegation mechanism
in three-tier hierarchy).

In this paper we concentrate our attention on phase
II. Several papers are focused on the hierarchy opti-
mization problem (phase II) or joint optimization of
hierarchy and mechanisms (phases II and III). The
study of the hierarchic organizations was pioneered
by Simon (1957). His model is based on the follow-
ing assumptions:

1. The employees on the first tier are the only
workers performing production labor. All
employees on higher tiers are managers per-
forming only administrative labor (control
functions).

2. Any employee in the hierarchy has the only
immediate superior on the next hierarchical
tier. Thus, any hierarchy is a tree. And only
employees on adjacent tiers may interact di-
rectly.

3. The wage is the same for all employees on
one tier. The span of control (the number of
manager’s immediate subordinates) is the same
too. So, employees on one tier are assumed
to be identical.

4. The span of control is the same on different
tiers of the hierarchy.

5. The wage on the next tier is a constant mul-
tiple of the wage on a previous tier. The con-
stant is an exogenous number, which does not
depend on the tier and other parameters of the
hierarchy.

Williamson (1967) explores a similar model and
proves that firm size is limited because of “loss of
control” (employees’ efficiency decreases from an
upper tier to a lower tier). The interlayer efficiency
differential is an exogenously given constant. Calvo
and Wellisz (1978) explain the wage and the efficiency
endogenously. Employee’s efficiency depends on his
or her wage and the span of control of the immedi-
ate superior. The larger the manager’s span of con-
trol is, the less is his or her subordinates’ effective-
ness, as individual subordinate is controlled rarely.
Using this assumption Calvo and Wellisz (1979)
consider the profit maximization model. The profit
equals the difference between income (the number of
workers multiplied by their effectiveness) and total
wages of all employees. In this model both different
spans of control and wages on different tiers are
possible. Thus, Calvo and Wellisz dispense stringent
assumptions 4 and 5 and prove important principles,
for example, that in the optimal hierarchy the high-
er tier, the more employee’s efficiency and wage per
efficiency unit.

Keren and Levhari (1983) optimize the hierarchy’s
decision-making time5 (delay on each tier equals the
span of control plus constant). Average cost per
employee is calculated for the hierarchy with mini-
mal decision-making time. This cost allows to cal-
culate the limits of the firm’s size. Similar informa-
tion processing models are explored in numerous
papers (see, for example, Van Zandt, 1996; Bolton
and Dewatripont, 1994; Radner, 1993).

Qian (1994) explores Calvo and Wellisz (1979) model
by using optimal control techniques, a method pio-
neered by Keren and Levhari (1979). Continuous
approximation is considered (continuous number of
employees on each tier). In this case, the optimiza-

3 In practice these three phases may not be altogether independ-
ent. But it is rather difficult to optimize all these phases at once.
To simplify the problem each phase is usually considered sepa-
rately.

4  For example, employees’ rights and responsibilities are deter-
mined.

5 Marschak and Radner (1972) study the effect of delay on the
value of decisions. This is one of the first models of hierarchy
with managers calculating some “decision” (control action).
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tion problem is simpler than discrete problem6. If any
employee’s effort choice is restricted to only zero or
maximal effort, then in Calvo and Wellisz model the
optimal employee’s wage depends only on the span
of control of his or her immediate superior7. To
maximize profit one has to minimize total wages
because employees’ efficiency (efforts) is maximal.
In this case Qian (1994) obtains the optimal hierar-
chy8.

Like Qian, in this paper we consider the problem of
searching out optimal hierarchy, which minimizes total
wage of employees (total cost). However, we differ
from Qian and other cited above papers in two im-
portant respects. First, we consider manager’s wage
function depending not only on the span of control,
but also on sets of workers controlled by the employ-
ees immediately subordinated to the manager. So,
manager’s wage depends on “specificity” and “com-
plexity” of manager’s administrative labor (such wage
function is called “sectional” in this paper). Thus, we
do not assume that employees on one tier of the hi-
erarchy are identical. Second, we consider not only
tree-like hierarchies, but also more complex hierar-
chies with multiple subordination or cross-tier sub-
ordination9. Therefore, we differ from papers, cited
above, because we dispense assumptions 2 and 3 (this
paper is based only on assumption 1). The problem
of searching out optimal hierarchy considered in this
way is much more complicated. To explore this prob-
lem we base on the additional assumption: any hi-
erarchy provides the maximal efficiency of employ-
ees. In this case to maximize profit we have to find
a hierarchy with minimal total wage (total cost). Thus,
control mechanisms (phase III) are not considered and
manager’s wage (cost) function is given exogenous-
ly10. We suppose that if employee’s wage equals to
the cost then his or her efficiency is maximal. Par-

ticularly, we entirely abstract from incentive prob-
lems11.

Using an example of sectional cost function one can
explore optimality of divisional, functional or matrix
hierarchy12 and prove many dependences considered
without formal proof in management science litera-
ture13. So, the proposed model explains some effects
in real firms. Sectional functions are also interesting
from the mathematical point of view: any additive
(with respect to manager’s addition) and anonymous
(with respect to manager’s permutation) hierarchies’
cost function can be represented in sectional form
(Mishin and Voronin, 2003).

In this paper we explore optimization methods that
can be used to obtain the optimal hierarchy for nu-
merous classes of sectional cost functions regardless
of function’s specificity and practical interpretations.
Particularly, we define sufficient conditions for tree
optimality, 2hierarchy (any manager has two imme-
diate subordinates) and two-tier hierarchy optimali-
ty. So, the proposed approach allows to construct the
theoretical methods, which can be used to solve many
problems that have numerous applications in econom-
ics. Therefore, the sectional cost function appears to
be a useful compromise between detailed description
of the real firms and possibility of mathematical
modeling.

In the next section we describe the model and con-
sider simple examples. In Section 3 we explore ar-
bitrary sectional cost function and solve the problem

6 Van Zandt (1995) examines the validity of continuous approxi-
mation of discrete problem of searching out optimal hierarchy.

7 Suppose any employee works at full efficiency or shirks. In
this case the employee compares expected loss of wage (the
wage multiplied by the loss probability) and shirked time util-
ity. To induce the employee to work efficiently one should cal-
culate such wage that expected loss is greater than or equal to
the utility. Loss probability inversely depends on span of con-
trol of the immediate superior. Therefore, optimal wage lin-
early depends on the superior’s span of control.

8 Also Qian (1994) explores more complex cases.
9 It allows to prove insightful optimality conditions for tree, sym-

metric tree, etc.
10 In this paper we consider different cost functions. For exam-

ple, these functions may be defined using technological net-
work (the result of the phase I) and possible controlling mecha-
nisms (the result of the phase III).

11 It is easy to create incentive mechanism under complete infor-
mation: costs of maximal efficient employees are compensated
and wages of other employees equal to zero (Mishin, 2004).

12 Comparison of divisional (M-form (multi-divisional form)),
functional (U-form (unitary form)) and matrix hierarchies is
well-known aspect of hierarchy optimization problem. Advan-
tages and disadvantages of these types of hierarchy are discussed
in many papers (see, for example, Mintzberg, 1979). Recently
developed models allow to compare mathematically divisional,
functional and matrix hierarchies. For example, Maskin, Qian
and Xu (2000), Qian, Roland and Xu (1997) explain mathemati-
cally advantages of the divisional hierarchy over the functional
hierarchy.

13 For example, Mishin (2005) shows that divisional, functional
or matrix hierarchy is optimal for any size of the firm in some
circumstances; managers on lower hierarchical tiers must con-
trol the most intensive flows because it helps to decrease the
strategic managers’ costs; the matrix hierarchy is stable with
respect to standardization and stability decrease, on the con-
trary, divisional and functional hierarchies are stable with re-
spect to standardization and stability increase; the divisional
hierarchy is stable with respect to horizontal integration and
production volume increase, on the contrary, the functional hi-
erarchy is stable with respect to vertical integration and func-
tional links intensity increase.
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of searching out optimal hierarchy for several cas-
es. In Section 4 we use these results to analyze cost
functions corresponding with different types of inter-
actions between manager and immediate subordinates.
Possible extensions of the introduced model are dis-
cussed in Section 5. All mathematical proofs can be
found in Appendix A.

2. The model of optimal hierarchy

2.1. Workers and managers. Hierarchies

Let N = {w1,…,wn} be a set of workers who can in-
teract with each other. Typically we denote the work-
ers as Nwww ∈'',', . In this paper we suppose that the
set of workers N is given and fixed.

Let M denote a finite set of managers who control
workers’ interactions. Typical managers will be de-
noted as Mmmmmm ∈�,,,'',', 21 . Let MNV ∪=  de-
note a set of all employees of the firm (workers and
managers). For each manager we need to define his
or her subordinates (workers or other managers). Let
us define a set of subordination edges MVE ×⊆ . Any
edge Emv ∈),(  means that the employee Vv∈  is an
immediate subordinate of the manager Mm∈ . Thus,
the edge is directed from the immediate subordinate
to the immediate superior. An employee Vv∈  is a
subordinate of the manager Mm∈  (manager m is a
superior of the employee v), if there exists a path from
v to m.14 We will say that any superior controls his
or her subordinates (any subordinate is controlled by
his or her superiors).

Definition 1. A directed graph ),( EMNH ∪=  with
a set of managers M and a set of subordination edg-
es MMNE ×∪⊆ )(  is the hierarchy controlling the
set of workers N if H is acyclic, any manager has at
least one subordinated employee and some manager
controls all workers. Let )(NΩ  denote the set of all
hierarchies.

Definition 1 ex ante excludes graphs with cycles (each
manager in a cycle is a superior and subordinate of
another managers in the cycle, which contradicts the
main point of the term “subordination”) and “man-
agers” without subordinates. According to Definition
1 there exists a manager controlling all workers.
Therefore, any set of workers has a common supe-
rior and any hierarchy is able to control all workers’
interactions.

Any nonempty set of workers Ns ⊆  will be called
a group of workers. We can start from a manager m
and consider his or her immediate subordinates. Af-
ter that we can consider their immediate subordinates,
etc. Acyclicity implies that finally we determine
nonempty set of workers subordinated to the manager
m. This set NmsH ⊆)(  will be called manager’s m
subordinated group of workers in some hierarchy H.
In other words, the manager m controls the group of
workers sH(m). We will leave out inferior index “H”
in notation sH(m) if it is clear what hierarchy we
analyze. It will be convenient to think of worker

Nw∈  as having a subordinated “group” sH(w)={w}
which consists of this worker only. In other words,
any worker Nw∈  “controls” the elementary group

sH(w)={w} in any hierarchy )(NH Ω∈ .

In Fig 1 a hierarchy is constructed over the horizontal
plane that corresponds with workers. In the figure the
part of hierarchy subordinated to the manager m is
shown. This part consists of immediate subordinates
of the manager m and his or her subordinates not
controlled immediately. The subordinated group of
workers sH(m) is outlined by ellipse.

manager m 

 subordinated 
    group of  
    workers   sH(m) 

  subordinated employee 

immediately  
subordinated  
employee 

subordinated employee 

immediately  
subordinated employee 

Fig 1. An example of manager and subordinated
group of workers

Below we prove two technical lemmas which are
necessary only to prove another proposition.

Lemma 1. For any hierarchy H and any manager
Mm∈  the equality )()()( 1 kHHH vsvsms ∪∪= �

holds, where v1,…,vk are all immediate subordinates
of the manager m. For any employee v subordinat-
ed to the manager m the inclusion )()( msvs HH ⊆
holds.

Consider an example. In Fig 2 a manager m has two
immediate subordinates m1 and m2. The group of
workers s(m) = {w1, w2, w3, w4} is subordinated to
the manager m. The groups s(m1)={w1,w2} and
s(m2) ={w3, w4} are subordinated to the managers m1
and m2 respectively. Thus, the group s(m) is divided
into the subgroups s(m1) and s(m2):

14 There exists such sequence of managers Mmmm k ∈,,, 21 �

that the employee v is an immediate subordinate of the man-
ager 1m  ( Emv ∈),( 1 ), the manager jm  is an immediate sub-
ordinate of the manager 1+jm  ( Emm jj ∈+ ),( 1 ) for each

11 −≤≤ kj , mmk = .



��

OPTIMAL ORGANIZATIONAL HIERARCHIES IN FIRMS

{w1,w2,w3,w4}={w1,w2}∪ {w3,w4}. In this example
subgroups do not overlap. In general case subgroups
can intersect (see Fig 2 b).

Definition 2. A hierarchy H is a tree, if only one
manager m has no superiors and all other employees
have exactly one immediate superior. The manager
m will be called the root of the tree.

An example of the tree is shown in Fig 2 a. Hierar-
chy in Fig 2 b is not a tree because one manager has
two immediate superiors.

Lemma 2. In any tree any manager’s immediate
subordinates control non-overlapping groups.

Thus, in the tree the immediate subordinates of any
manager do not “duplicate” each other (do not con-
trol the same worker).

Definition 3. A hierarchy H is r-hierarchy if any
manager has no more than r immediate subordinates,
where 1>r  is some integer number. If r-hierarchy
H is a tree then H will be called r-tree.

The term span of control (the maximal number of
immediate subordinates, which can be controlled by
one manager) is often used in practice. In our terms,
if the span of control equals r then the hierarchy is
r-hierarchy. Lemma 2 implies that immediate subor-
dinates of any manager in a tree control non-over-
lapping groups. Thus, the maximal number of imme-
diate subordinates equals n (if all immediate
subordinates are workers). So, the span of control in
any tree does not exceed n. And two-tier hierarchy
with single manager controlling all workers (see
Fig 2 c) has the maximal span of control.

2.2. Sectional cost functions. Optimal
hierarchies

Definition 4. Cost function of the manager Mm∈
in a hierarchy )(),( NEMNH Ω∈∪=  is called sectional
if it is given by:

c(sH(v1), …, sH(vk)),   (1)

where v
1
,…,v

k 
are all immediate subordinates of the

manager m, s
H
(v

1
), …, s

H
(v

k
) are groups controlled by

employees, v
1
, …, v

k
, )(⋅c  is a nonnegative real func-

tion of set of groups.15 Cost of total hierarchy equals to
total managers’ costs16:

. ∑ ∈= Mm kHH vsvscHc ))(,),(()( 1 � (2)

A hierarchy )(min
)(

* HcArgH
NH Ω∈

∈  with minimal

cost is called the optimal hierarchy.

Several optimal hierarchies may exist. This paper
focuses on the problem of searching out some opti-
mal hierarchy (we will reference to it as to “optimal
hierarchy problem”). So, for given cost function17 we
need to search out an optimal hierarchy (the number

of managers and their subordination) from )(NΩ ,
which minimizes the cost of control of the workers.

Let us explain Definition 4 using an example (see
hierarchy in Fig 2 a). The manager m controls the
group {w1, w2, w3, w4} with the help of two subor-
dinated managers m1 and m2. Managers m1 and m2
control the groups {w1, w2} and {w3, w4} respectively.
Suppose managers m1 and m2 cope with controlling
of the subordinated employees. In this case the cost
of the manager m does not depend on controlling
methods inside the groups {w1, w2} and {w3, w4}. For
example, the managers m1 and m2 can control sub-
ordinated workers immediately or with the help
of some subordinated managers. It is of no importance

1w 2w 3w 4w 1w 2w 3w 4w

a b 

m1 m2 

m 

1w 2w 3w 2−nw 1−nw nw……

c 

Fig 2. a) An example of 2-tree, b) An example of non-tree hierarchy, c) Two-tier hierarchy

15 The function )(⋅c  depends on the set {sH(v1),…,sH(vk)} of
groups and does not depend on order of these groups. So, the
manager’s cost does not depend on numeration of his or her
immediate subordinates v1,…,vk. Some of groups sH(v1),…,sH(vk)
may be the same. In this case the “set” {sH(v1),…,sH(vk)} con-
tains repeated elements.

16 In expression (2) and below the symbol )(⋅c  denote both man-

ager’s and hierarchy’s cost.
17 Cost function may be determined directly (for example, using

accounting information about manager’s cost). Moreover, some
“typical” cost functions may be considered (see examples be-
low).
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for manager’s m cost because direct interactions
between m and workers are not necessary. Definition
4 implies that the cost of the manager depends only
on division of subordinated group of workers between
immediately subordinated employees. In the exam-
ple the group {w1, w2, w3, w4} is divided into sub-
groups: {w1, w2, w3, w4}={w1, w2}{w3, w4}. So, the
cost of the manager m equals c({w1, w2},{w3, w4}).
Thus, we suppose that the cost of a manager depends
only on the “section”18 controlled by the manager im-
mediately. In Fig 2 a the “section” of the manager m
consists of m and subordinated managers m1 and m2.
The cost of the manager does not depend on other parts
of the hierarchy, on individual efficiency of manag-
ers. Generally the cost of the manager can depend on
individual efficiency, hierarchical tier, superiors or the
whole hierarchy. Such cost functions are not section-
al and are not considered in this paper.

In Definition 4 some of the groups sH(v1), …, sH(vk)
can be the same or nested one into another. Suppose

)()( 21 vsvs HH ⊆ . So, the employee v1 controls part

of the group subordinated to the employee v2. Thus,
one immediate subordinate of the manager m dupli-
cates part of the labor of another immediate subor-
dinate. Below we consider only sectional functions
satisfying the following assumption:

        ))(,),(),((

))(,),((

21

2

kHHH

kHH

vsvsvsc

vsvsc

�

� ≤
(3)

for any groups )()( 21 vsvs HH ⊆ . For example, “aux-
iliary” immediate subordinate v

1
 can waste manager’s

m time discussing some problems inside the group s
H
(v

2
)

(such problems are completely controlled by the man-
ager v

2
). So, we can remove subordination edge (v

1
, m)

with no increase of manager’s m cost. After removal
costs of other managers do not change because groups
controlled by all managers do not change.

In some cases in this paper the sectional cost func-
tion is given by simplified notation c(s1, …, sk) instead
of c(sH(v1),…,sH(vk)). The value of the function
c(s1,…,sk) corresponds with the cost of some man-
ager with immediate subordinates controlling the
groups s1,…,sk.

2.3. Examples of hierarchies controlling
technological interactions

Let us consider several examples of sectional cost
function depending on technological flows between

workers. Consider a flow function, which is given by:

p
envenv RwNwNf +→∪×∪ }){(}){(: (4)

where w
env

 is an environment interacting with the work-
ers. Thus, for any pair of workers Nww ∈'','  vector

)'','( wwf  means the flow intensity between w′  and

''w  (p-dimensional vector with nonnegative real com-
ponents). Each component is an intensity of one type
of workers interactions or one type of flow (e.g., mate-
rial, informational or other type of flow). Flow func-
tion f will be called weighted technological network

f. 19 For any Nw∈  the value f(w
env

, w) is a flow intensity
between the worker w and the environment. We suppose
that the technological network is undirected

( )',''()'','( wwfwwf =  for any }{'',' envwNww ∪∈ ).

There is no link between w′  and w ′′  if and only if

0)'','( =wwf  ( w′  and w ′′  are linked if and only if there

are some flows between w′  and w ′′ ).

Consider an example of managers’ administrative la-
bor. Suppose a conflict causes violation of interaction
between workers w2 and w3 (see the hierarchy in Fig
2 a). The worker w2 informs the immediate superior
m1 about this interaction problem. The manager m1 can
not solve the problem because the worker w3 is not
subordinated to m1. Similarly the manager m2 can not
solve the problem after reception of worker’s w3 in-
formation. As a result, managers m1 and m2 inform their
common immediate superior m about the problem. The
manager m makes some decision. Managers m1 and m2
pass this decision to the workers w2 and w3. In such
a way the interaction problems are eliminated. There-
fore, the manager m controls the flow f(w2,w3) and
managers m1 and m2 participate in this flow control.
This example shows that a manager fulfills “obliga-
tions” of two following types:

1. The manager controls such flows within subordi-
nated group that are not controlled by subordinated
managers. For example, in Fig 2 a the manager m
controls the flow f(w2,w3). The sum of such flows will
be called the internal flow of the manager m and

denoted )(int mFH .

18 For example, department, division or some over business unit.

19  In real firms workers’ interaction rules are frequently not for-
malized. In this case, one can describe the technological net-
work using, for example, function modeling methodology
(IDEF). One defines some aggregated functions (purchasing,
production, sales, document processing, etc.) and makes de-
tailed decomposition (fragmentation) down to elementary func-
tions performed by each specific worker. During the decompo-
sition process, one defines interactions between the workers.
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2. The manager participates in control of the flows
between the subordinated group and all other work-
ers, the flows between the subordinated group and the
environment. For example, in Fig 2 a the manager m1
participates in flows f(wenv,w1) and f(w2,w3) control.
The sum of such flows will be called the external flow

of the manager m and denoted )(mF ext
H .

Obviously the values

 
∑

≤≤⊄′′
⊆′′

=

kjvsww
msww

H

jH
H

wwfmF

1each for  )(},'{
),(},'{            

int )'','()(

and

∑
∪∈′′

∈
=

}{))(\(
),('            

)'','()(

envH
H

wmsNw
msw

ext
H wwfmF

depend only on groups s
H
(v

1
),…, s

H
(v

k
) controlled by

all immediate subordinates of the manager m in the hi-
erarchy H. Therefore, we can consider the following
sectional cost function depending only on total manag-
er’s flow:

))()(())(,),(( int
1 mFmFvsvsc ext

HHkHH +ϕ=� ,

where ++ →ϕ RR p:  is non-decreasing function from

pR+  to R
+
. The fact that the function  )(⋅ϕ  is non-de-

creasing means that manager’s cost does not decrease
when the “volume” of labor increases.

2.3.1. The expediency of multiple-subordination

Consider technological network with four workers and
the following intensities of flows: f(wenv,w1) = 3,
f(w1,w2) = 1, f(w2,w3) = 5, f(w3,w4) = 1, f(w4,wenv) = 3
(see Fig 3). This network may be interpreted as a
process line (“business process”): the worker w1 gets
raw materials from the vendors and passes it to the
worker w2. The worker w2 executes some production
operation and passes the results to the next worker
w3, etc. The last worker w4 dispatches finished prod-
ucts to the customers. Intensity changes (3,1,5,1,3)
may be caused by the specific nature of interactions

between different workers. If all intensities are the
same then the process line will be called symmetric.

Consider manager’s cost function 3)( xx =ϕ , where x
is the value of the manager’s flow. It is easy to see
(Mishin, 2005) that the optimal hierarchy H looks like
the hierarchy in Fig 3 and all trees are non-optimal20.
The manager m1 has two immediate superiors. So,
there exists optimal hierarchy with multiple-subordi-
nation.

One of interesting questions is the optimality of trees.
Tree is a typical hierarchy for many real firms. Con-
sidered example shows that in some cases there does
not exist optimal hierarchy among the trees. Mishin
(2005) proves the optimality of the tree for any sym-
metric process line and any non-decreasing function

)(⋅ϕ . Below we consider a more general sufficient
condition for optimality of the tree.

2.3.2. Firm growth with control cost decrease

Consider the asymmetric process line with four work-
ers, the flows f(wenv, w1) = 1, f(w1, w2) = 5,
f(w2, w3) = 1, f(w3, w4) = 5, f(w4, wenv) = 1 and the
manager’s cost function 2)( xx =ϕ , where x is the
value of the manager’s flow. To start with we sup-
pose that the technological network N = {w2, w3}
consists only of workers w2 and w3. So, workers w1
and w4 are not part of the firm (for example, the
vendor and customer). Then the optimal hierarchy
with cost 121112 =  is shown in Fig 4 a.

Assume we can extend the firm by adding workers
w1 and w4. For example, this extension can be inter-
preted as follows. Large wholesale company buys the
production firm (the “worker” w1) and the chain of
shops (the “worker” w4) to control all the stages from
production to the ultimate consumer. Large flow
f(w1,w2) = 5 may be caused by purchasing problems,
e.g. large quantity of defective goods. Similarly the
large flow f(w3,w4) = 5 may be caused by some selling
problems, e.g. customers often return defective goods.

Thus, after the extension the firm controls the whole
technological network N = {w1, w2, w3, w4}. So, we

20 Managers’ m1, m2, m3, m4 flows equal 7, 5, 5, 6 respectively.
So, 8096557)( 3333 =+++=Hc . In any optimal hierar-
chy any manager on the lowest (second) tier controls exactly
two workers (otherwise his or her cost is greater than or equal
to 1000>809). And it is easy to see that in any optimal hierar-
chy there is a single manager m1 on the second tier and m1
immediately controls workers w2 and w3 (controls the maximal
flow f(w2,w3)=5). We can calculate costs of all trees controlling
employees w1, m, w4. It allows to prove that all trees are non-
optimal. And it is easy to see that the cost c(H) = 809 can not
be further diminished. Therefore, H is optimal hierarchy.Fig 3. Optimal hierarchy controlling asymmetric process line

1w 2w 3w 4w3 1 5 1 3

m1 

m3 

m4 

m2 
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can reconstruct the hierarchy as shown in Fig 4 b.
We can hire two managers on the second tier and give
them the responsibility to control the greatest flows
f(w1, w2) = 5 and f(w3,w4) = 5. The cost of the re-
constructed hierarchy equals 107377 222 =++ .

So, control cost can decrease with the technological
network growth (including new workers, who were
part of the environment). It could be a reason to buy
some unprofitable business because it can reduce cost
of control of the main business. Such facts often occur
in practice21.

3. Classes of sectional cost functions and
corresponding optimal hierarchies

3.1. General form of optimal hierarchy

Proposition 1. There exists such optimal hierarchy
that the following conditions are satisfied:
(i) all employees control different groups of work-

ers;
(ii) only one manager has no superiors. All other

managers and all workers are subordinated (may-
be non-immediately) to this manager;

(iii) immediate subordinate of a manager does not
control any other immediate subordinate of this
manager.

The condition (i) means that there is no pair of man-
agers fully duplicating each other’s administrative
labor. In other words, there are no managers control-
ling the same group of workers. In Fig 5 a the ex-
ample of such duplication is shown. Particularly, the
condition (i) leads to the fact that any manager has

at least two immediate subordinates (otherwise Lemma
1 implies that the manager and his or her only im-
mediate subordinate control the same group of work-
ers).

The condition (ii) means that exactly one manager
m has no superiors. This manager controls all work-
ers and all other managers in the hierarchy22. The
manager m will be called top manager. In Fig 5 b there
are two managers with no superiors. So, the condi-
tion (ii) is violated. Obviously the “redundant” man-
ager can be removed with no cost increase.

The condition (iii) can be interpreted as follows.
Assume the manager m1 is immediately subordinat-
ed to the manager m. Then m does not immediately
control the subordinates of the manager m1. The
condition corresponds with “normal” activity of the
firm, when any manager controls subordinated em-
ployees only by means of his or her immediate sub-
ordinates, but not directly. In Fig 5 c the top man-
ager m directly controls the workers w2 and w3,
although these workers are also controlled by sub-
ordinated managers m1 and m2.

Proposition 1 simplifies optimal hierarchy problem
because we can ignore hierarchies that violate con-
dition (i), (ii) or (iii).

a 

5 1 5 
2w 3w

Fig 4. Firm growth with control cost decrease

b 

1w 2w 3w 4w1 5 1 5 1 

21 For example, in’90 s of the 20th century many Russian food
plants were transformed into vertically integrated companies
by acquisition of farms in the corresponding region. These farms
were unprofitable but provided regular supplies of cheap raw
materials.

22 The condition (ii) corresponds to the practice of organization
design: there is one and only one top manager whose decisions
must be implemented by all other managers and workers (for
example, the top manager can eliminate a conflict between any
set of employees in the firm).

a 

1w 2w 3w 4w

1w 2w 3w 4w

b 

Fig 5. Hierarchies a-c violate conditions
(i)-(iii) respectively
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3.2. Tree optimality condition

It is important to obtain the conditions when some
tree is the optimal hierarchy. Below we consider the
sufficient condition for tree optimality. This is the so-
called group-monotony condition.

Definition 5. A sectional cost function is called group-
monotonic if the manager’s cost does not decrease
with the expansion of the groups controlled by the
immediate subordinates and with the addition of new
immediate subordinates. So, for any groups s1,…,sk
the following inequalities hold:

),,,(),,,( 221 kk ssscsssc �� ≤ , where s contains s1
( ss ⊂1 ); ),,,(),,,( 121 kk ssscsssc �� ≤ , where s is
any group.
Let us explain Definition 5 by the example. Any man-
ager m communicates with his or her immediate subor-
dinates to solve their interaction problems (correspond-
ing cost may be determined by some non-decreasing func-
tion )(⋅χ  depending on the number of immediate subor-
dinates). Also the manager m may solve part of prob-
lems inside each of the groups controlled by immediate
subordinates23 (corresponding cost may be determined
by some non-decreasing function )( 1 kss ∪∪�ς  de-
pending on the size of the group kss ∪∪�1 , where
s

1
,…,s

k
 are the groups controlled by all immediate sub-

ordinates of the manager). Thus, we can consider the
following example of cost function:

)()(),,( 11 kk sskssc ∪∪ς+χ= �� . (5)

Obviously function (5) does not decrease with any
expansion of the groups s1,…,sk and with any addi-
tion of new immediate subordinates. Therefore, (5)
is an example of group-monotonic function.

In some practical situations a manager can decrease
his or her cost by increasing the number of immedi-
ately subordinated managers (“assistants”). In such
cases the function is not group-monotonic. Howev-
er, if the “assistants” coordination cost is sufficient-
ly high then it is reasonable to model the firm with
the help of group-monotonic function.

Theorem 1. If sectional cost function is group-mo-
notonic then there exists optimal tree.

According to this theorem if cost function is group-
monotonic then optimal hierarchy can be found among
the trees24. Therefore, to find optimal hierarchy we

can verify the inequalities of Definition 5. If these
inequalities hold then optimal hierarchy problem is
much simpler because we only need to find the min-
imal cost tree. Such tree can be found using the al-
gorithms developed by Mishin and Voronin (2002b,
2003). For an arbitrary sectional cost function the
exact algorithm’s complexity is too high (the mini-
mal cost tree can be found only for 15-20 workers25).
Consider the cost function given by the expression

),,( 1 kssc �  (for example, function (5) can be given
by ),,( 1 kssc � ).26 In this case the exact algorithm
finds the minimal cost tree for 70-100 workers27. If
the cost function is group-monotonic then optimal
hierarchy problem can be solved using these algo-
rithms. For other cost functions the tree obtained by
the algorithms may be non-optimal hierarchy. Still this
tree is useful, for example, to compare the best tree
with actual hierarchy in the firm.

3.3. Hierarchy and two-tier hierarchy
optimality conditions

Definition 6. Sectional cost function is narrowing if
for any manager m with immediately subordinated
employees v1,…,vk, 3≥k  it is possible to resubordi-
nate several employees from v1,…,vk to new manager
m1 and immediately to subordinate m1 to the manager
m with no hierarchy cost increase. Sectional cost
function is widening if any such resubordination does
not decrease cost of hierarchy.

Let us explain Definition 6. In Fig 6 a manager m
has three or more immediate subordinates v1,…,vk.
Consider a narrowing cost function. With no hierar-
chy cost increase we can hire new immediate supe-
rior m1 for j ( kj <<1 ) employees from v1,…,vk. After
the hire the manager m controls these employees with
the help of new manager m1 but not immediately. For
example, the result of employees v1,…,vj resubordi-
nation is shown in Fig 6 b.

Generally any j employees can be resubordinated. So,
there exists such permutation (i1,…,ik) of numbers

25 Using personal computer in several minutes.
26 Manager’s cost depends only on the span of control k (number

of all immediate subordinates) and on the numbers kss ,,1 �

of workers in the groups controlled by the immediate subordi-
nates (but not on individual workers in these groups!).

27 Mishin and Voronin (2003) also prove that it is impossible to
sufficiently reduce exact algorithm’s complexity. In the paper
noted above some heuristic algorithms are developed. These
algorithms have much less complexity and find trees with ap-
proximately minimal cost. For arbitrary function given by

),,( 1 kssc �  two heuristic algorithms are developed. Their
complexities grow as n2 and n3.

23 For example, the manager can perform some administrative labor
when any subordinated worker is dismissed (interview with a
new worker, signature of some documents, etc.).

24 Mishin (2005) proves that the group-monotony is sufficient con-
dition but not requirement for the tree optimality
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(1, …, k) that employees 
jii vv ,,

1
�  are resubordinated.

If cost function is narrowing then for any groups
s1 = sH(v1), …, sk = sH(vk) controlled by employees
v1,…,vk some of them can be resubordinated with no
hierarchy cost increase. Thus, definition of narrow-
ing cost function can be written as follows. For any
groups s1, …, sk, 3≥k  there exist such number

kj <<1  and permutation (i1,…,ik) that the follow-
ing inequality holds:

),...,,(

),,(),,(

11

11

kjj

j

iiii

iik

ssssc

sscssc

+∪∪

+≥

�

��

. (6)

Left-hand member of the inequality is the cost of the
manager m before resubordination (see Fig 6 a). Right-
hand member of the inequality equals to sum of
manager’s m1 cost ),,(

1 jii ssc �  and manager’s m cost
),...,,(

11 kjj iiii ssssc
+

∪∪�  after resubordination (see the
example in Fig 6 b). Other managers’ costs do not
change. So, inequality (6) holds if and only if cost
of total hierarchy does not increase. Thus, for nar-
rowing cost function we can hire manager’s m “as-
sistant” m1 undertaking part of administrative labor.
After that the number of manager’s m immediate
subordinates decreases. So, the hierarchy becomes
“narrower” (the span of control decreases).

Consider a widening cost function. Definition 6 leads
to the fact that any described above resubordination
does not decrease the cost of a hierarchy. So, for any
groups s1,…,sk, 3≥k , any number kj <<1  and any
permutation (i1,…,ik) the following inequality holds:

),...,,(

),,(),,(

11

11

kjj

j

iiii

iik

ssssc

sscssc

+∪∪

+≤

�

��

. (7)

Thus, for widening cost function it is impossible to
decrease the cost of a hierarchy with the help of hiring
“assistants”.

If inequality (6) or (7) is violated on some overlap-
ping groups s1,…,sk but held on any non-overlapping
groups (i.e. ∅=∩ ji ss  for all ji ≠ ) then cost func-
tion will be called narrowing on non-overlapping
groups or widening on non-overlapping groups re-
spectively.

Theorem 2. If sectional cost function is narrowing
then there exists optimal 2-hierarchy.

Corollary (from Theorems 1 and 2). If sectional cost
function is narrowing on non-overlapping groups and
group-monotonic then there exists optimal 2-tree.

Therefore, to find optimal hierarchy we can verify
inequality (6). If this inequality holds then the cost
function is narrowing and we can consider only
2-hierarchies with each manager having two imme-
diate subordinates (minimal span of control) because
there exists optimal 2-hierarchy. In this case optimal
hierarchy problem is much more easier. If cost func-
tion is group-monotonic then we have to verify ine-
quality (6) only on non-overlapping groups s1, …, sk.
If the inequality holds then the corollary leads to the
fact that there exists optimal 2-tree28.

Theorem 3. If sectional cost function is widening then
two-tier hierarchy is optimal.

Corollary (from Theorems 1 and 3). If sectional cost
function is widening on non-overlapping groups and
group-monotonic then two-tier hierarchy is optimal.

Therefore, to find optimal hierarchy we can verify
inequality (7). If this inequality holds then the cost
function is widening and two-tier hierarchy with single
manager is optimal (singe manager controls all work-
ers immediately, span of control is maximal). If cost
function is group-monotonic then we have to verify
inequality (7) only on non-overlapping groups
s1, …, sk. If the inequality holds then the corollary
leads to the fact that two-tier hierarchy is optimal.

Theorems 2 and 3 show that narrowing functions
contrast with widening functions29. Narrowing con-

 

a 

m 

1v 2v vj-1 vj 1+jv vk 

Fig 6. Resubordination for narrowing
or widening cost function

1v 2v vj-1 vj 1+jv vk

m1 
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b 

28 Minimal cost 2-tree can be found using the algorithms devel-
oped by Mishin and Voronin (2003).

29 Consider manager’s cost function )(⋅ϕ  depending only on his
or her internal flow in technological network. If )(⋅ϕ  is
superadditive then cost function is narrowing and if )(⋅ϕ  is
subadditive then cost function is widening (Mishin (2005)). So,
narrowing/widening conditions generalize superadditivity/
subadditivity conditions or convexity/concavity conditions
(these conditions are equivalent for one-dimensional flows and

0)0( =ϕ ).
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dition implies optimality of 2-hierarchy, which con-
tains the most number of managers. Each manager
performs minimal quantity of administrative labor
(controls only two immediate subordinates). On the
contrary, widening condition implies optimality of
two-tier hierarchy, which contains single manager
performing all administrative labor (controls all n
workers immediately).

It is easy to see30 that both group-monotonic and non
group-monotonic cost function may be narrowing,
widening or neither narrowing, nor widening. More-
over, in extreme cases a sectional function may be
both narrowing and widening. Interrelationship be-
tween classes of functions is shown in Fig 7. Types
of optimal hierarchies are shown in the figure too (a
tree is optimal for group-monotonic functions, two-
tier hierarchy is optimal for widening functions, a
2-hierarchy is optimal for narrowing functions, a
2-tree is optimal for group-monotonic and narrowing
functions).

4. Examples of cost function for different
types of interaction

Suppose for each worker Nw∈  some worker’s com-
plexity µ (w)>0 (positive real number) is given. Com-
plexity may correspond with “work content” of the
worker, his or her professional skills, etc. Complex-
ity of arbitrary group of workers Ns ⊆  may be
defined as total complexity of all workers in s:

∑ ∈ µ=µ sw ws )()( . For example, complexity of the
group may correspond with total “work content” of

all workers in the group. Sectional cost function
depends only on groups s1,…,sk controlled by all
immediate subordinates of the manager. Let us con-
sider several examples of such sectional cost func-
tion that manager’s cost depends only on complexi-
ties:

βααα

α

µµ−µ+

+µ=

)])(,,)(max()(

)([),,(

1

11

kk

k

sss

sssc

��

�

, (I)

βαα µ++µ= ])()([),,( 11 kk ssssc �� , (II)

βααα −µµµ

=

]1))(...,,)(max(/)([

),,(

1

1

k

k

sss

ssc �

, (III)

β
=

αα∑ µ−µ= ]))()(([),,( ,11 ki ik ssssc � , (IV)

))(...,,)(min(/)(),,( 11
ββα µµµ= kk sssssc � , (V)

where ksss ∪∪= �1  is the group controlled by the

manager, )(),(,),( 1 sss k µµµ �  are complexities of cor-

responding groups, 0, >βα  are some positive real num-
bers (parameters of the function). Functions (I)-(V)
depend on complexities (“work content”) of employ-
ees of the “section” controlled by the manager immedi-
ately. In different firms section may be controlled us-
ing different mechanisms. Thus, interaction between
the manager and his or her immediate subordinates (in-
side the section) may be organized in many ways. Be-
low we interpret functions (I)-(V) as manager’s cost
for different ways of interaction inside the section. In
different papers many such ways are considered quali-

        group-monotonic 

narrowing 

sectional 

widening 

Fig 7. Interrelationship between classes of group-monotonic, narrowing and widening cost functions

30 See examples below and examples in Mishin (2005).
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tatively without mathematical modeling (see, for in-
stance, Davies, Smith and Twigger, 1991; Peters, 1987;
Jago and Vroom, 1975). We attempt to describe it math-
ematically.

Suppose among immediate subordinates there exists
a “semi-leader” that copes with his or her tasks com-
pletely even with no superiors’ control. Function (I)
may correspond with this way of interaction. Man-
ager’s cost (I) depends on complexities of groups
controlled by all immediate subordinates except the
semi-leader. We mean that the immediate subordinate
with maximal complexity is a semi-leader.

Suppose there does not exist a “leader”. Thus, the
manager spends some efforts to control each of his
or her immediate subordinates. Manager’s cost may
depend on complexities of all groups controlled by
immediate subordinates. Function (II) may correspond
with this way of interaction.

Suppose among immediate subordinates there exists
a “leader” that helps to solve problems of other
immediate subordinates (for example, using his or her
experience or authority). Therefore, the cost of im-
mediate superior of the leader decreases. Function (III)
may correspond with this way of interaction. Man-
ager’s cost (III) depends on complexity of the whole
group controlled by the manager and complexity of
the group controlled by the leader, which is imme-
diately subordinated to the manager. The greater is
complexity of the leader, the greater is his or her
importance among other immediate subordinates and
the less is the cost of immediate superior.

Function (IV) corresponds with cost of individual
interactions between the manager and all his or her
immediate subordinates. The cost depends on differ-
ences between complexity of the group controlled by
the manager and complexities of groups controlled
by immediate subordinates31.

Suppose, among immediate subordinates there exists
an employee, that controls the group with small com-
plexity. This employee may have little qualification.
Low-qualified immediate subordinate may increase
manager’s cost. To control this subordinate the man-
ager may spend much effort. So, manager’s cost may

increase because he or she is diverted from solving
more complex problems (just such problems must be
solved by this manager). Function (V) may correspond
with this way of interaction. Manager’s cost (V)
depends on complexity of the whole group control-
led by the manager and complexity of the group
controlled by the low-qualified employee, that is
immediately subordinated to the manager. The less
is the minimal qualification of subordinated employees
the greater is the cost of immediate superior.

Let us solve optimal hierarchy problem for functions
(I)-(V). Obviously functions (I) and (II) are group-
monotonic and functions (III), (IV) and (V) are not
group-monotonic. Let us examine narrowing and
widening conditions. Below we use the following
inequalities (particular cases of the Minkovski ine-
quality, see, for instance, Hardy, Littlewood and Polya,
1934):

γγγ ++≥++ kk xxxx ...)...( 11  for any

0,,01 ≥≥ kxx � and 1≥γ , (8)
γγγ ++≤++ kk xxxx ...)...( 11   for any

0,,01 ≥≥ kxx �  and 1≤γ . (9)

Proposition 2. Function (I) is widening for 1≤β  and
narrowing for 1≥β .

Proposition 2 allows to obtain optimal hierarchy for
function (I). If 1≤β  then two-tier hierarchy is opti-
mal (see Theorem 3). If 1≥β  then 2-tree with min-
imal cost is optimal (see corollary from Theorems 1
and 2). Fig 8 a illustrates optimal hierarchies for
function (I).

Proposition 3. Function (II) is widening for 1≤β , is
widening on non-overlapping groups for 1>β  and

1≥α .

Thus, if 1≤β  or 1>β  and 1≥α  then for function (II)
two-tier hierarchy is optimal (see Theorem 3 and
corollary). Fig 8 b illustrates optimal hierarchies for
function (II). In the region 1>β  and 1<α  function
(II) is neither widening, nor narrowing even on non-
overlapping groups (Mishin, 2005). Therefore, for this
region Theorems 2 and 3 can not help to obtain op-
timal hierarchy. However, function (II) is group-
monotonic. Thus a tree with minimal cost is optimal
(see Theorem 1).

Proposition 4. Function (III) is narrowing for 1≥β .

Proposition 5. Function (IV) is narrowing for 1≥β .

Propositions 4 and 5 allow to obtain optimal hierar-
chy for functions (III), (IV) and 1≥β . In this case
2-hierarchy with minimal cost is optimal (see Theo-

31 Consider a manager m that controls group sH(m). In process of
individual interaction with his or her immediate subordinate
m1 the manager m may inform m1 about the part of the group
sH(m), which is not controlled by m1. The volume of this infor-
mation may depend on difference of complexities µ (sH(m))
and µ (sH(m1)). Manager’s cost (IV) depends on the sum of
such volumes of information for all immediate subordinates.
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rem 2).32 For 1<β  we can find the tree with mini-

mal cost using algorithms. But this tree may be non-

optimal because functions (III) and (IV) are not group-

monotonic. By now methods to solve optimal

hierarchy problem for functions (III), (IV) and 1<β

are unknown.

Widening and narrowing functions imply optimality

of two extreme hierarchies: two-tier hierarchy and

2-hierarchy. Usually in real firms there are some “in-

termediate” hierarchies with span of control

+∞<< r2 . Therefore, to model many real firms we

have to examine neither widening nor narrowing cost

functions. Thus, it is important to solve optimal hi-

erarchy problem for this case. Below we describe a

method of searching out the tree with minimal cost.

If the cost function is group-monotonic then this tree

is optimal (see Theorem 1). For other functions this

is the best tree.

Optimal hierarchy problem is discrete optimization

problem. Therefore, it is difficult to solve it analyt-

ically. One possible way of solution is to consider

corresponding continuous problem with continuum set

of workers. The exploration of continuous problem

of searching out the minimal cost tree for sectional

cost functions was pioneered by Goubko (2002). In

some cases after the continuous problem is solved we

can prove that corresponding tree minimizes cost for

the original discrete problem.

Suppose we have to obtain minimal cost tree and cost

function c(s
1
, …, s

k
) depends only on complexities

of groups s
1
, …, s

k
. Thus, the cost function is given

by ))(),...,(( 1 kssc µµ  (see, for example, functions (I)-

(V))33. Consider only homogeneous cost functions sat-

isfying the following condition. For any y>0 the

equality ))(...,),(()())(...,),(( 11 kk sscysysyc µµϕ=µµ

holds, where )(⋅ϕ  is some continuously increasing

function. It can be proven (Goubko, 2002) that
γ

=ϕ yy)( , where γ is homogeneity coefficient. If a cost

function is homogeneous, then scale of complexity

is of no importance. If we multiply all workers’ com-

plexities by the same multiplier y, then costs of all

hierarchies are multiplied by yγ. Therefore, scale of

complexity does not affect on optimality of hierar-

chies. Let us define continuous problem corresponding

with the discrete problem.

Let )()( 1 nwwx µ++µ= …  be total complexity of work-

ers in the discrete problem. Suppose in the continu-

ous problem the set of workers equals to the segment

N = [0;x]. An individual worker is a point of this

segment. The top manager m controls all segment N

(all workers). The segment is divided into parts among

managers m
1
,…, m

k
 immediately subordinated to the

top manager. Each of the managers m
1
,…, m

k
 con-

trols some part of the segment N. Thus, the segment

N is divided into smaller segments with lengths

x
1
, …, x

k
>0 controlled by managers m

1
,…, m

k
 cor-

respondingly, x
1
+…+x

k 
= x. The segment with length

x
i
 controlled by the manager m

i
 is divided into smaller

segments controlled by his or her immediate subor-

dinates, ki ≤≤1 . These segments are divided again,

Fig 8. Forms of optimal hierarchy for function (I) (Fig a) and function (II) (Fig b)

32 Mishin and Voronin (2003) obtain 2-hierarchy with minimal

cost for (III) and 1≥β .

33 For any tree the groups s
1
, …, s

k
 are non-overlapping. So,

)(...)()( 11 kk ssss µ++µ=∪∪µ …  and we may suppose

that functions (I)-(V) depend only on )(...,),( 1 kss µµ .
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etc. The tree infinitely “grows”. In the tree each
manager corresponds with a segment. The length of
the segment equals to complexity of the group sub-
ordinated to the manager. If manager’s immediate
subordinates control segments with lengths x1, …, xk
then manager’s cost equals c(x1, …, xk). Cost of a tree
equals to total cost of all managers in the tree. It is
necessary to obtain infinite tree with minimal cost.

Goubko (2002) proves that for any homogeneous cost
function there exists self-similarly tree H with min-
imal cost. In H each segment is divided in the same
proportion y1, …, yk>0 regardless of hierarchical tier,
y1 +…+ yk=1. The top piece of self-similarly tree is
shown in Fig 9. Controlled segments are shown in-
stead of managers. Immediate subordinates m1,…,mk
of the manager m control segments with lengths
y1x, …, ykx. Therefore, manager’s m cost equals
x�c(y1,…, yk). Total cost of managers m1, …, mk equals
x�c(y1, …, yk)(

γγ ++ kyy �1 ). Expression in the brack-
ets are squares for the managers of the next tier,
cubes – for the manager of the next tier, etc. For 1>γ
such expressions are geometric series with multipli-
er 11 <++ γγ

kyy �  (this inequality follows from ine-
quality (8) because y1+…+yk = 1). Thus, the cost of
self-similarly tree H equals to the sum of infinitely
decreasing geometric series:

)1/(),,()( ,11 ∑ =
γγ −= ki ik yyycxHc � . (10)

One of such trees minimizes cost. So, it is enough
to find 2≥k  and proportion y1,…,yk minimizing
expression (10). Corresponding tree is the desired
infinite tree with minimal cost.

Let us obtain the tree with minimal cost for function
(V). In any tree immediate subordinates of common
manager control non-overlapping groups (segments).
For any non-overlapping groups s1,…,sk equality

)()()( 11 kk ssss µ++µ=∪∪µ ��  holds. Therefore,
function (V) is given by:

))(,,)(min(/))(

)(())(,),((

1

11
ββα µµµ

++µ=µµ

kk

k

sss

sssc

�

��
. (11)

Expression (11) implies that function (V) is homo-
geneous. Homogeneity coefficient � equals β−α .
Thus, we can minimize the cost (10) and obtain in-
finite tree with minimal cost.

Proposition 6. Let r* denote one of two integer num-
bers closest to the value r0=((�–1)/�)1/(�–�–1). For
continuous problem with cost function (V) and �–�>1
symmetric r*-tree minimizes cost. In this tree any
manager has exactly r* immediate subordinates con-
trolling groups with equal complexity.

In the proof of Proposition 6 we show that for func-
tion (V) values y1 =…= yk = 1/k minimize expression
(10). So, symmetric tree minimizes cost. Thus, it is
enough to find k minimizing expression (10). The
minimum point r0 = ((�–1)/�)1/(�–�–1) may be non-in-
teger value. Therefore, r* is maximal integer less than
or equal to r0, or r* is minimal integer greater than
or equal to r0 (to define r* it is enough to substitute
these two values in expressions (10) and (11)).

For function (V) with �–�� >1 Proposition 6 solves
the continuous problem. Consider corresponding dis-
crete problem with number of workers n= jr*

 (n is
some power of r*) and the same workers’ complex-
ities nww n /1)()( 1 =µ==µ � . In this case top j tiers
of the infinite symmetric r*-tree are just discrete tree
controlling workers w1,…,wn (these workers corre-
spond with the tier j+1). And cost of this part of the
infinite tree equals to cost of discrete tree. Therefore,
for n= jr*

 and workers with the same complexity sym-
metric r*-tree minimizes cost for the discrete prob-
lem34. Thus, in this case we solve the discrete prob-
lem using continuous approximation method.

In Fig 10 the line � = �–1 is shown. The region be-
low this line is divided into regions with the same
r*. In each of these regions optimal span of control
does not change. In the top right region symmetric
2-tree minimizes cost. In the region below symmet-
ric 3-tree minimizes cost. In the next region symmetric

Fig 9. The top piece of self-similarly tree with proportion y1,…,yk and = 1

sH(mk)=(y1+…+ yk-1;1] 

… … … 

sH(m)=N=[0;1] 

sH(m1)=[0;y1] sH(m2)=(y1;y1+y2] ……… 

………………………………………………………… 

34 Otherwise we can reduce the cost of the infinite tree using the
discrete tree with less cost to construct top j tiers of the infinite
tree.
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4-tree minimizes cost, etc. If parameters tend to the
point (1;0) then r* grows infinitely (for r*<10 in the
figure regions are denoted by numbers). If � increases
then in Fig 10 curves exponentially decrease. In
Fig 10, thus, 2-tree and 3-tree are shown. In these trees
the group controlled by a manager is “divided” into
subgroups with the same complexity among manag-
er’s subordinates. Trees for more r* may be shown
similarly.

Parameter � may be interpreted as degree of unfa-
vorable influence of little qualification. If � tends to
zero then we can subordinate low-qualified employees
(controlling groups with low complexity) to the
manager with no his or her cost sufficiently increase
(see expression (11)). Therefore, if � tends to zero
then optimal span of control r* tends to ∞+ . Thus,
for sufficiently small � two-tier hierarchy with sin-
gle manager minimizes cost (if � = 0 then function
(V) is widening and two-tier hierarchy is optimal for
any number of workers).

There exists the limit of the value r0 (see Proposi-
tion 6) by parameters tending to the critical line � =
�–1. This limit equals e1/�. So, parameter regions with
fixed r* “reach” the critical line. For special cost
function Qian (1994) also considers the problem of
searching out the minimal cost tree. If real number
of immediate subordinates are possible, then Qian
(1994) proves that optimal span of control equals e
(each manager has e immediate subordinates). This
result coincides with the result for function (V) with
� = 2 and � = 1 ( eer == β/1

0lim ).

Fig 10 shows that for any 2≥r  there exists such
region of parameters � and � that symmetric r-tree
has minimal cost. In many real firms span of control
ranges from several immediate subordinates to hun-
dreds immediate subordinates (Mintzberg, 1979). The

values +∞<< r2  may be interesting to model such
firms.

5. Concluding remarks

Further development of the methods of the optimal
hierarchy search for sectional cost functions seems
perspective, among the following other general direc-
tions of future research.

1. Mechanism design. It is important to construct
control mechanisms that minimize total wage of
employees, which equals to the cost of the optimal
hierarchy (this is minimal possible cost). Mishin
(2004) constructs such mechanism in a complete
information framework. For the case of incomplete
information it is necessary to take the “worst case”
into consideration. For example, it may be necessary
to compensate maximal total cost of all managers,
which depends on information available for some
metacenter, for instance, the owner of the firm. But
in some cases excess incentives provide stability with
respect to cost increase (Mishin (2004)). If manag-
ers’ cost increases, then a manager can restructure the
subordinated part of the hierarchy with no assistance
(at the expense of manager’s own resources). It al-
lows to “adapt” the firm to the cost modifications.

2. Dynamical models of the optimal hierarchy. Pa-
rameters of the cost function, the number of work-
ers, certain workers, interaction schemes can change
with time. Therefore, the initially optimal hierarchy
can later become non-optimal. However, the recon-
struction of the hierarchy is associated with large cost.
So, in dynamical models one has to compromise the
total cost of all managers and the reconstruction cost.
Mishin and Voronin (2003) introduce a metric on the
set of hierarchies. This metric is one of possible ways

Fig 10. Minimal cost trees for function (V)
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to define mathematically the reconstruction cost. The
metric allows to model the restructuring effects nu-
merically (Mishin and Voronin, 2002a, 2003). Ana-
lytical methods for solving the dynamical problem of
the optimal hierarchy are unknown so far.
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Appendix A. Proofs

Proof of Lemma 1. v is subordinated to m. So, any
worker )(vsw H∈  is subordinated to m ( )(msw H∈ )
because the path from w to v can be extended up to
the path from w to m . Therefore, )()( msvs HH ⊆ .
Consider )(msw H∈ . The path from w to m contains
the node vj for some kj ≤≤1  as (v1, m),…,(vk, m) are
the only edges incoming to m. So, )( jH vsw∈  and

)()()( 1 kHHH vsvsms ∪∪⊆ � .

Moreover, )()( msvs HjH ⊆  as vj is subordinated to m
for each kj ≤≤1 . Thus, the equality

)()()( 1 kHHH vsvsms ∪∪= �  holds. �

Proof of Lemma 2. Consider a tree H. Assume
∅≠∩ )()( 21 vsvs HH  for some manager m and two of

his or her immediate subordinates v1 and v2. Any
worker )()( 21 vsvsw HH ∩∈  is subordinated to the
employees v1 and v2. So, there are two different paths
from w to m (the first path contains the node v1 and
the second path contains the node v2). These paths
diverge at some node MNv ∪∈ . Thus, the employ-
ee v has more than one immediate superior. It con-
tradicts Definition 2. Thus, in the tree H any man-
ager’s immediate subordinates control non-overlapping
groups of workers. �

Proof of Proposition 1: Consider an optimal hier-
archy )(NH Ω∈ . Let two employees v1 and v2 con-
trol the same group )()( 21 vsvs HH = . Acyclicity of the
hierarchy implies that the employee v1 does not control
the employee v2 or vice versa. Suppose v1 does not
control v2. Then consider the immediate superior m1
of the employee v2. If v1 is immediately subordinat-
ed to m1 then the edge (v2, m1) can be removed with

no hierarchy cost increase (see inequality (3)). If v1
is not immediately subordinated to m1 then the edge
(v2,m1) can be replaced to the edge (v1, m1). The equal-
ity )()( 21 vsvs HH =  implies that the cost of the man-
ager m1 does not change. So, the cost of total hier-
archy also does not change. Thus, in both cases the
edge (v2, m1) can be removed. Similarly, we can re-
move all edges outcoming from v2. After that the
employee v2 has no superiors and the employee v2 can
be removed with no hierarchy cost increase35. If in
the obtained hierarchy some employees control the
same group then we can repeat the removal described
above. Finally we obtain the optimal hierarchy H ′
with employees controlling differing groups. Thus,

condition (i) holds for H ′ .

If some manager m2 in the hierarchy H ′  has no su-
periors and controls the group NmsH ≠′ )( 2  then this
manager can be removed with no hierarchy cost in-
crease. We can repeat such removal. As a result, we

obtain the optimal hierarchy H ′′ . In H ′′  any man-
ager without superiors controls the group N. Defini-
tion 1 and condition (i)36 imply that there is the sin-

gle such manager m in the hierarchy H ′′ .37 At least
one edge outcomes from any node mv ≠  in the hi-

erarchy H ′′ . Acyclicity implies that we can construct
the path from v to m. So, all employees are subordi-
nated to m. Thus, conditions (i) and (ii) hold for the
optimal hierarchy H ′′ .

Let the employees v3 and v4 be immediately subor-
dinated to the common manager m3 in the hierarchy
H ′′  and the employee v3 be subordinated to the
employee v4. Then )()( 4''3'' vsvs HH ⊆  (see Lemma 1).
Inequality (3) implies that the edge (v3, m3) can be
removed with no hierarchy cost increase. After remov-
al the employee v3 has at least one immediate supe-
rior because v3 is subordinated to v4. We can repeat
such removal. As a result, we obtain the optimal hi-
erarchy H* in which condition (iii) holds. The mod-
ifications described above do not change groups
controlled by the managers. The manager m is the only
manager without superiors. Thus, conditions (i), (ii)
and (iii) hold for the optimal hierarchy H*. �

Proof of Theorem 1. Proposition 1 implies that there
exists an optimal hierarchy )(),( NEMNH Ω∈∪= ,

35 Definition 1 is fulfilled because the maximal group N is con-
trolled by some manager (if v2 controls the group N in the hier-
archy H then v1 controls this group too).

36 We have removed some managers without violation of condi-
tion (i).

37 We cannot remove this manager because in this case Definition
1 is violated and the graph is not a hierarchy controlling the set
of workers N.
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which satisfies conditions (i)-(iii). If each of the
employees except the top manager has exactly one
immediate superior then H is an optimal tree (see
Definition 2). Otherwise there exists an employee

MNv ∪∈  with two or more immediate superiors. If
there are several such employees then let us consid-
er the employee on the highest tier. So, each of the
superiors of the employee v except the top manager
has exactly one immediate superior.

Let v1 and u1 be some different immediate superiors
of the employee v. Condition (ii) of Proposition 1
implies that the employees v1 and u1 are subordinated
to the top manager m. Thus, there exists the path from
v1 to m and the path from u1 to m.38 Therefore, there
exist two different paths from v to m. These paths
diverge in common node v and converge in other node
u (in m or one of subordinates of the manager m).
Let v – v1 –…– 

1nv  and v – u1 –…– 
2nu  be the parts

of these paths from v to u. These parts have common
first node v, common last node uuv nn ==

21
 and dif-

ferent intermediate nodes. It follows from choice of
the node v that each of the managers v1,…, 11−nv  has
exactly one immediate superior – the next node in the
path. This is true for the managers u1,…, 12 −nu  too.
Corresponding fragment of the hierarchy is shown in
Fig 11.

Initial hierarchy H satisfies conditions (i)-(iii) of
Proposition 1. Below we describe the reconstruction
that does not increase the cost of the hierarchy. Af-
ter each reconstruction obtained hierarchy will be
denoted H just as the initial hierarchy. All reconstruct-
ed hierarchies satisfy condition (ii) of Proposition 1.
So, all employees are subordinated to the top man-
ager m. Therefore, different paths from v converge
and the fragment of the reconstructed hierarchy looks

like the fragment in Fig 11. There are two possible
options of hierarchy H reconstruction (Fig 11 explains
these options).

a) Suppose sH(v)=sH(v1).
39 So, the employees v and

v1 control the same group of workers. Let us remove
the manager v1. If v is not immediately subordinat-
ed to the manager v2 then let us immediately subor-
dinate the employee v to the manager v2 instead of
the manager v1. After removal the groups controlled
by the managers are not modified. So, only the cost
of the manager v2 can be modified. This cost does
not increase because of group-monotony. Thus, the
obtained hierarchy is optimal.

After v1 removal some employees may have no su-
periors. Such employee is not a worker because all
workers are subordinated to the top manager. So, after
v1 removal in addition to the top manager some other
managers may have no superiors. Such managers can
be removed. The obtained graph is an optimal hier-
archy. After removal new managers may have no
superiors. These managers can be removed too, etc.
Finiteness of M implies that we obtain the optimal
hierarchy with only top manager having no superi-
ors. Thus, condition (ii) of Proposition 1 holds.

b) Suppose sH(v) ≠ sH(v1). So, the manager v1 controls
a wider group than the employee v: sH(v)⊂ sH(v1).
Thus, v1 has at least two immediate subordinates. Let
us remove the edge (v,v1). After removal the manager
v1 still has subordinates. The group s1 = sH(v1) con-
trolled by the manager v1 can be changed to the new
group 1s′  if some workers from the group sH(v) are
not controlled by the manager v1 after removal. How-
ever, v1 controls workers from the group s1 which are
not part of the group sH(v). Thus, 11 ss ⊆′ ,

)()\( 11 vsss H⊆′ . There is exactly one edge outgoing
from the node v1. The modification of the group s1 =
sH(v1) can cause the modification of the group s2 =
sH(v2) controlled by the manager v2. Let 2s′  be the
modified group. As described above only workers
from sH(v) can be removed from the group s1. So, only
such workers can be removed from the group s2. Thus,

22 ss ⊆′ , )()\( 22 vsss H⊆′ . Similarly for each
1,3 1 −= ni  the group si=sH(vi) controlled by the man-

ager vi changes to the group is′ , ii ss ⊆′ ,
)()\( vsss Hii ⊆′ .

Consider the group )(
1nH vs . This group equals to the

union of the groups controlled by all the immediate

22 −nu  21−nv

12 −nu11−nv  
21 nn uv =  

v1 
v 

v2 
u1 
u2 

Fig 11. Optimal hierarchy reconstruction with
group-monotonic cost function

38 One of these paths can contain one node if v1 = m or u1 = m.

39 In some cases reconstructed hierarchies do not satisfy condi-
tion (i) of Proposition 1. So, the equality sH(v) = sH(v1) can
hold.



��

���������	
��

subordinates of the manager 
1nv  (see Lemma 1).

Among these groups only the group 11−ns  controlled
by the manager 11−nv  can be changed after the edge
(v,v1) removal40. It follows from )()\( 11 11

vsss Hnn ⊆′ −−

that only workers from the group sH(v) can be removed
from the group 11−ns . However, these workers are the
part of the group )( 12−nH us . Thus, the group

)(
1nH vs  is not changed. Therefore, the groups con-

trolled by the superiors of the manager 1nv  are not
changed too.

So, removal of the edge (v,v1) can change the groups
)(),...,( 11 1−nHH vsvs  only. Thus, the top manager still

controls all the workers, each manager has subordi-
nates and the obtained graph is acyclic (edge removal
cannot cause cycles). Therefore, the obtained graph
satisfies all conditions of Definition 1. We obtain the
hierarchy. Moreover, each employee except the top
manager has at least one immediate superior. All
employees are subordinated to the top manager be-
cause of acyclicity. So, the hierarchy satisfies con-
dition (ii) of Proposition 1.

The number of employees immediately subordinat-
ed to the manager v1 decreases by one. The number
of employees subordinated to each of the managers

1
,,2 nvv �  does not change. However, the group con-

trolled by immediate subordinate of the manager vi
can be reduced, 1,2 ni = . So, costs of managers

1
,,1 nvv �  do not increase because of group-monoto-

ny. Thus, the obtained hierarchy is optimal.

Both in the option a) and in the option b) we obtain
the optimal hierarchy satisfying condition (ii) of
Proposition 1. Therefore, we can repeat the reconstruc-
tion a) or b) while there is an employee with two or
more immediate superiors. After each reconstruction
the number of edges decreases at least by one. Fi-
niteness of the edge set E implies that the reconstruc-
tions come to an end after finite number of steps. In
the obtained optimal hierarchy H* only top manager
has no superiors. Each of the other employees in H*

has exactly one immediate superior. So, H* is an
optimal tree. �

Proof of Theorem 2. Consider an optimal hierarchy
)(NH Ω∈ . Let k be the maximal number of employ-

ees immediately subordinated to common manager.
If k = 2 then H is the required optimal 2-hierarchy.
If k>2 then consider a manager m with k immediately
subordinated employees v1,…,vk.

Let s1=sH(v1),…,sk=sH(vk) be the groups controlled by
the employees v1,…,vk. As the cost function is nar-
rowing there exist a number of employees kj <<1
and permutation (i1,…,ik) satisfying inequality (6). Let
us reconstruct the hierarchy H: hire new manager m1
and immediately subordinate the employees jii vv ,,

1
�

to m1 instead of m, immediately subordinate m1 to m
(see the example in Fig. 6). Inequality (6) implies that
the cost of the hierarchy does not increase. Thus, the
obtained hierarchy is optimal. The manager m1 has
j<k immediate subordinates. The manager m has

kjk <+− 1  immediate subordinates. So, in the ob-
tained hierarchy the number of managers with k
immediate subordinates decreases by one. We can
repeat such reconstruction while there exists the
manager with k immediate subordinates. As a result,
we obtain the optimal hierarchy with maximal number

kk <'  of employees immediately subordinated to
common manager. If 2'>k  then we can repeat recon-
structions. As a result we obtain the optimal 2-hier-
archy. �

Proof of corollary (from Theorems 1 and 2). Theo-
rem 1 implies that there exists an optimal tree because
the cost function is group-monotonic. In the proof of
Theorem 2 we can consider this tree as initial opti-
mal hierarchy H. Lemma 2 implies that immediate
subordinates of any manager control non-overlapping
groups of workers. Therefore, there are no overlap-
ping groups among the groups s1,…,sk in the proof
of Theorem 2. So, we can reconstruct the hierarchy
because the cost function is narrowing on non-over-
lapping groups. After the reconstruction we obtain
some tree (new manager and each of other employ-
ees except the top manager have exactly one imme-
diate superior). After all reconstructions we obtain the
optimal 2-tree. �

Proof of Theorem 3. Proposition 1 implies that there
exists an optimal hierarchy )(NH Ω∈ , which satis-
fies conditions (i)-(iii). According to condition (ii)
there exists a manager m controlling all other employ-
ees. If m is a single manager then H is the optimal
two-tier hierarchy. Otherwise there exists a manag-
er m1 immediately subordinated to the manager m.
Let v1,…,vj be all immediate subordinates of the
managers m1. Let s1 = sH(v1),…,sj = sH(vj) be the
groups controlled by the employees v1,…,vj. As the
hierarchy H satisfies condition (i) of Proposition 1
each manager has at least two immediate subordinates.
So, j >1 and the manager m has other immediate
subordinates besides m1. Let vj+1,…,vk, 3≥k  be all
such immediate subordinates. Let sj+1 = sH(vj+1),…,sk =
sH(vk) be the groups controlled by the employees
vj+1,…,vk.

40 Among manager’s 
1nv  immediate subordinates only 11−nv  con-

trols the managers 21 1
, −nvv �  because each of them has only

one immediate superior.
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Suppose the manager m1 has some immediate supe-
riors 'm  besides m. So, there exist two different paths
from m1 to m: the first path contains only two nodes
m1 and m, the second path contains the manager 'm .
Besides m1 the second path contains one of the em-
ployees vj+1,…,vk immediately subordinated to m. So,
this employee controls the manager m1. It contradicts
condition (iii) of Proposition 1. Therefore, top man-
ager m is the single immediate superior of the man-
ager m1.

Condition (iii) of Proposition 1 implies that there are
no immediate subordinates of the manager m among
the employees v1,…,vj (otherwise immediate subor-
dinate m1 controls other immediate subordinate). So,
there are no identical employees among vj+1,…,vk and
v1,…,vj. Thus, the described fragment of the hierar-
chy looks like the fragment in Fig 6 b.

Inequality (7) holds for any groups s1,…,sk, 3≥k , any
number kj <<1  and any permutation (i1,…,ik) be-
cause the cost function is widening. If
(i1,…,ik)=(1,…,k) then inequality (7) is given by:

),...,,(

),,(),,(

11

11

kjj

jk

ssssc

sscssc

+∪∪

+≤

�

��

. (*)

Let us reconstruct the hierarchy: immediately subor-
dinate the employees v1,…,vj to the manager m in-
stead of the manager m1 and remove the manager m1.
Obtained fragment of the graph looks like the frag-
ment in Fig. 6 a). The manager m controls all work-
ers as before the reconstruction. So, the obtained graph
is a hierarchy. The groups controlled by other man-
agers do not change too. In the obtained hierarchy
the cost of the manger m (first member of the ine-
quality (*)) is less than or equal to costs of the man-
agers m and m1 in the initial hierarchy (right-hand
member of inequality (*)). Thus, the obtained hier-
archy is optimal and satisfies conditions (i) and (ii)
of Proposition 1. But condition (iii) may be violat-
ed because some of the employees v1,…,vj may be
subordinated to some of the employees vj+1,…,vk.
Suppose the employee 

1j
v  is subordinated to the

employee 
2j

v , jj ≤≤ 11 , kjj ≤≤+ 21 . Lemma 1
leads to 

21 jj ss ⊆ . Inequality (3) implies that “excess”
edge ),(

1
mv j  can be removed with no hierarchy cost

increase. After removal the employee 
1j

v  is subor-
dinated to the top manager but not immediately

(through the employee 2j
v ). We can repeat such re-

moval. As a result, we obtain the optimal hierarchy
satisfying conditions (i), (ii) and (iii) of Proposition 1.

The obtained optimal hierarchy contains less managers

than the initial hierarchy because the manager m1 has
been removed. We can repeat similarly reconstruc-
tions while there are two or more managers. As a
result, we obtain the optimal two-tier hierarchy with
the single manager m. �

Proof of corollary (from Theorems 1 and 3). Theo-
rem 1 implies that there exists an optimal tree because
the cost function is group-monotonic. In the proof of
Theorem 3 we can consider this tree as initial opti-
mal hierarchy H. Lemma 2 implies that immediate
subordinates of any manager control non-overlapping
groups of workers. Therefore, there are no overlap-
ping groups among the groups s1,…,sk in the proof
of Theorem 3. So, we can reconstruct the hierarchy
because the cost function is widening on non-over-
lapping groups. After the reconstruction we obtain
some tree. After all reconstructions we obtain the
optimal two-tier hierarchy. �

Proof of Proposition 2. Consider the groups s1,…,sk,
3≥k . Let z1 and z2 be the left-hand member and the

right-hand member of inequalities (6) and (7) (these
inequalities correspond with narrowing and widen-
ing cost functions). Suppose 1≤β . Let us prove
inequality (7) for any kj <<1  and any permutation
(i1,…,ik). Inequality (7) is given by

),...,,(),,(),,(
1111 kjjj iiiiiik sssscsscssc
+

∪∪+≤ ��� .
Let us define the following values: αµ= )(

11 isx , …,
αµ= )(

jij sx , x′ = max(x1, …, xj), x = x1+
… + x j ,

α
+ +µ= )(

11 jij sy ,
α

+ +µ= )(
22 jij sy , … ,

αµ= )(
kik sy , y′ = max(yj+1,…,yk), y = yj+1+…+yk,

jii sss ∪∪= �
1 . Then the left-hand member and the

right-hand member of inequality (7) are given by:

β′′−+= )),max((1 yxyxz ,

βααβ µ′−+µ+′−= )))(,max()(()(2 syysxxz .

Inequality (9) and 1≤β  imply that the inequality
βα µ′−′−µ++≥ )))(,max()((2 syxsyxz  holds. To prove

inequality (7) ( 12 zz ≥ ) it is enough to prove:

))(,max()(

),max(
αα µ′−′−µ

++≤′′−+

syxs

yxyxyx
.

This inequality is given by:

),max()())(,max( yxssyx ′′+µ≤µ′+′ αα . If αµ≤′ )(sy

then the inequality is simplified: ),max( yxx ′′≤′ . So,
the inequality holds. If αµ>′ )(sy  then the inequali-
ty is given by ),max()( yxsyx ′′+µ≤′+′ α . The inequal-
ities ),max( yxy ′′≤′  and αµ≤′ )(sx  hold because

jii sss ∪∪= �
1 . Thus, inequality (7) holds. So, if 1≤β

then function (I) is widening.
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Suppose 1≥β . Let s1 be the group with maximal
complexity: ))(,),(max()( 11 ksss µµµ �=  (otherwise we
can renumber the groups s1,…,sk). Consider the groups
s1, s2 (j=2) and the permutation (1,2,…,k). Let us
prove inequality (6) which is given by:

),...,,(),(),,( 321211 kk sssscsscssc ∪+≥� . The left-
hand member and the right-hand member of inequality
(6) are given by: βαα µ++µ= ))()(( 21 kssz �  and

βαααβ µ++µ+µ= ))()(()( 322 ksssz � . Inequality (8)
and 1≥β  lead to 21 zz ≥ . Thus, inequality (6) holds.
So, if 1≥β  then function (I) is narrowing. �

Proof of Proposition 3. Consider the groups s1,…,sk,
3≥k . Let z1 and z2 be the left-hand member and the

right-hand member of inequality (7). The inequality
corresponds with widening cost function. Let us prove
inequality (7) for any kj <<1  and any permutation
(i1,…,ik):

),...,,(

),,(),,(

11

11

kjj

j

iiii

iik

ssssc

sscssc

+∪∪

+≤

�

��

.

Let us define the following values: jii sss ∪∪= �
1 ,

αα µ++µ= )()(
1 jii ssx � , 

αα µ++µ= + )()(
1 kj ii ssy � .

Then the left-hand member and the right-hand member
of inequality (7) are given by: β+= )(1 yxz  and

βαβ +µ+= ))((2 ysxz . If 1≤β  then (9) leads to

21 zyxz ≤+≤ ββ . Thus, inequality (7) holds. So, if
1≤β  then function (II) is widening.

If the groups s1,…,sk are non-overlapping then
)()()(

1 jii sss µ++µ=µ � . If 1≥α  then (8) leads to
xsss

jii =µ++µ≥µ ααα )()()(
1

� . Thus, the inequality

12 )( zyxz =+≥ β  (inequality (7)) holds too. So, if 1>β
and 1≥α  then function (II) is widening on non-over-
lapping groups. �

Proof of Proposition 4. Consider the groups s1,…,sk,
3≥k . Let z1 and z2 be the left-hand member and the

right-hand member of inequality (6) corresponding
with narrowing cost function. Let s1 be the group with
maximal complexity: ))(,),(max()( 11 ksss µµ=µ �  (oth-
erwise we can renumber the groups s1,…,sk). Con-
sider the groups s1, s2 (j=2) and the permutation
(1,2,…,k). Let us prove inequality (6) which is giv-
en by ),...,,(),(),,( 321211 kk sssscsscssc ∪+≥� .

Let us define the values α∪∪µ= )( 1 kssx � ,
α∪µ= )( 21 ssy , αµ= )( 1sz . Then xyz ≤≤ . The left-

hand member and the right-hand member of inequality
(6) is given by β−= )1/(1 zxz ,

ββ −+−= )1/()1/(2 yxzyz . Inequality (8) and 1≥β
imply that the inequality β−+−≤ )1/1/(2 yxzyz  holds.
Using this estimation we can prove inequality (6)

)( 12 zz ≤  with the help of proving the inequality

01/1/1/ ≥+−+−− yxzyzx . This inequality is given by:

0/))((/)( 2 ≥−−=−−+ yzzyyxyzxzyyzxy .

Thus, inequality (6) holds. So, if 1≥β  then function
(III) is narrowing. �

Proof of Proposition 5. Consider the groups s1,…,sk,
3≥k . Let z1 and z2 be the left-hand member and the

right-hand member of inequality (6) corresponding
with narrowing cost function. Consider the groups s1,
s2 (j=2) and the permutation (1,2,…,k). Let us prove
inequality (6) which is given by

),...,,(),(),...,( 321211 kk sssscsscssc ∪+≥ .

Let us define the values α∪∪µ= )...( 1 kssx ,
α∪µ= )( 21 ssy , αα µ=µ= )(,...,)( 11 kk sxsx . The left-

hand member and the right-hand member of inequality
(6) are given by β−−−= )...( 11 kxxkxz ,

ββ −−−−−+−−= )...)1(()2( 3212 kxxyxkxxyz . Inequality
(8) and 1≥β  imply that the inequality

β−−−+−≤ )...)1(( 12 kxxyxkz  holds. The right-hand
member is less than or equal to z1 because xy ≤ .
Thus, inequality (6) )( 12 zz ≤  holds. So, if 1≥β  then
function (IV) is narrowing. �

Proof of Proposition 6. The equality �=�–� holds
for function (V). Let us substitute expression (11) ((V)
for non-overlapping groups) in expression (10). Then
the cost of infinite tree is given by:

)]1)(,,[min(

/)(

,11

1

∑ =
γββ

αγ

−

++

ki ik

k

yyy

yyx

�

�

. (*)

The numerator in the brackets equals 1 (y1+…+yk=1).
To minimize the expression it is enough to maximize
the denominator. It is obvious that the expression

),,min( 1
ββ
kyy �  reaches maximum when y1=…=yk=1/

k. With the help of the simplest mathematical anal-
ysis methods we can prove that for �>1 the expres-
sion )1( ,1∑ =

γ− ki iy  reaches maximum when
y1=…=yk=1/k.

Thus, the symmetric k-tree minimizes cost function
(V). In this tree each manager has exactly k imme-
diate subordinates. These subordinates control the
groups with the same complexity. So, we have to find
optimal k. Without the constant x� expression (*) with
y1=…=yk=1/k is given by the function �(k):

( ) ( ) ( )
( )1/

1//1/
11

11

−

=−=−=ξ
−β−α−α

−γ−γ+βγβ

kk

kkkkkk
.

Let us differentiate the function by k and ignore the
positive multiplier:



��
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( ) ( ) ( ) ( )
( )( ) ( )[ ]

( )[ ]1

111

111

12

112

1212

−α−β

=−β−α−−−α

=−β−α−−−α=ξ

−β−α−α

−β−α−β−α−α

−α−β−α−β−α−α

kk

kkk

kkkkk

The sign of the derivative depends only on the sign
of the expression in the brackets. The derivative

equals to zero when ( )( ) )1/(1/1 −β−αβ−α== ork . If

k<r0 then the derivative is negative (the cost decreas-

es) because of 01>−β−α . If k>r0 then the deriva-
tive is positive (the cost increases). Thus, r0 is min-
imal point. If r0 is not an integer then one of the
nearest two integers is minimal point. �
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