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Abstract. In this paper we propose an artifi cial stock market model based on interaction of heterogeneous agents whose 
forward-looking behaviour is driven by the reinforcement-learning algorithm combined with some evolutionary selection 
mechanism. We use the model for the analysis of market self-regulation abilities, market effi ciency and determinants of 
emergent properties of the fi nancial market. Distinctive and novel features of the model include strong emphasis on the 
economic content of individual decision-making, application of the Q-learning algorithm for driving individual behaviour, 
and rich market setup. Along with that a parallel version of the model is presented, which is mainly based on research of 
current changes in the market, as well as on search of newly emerged consistent patterns, and which has been repeatedly 
used for optimal decisions’ search experiments in various capital markets.

Keywords: artifi cial stock market model, market price, agent heterogeneity, stock value.

1. Introduction

In this paper we develop an artifi cial stock market 
(ASM) model, which could be used to examine some 
emergent features of a complex system comprised of 
a large number of heterogeneous learning agents that 
interact in a detail-rich and realistically designed en-
vironment. This version of the model is not calibrated 
to empirical data, so at this stage the main aim of this 
research is to offer, implement and test some new 
ideas that could lay ground for a robust framework 
for analysis of fi nancial market processes and their 
determinants. We believe that the model does offer 
an interesting framework for the structured analysis 
of market processes without abstracting from relevant 
and important features, such as an explicit trading 
process, regular dividend payouts, trading costs, agent 
heterogeneity, dissemination of experience, competi-
tive behaviour, agent prevalence and forced exit, etc. 
Of course, some of these aspects have already been 
incorporated in existing agent-based fi nancial models. 
However, the lack of the widely accepted fundament 
in this area of modelling necessitates the individual 

and largely independent approach, which is pursued 
in this study. Along with that an alternative from this 
viewpoint decisions management system in capital 
markets is being analysed, which is based on certain 
assumptions about continuity of capital market behav-
iour and on newly formed features, and it allows be-
ing effi ciently used in various capital markets during 
global fi nancial crisis conditions.

One of the most interesting features of the artifi cial 
stock market modelling is a relatively detailed mod-
elling of decision processes. In our view, advantages 
of agent-based models for deepening our understand-
ing of real world fi nancial processes can only be fully 
utilised if a strong emphasis is put on the economic 
content of the model – individual behaviour and mar-
ket structure must be based on clear and economically 
sound principles. Importantly, agents in our model 
exhibit economically appealing and forward-looking 
behaviour, which is based on adaptive learning, more 
specifi cally, a combination of reinforcement-learning 
(Watkins’ Q-learning) and evolutionary change. To our 
knowledge, this is one of the fi rst attempts to incorpo-
rate Q-learning algorithm into the ASM models.
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By conducting simulation experiments in this model, 
we aim to address some specifi c questions, such as 
market self-regulation abilities, the congruence be-
tween the market price of the stock and its fundamen-
tals (the market effi ciency issue), importance of intel-
ligent individual behaviour and interaction at the popu-
lation level for market effi ciency and functioning, and 
relationship between stock prices and market liquidity.

2. Description of the ASM model

The ASM research area is relatively new but there is 
a growing body of literature on the subject. There is a 
clear lack of the comprehensive literature review and 
classifi cation of existing models. Some popular models 
and ASM modelling principles presented in LeBaron 
(2006), Samanidou et al. (2007) have a review of some 
agent-based fi nancial models, with the emphasis on 
econophysics. Interaction of heterogeneous agents lies 
at the heart of ASM models, which leads to complex 
systemic behaviour and emergent systemic properties. 
There are two broad classes of ASM models, namely, 
models based on agents’ hard-wired behavioural rules 
(see, e.g. Kim and Markowitz (1989), Sethi and Franke 
(1995), Lux (1995)) and models supporting systemic 
adaptation. The most prominent example of the lat-
ter category is the Santa Fe ASM model developed by 
Arthur et al. (1997); also see, e.g. Beltratti and Mar-
garita (1992), Lettau (1997), LeBaron (2000), Tay and 
Linn (2001). See Ramanauskas (2009) for a general 
discussion about agent-based fi nancial modelling and 
the above-mentioned models. In many models system-
ic adaptation is usually warranted by evolutionary al-
gorithms, whereas individual agents’ behaviour is very 
stylised and based on economic consideration directly. 
In contrast, in modelling fi nancial market processes 
we put a strong emphasis on individual behaviour and 
economic reasoning.

The present ASM model does not fully abstract from 
many important features of real fi nancial markets that 
are usually excluded both from standard fi nancial mod-
els and other ASMs. For example, just like in the real 
world fi nancial markets, agents in this ASM do not 
know the “true model” but try instead to adapt in the 
highly uncertain environment, they exhibit bounded 
rationality, non-myopic forward-looking behaviour, 
as well as diversity in experience and skill levels; the 
trading process is quite realistic and detailed; divi-
dends are paid out in discrete time intervals and the 
importance of dividends as a fundamental force driv-
ing stock prices is explicitly recognised. The proposed 

ASM model embodies some new ideas about fi nancial 
market modelling and provides interesting generative 
explanation of prolonged periods of over- and under-
valuation. In the following section we present the ar-
chitecture of the artifi cial stock market in detail.

2.1. General market setting and model’s 
main building blocks

The artifi cial stock market is populated by a large 
number of heterogeneous reinforcement-learning in-
vestors. Investors differ in their fi nancial holdings, ex-
pectations regarding dividend prospects or fundamen-
tal stock value. This ensures diverse investor behaviour 
even though the basic principles governing experience 
accumulation are the same across population. The very 
basic description of agents’ behavioural principles can 
be described as follows. All agents forecast an exoge-
nously given, unknown dividend process and base their 
estimates of the fundamental stock value on dividend 
prospects. These estimates are intelligently adjusted to 
attain immediate reservation prices. Agents explore the 
environment and accumulate the experience with the 
aim of maximising long-term returns on their invest-
ment portfolios but there are no optimality guaranties 
in the context of high uncertainty and complex interac-
tion of agents.

As usual in fi nancial market modelling, the modelled 
fi nancial market is very simple. Only one, dividend-
paying stock (stock index) is traded on the market. 
Dividends are generated by an exogenous stochastic 
process unknown to the agents, and they are paid out 
at regular intervals. The number of trading rounds be-
tween dividend payouts can be set arbitrarily, which 
enables interpretation of a trading round as a day, 
a week, a month, etc. Paid out dividends and funds 
needed for liquidity purposes are held in private bank 
accounts and earn constant interest rates, whereas li-
quidity exceeding some arbitrary threshold is simply 
removed from the system (e.g., consumed). Borrow-
ing is not allowed. Initially agents are endowed with 
arbitrary stock and cash holdings, and subsequently in 
every trading round each of them may submit a limit 
order to buy or sell one unit of stock, provided, of 
course, that fi nancial constraints are non-binding. Trad-
ing takes place via the centralised exchange.

For the ease of detailed model exposition, it is useful 
to break the model into a set of economically meaning-
ful processes, though some of them are interrelated in 
complex ways. The general structure of the model is 
laid out in Fig. 1. We will discuss these logical building 
blocks in the following subsections.
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2.2. Forecasting dividends

Expected company earnings and dividend payouts are 
the main fundamental determinants of the intrinsic 
stock value. We assume that all agents make their pri-
vate forecasts of dividend dynamics. Dividend fl ows 
generated by an unknown, potentially non-stationary 
data generating process are specifi ed by a modeller. 
The only information, upon which agents can base their 
forecasts, is past realisation of dividends, and agents 
know nothing about stationarity of the data generating 
process. Hence, they are assumed to form adaptive ex-
pectations, augmented with the reinforcement-learning 
calibration. We also allow for possibility to improve a 
given agent’s forecasting ability by probabilistic imi-
tation of more successful individuals’ behaviour (see 
Section 2.5 for more on this).

Agents start with fi nding some basic reference points 
for their dividend forecasts. The exponentially weight-
ed moving average (EWMA) of realised dividend pay-
outs can be calculated as follows:

   , 1 1 , 1(1 ) .EWMA EWMA
i y y i yd d d −= λ ⋅ + − λ

   
 (1)

Here dy denotes dividends paid out in period y (year) 
and 1λ  is the arbitrary smoothing factor (the same for 
all agents), which is a real number between 0 and 1. 
The subscript i on the averaged dividends in equa-

tion (1) is to indicate that they vary across individual 
agents. The differences arise due to different arbitrar-
ily chosen initial values but over time, however, these 
exponential averages converge to each other. Also note 
that dividend payouts can be arbitrarily less frequent 
than stock trading rounds, e.g. if one trading period 
equals one month, dividends may be scheduled to be 
paid out every twelve periods and in equation (1) one 
time unit would be one year.

Exponential moving averages would clearly be unac-
ceptable estimates of future dividends in a general case. 
Hence, their function in this model is twofold. First, 
they provide a basis for further “intelligent” refi nement 
of dividend forecasts, i.e. these moving averages are 
multiplied by some adjustment factors calibrated in 
the process of the reinforcement learning. And second, 
forecasting dividends relative to their moving averag-
es, as opposed to forecasting dividend levels directly, 
makes forecasting environment more stationary, which 
facilitates the reinforcement-learning task.

The n-period dividend forecast is given by the follow-
ing equation:

 , , ,( ) ,EWMA div
i y n i y i yE d d a+ = ⋅  (2)

where ,i ya  is agent i’s dividend adjustment factor. 
These adjustment factors are gradually changed as 
agents explore and exploit their accumulated experi-
ence, with the long-term aim to minimize squared fore-
cast errors. The detailed description of the reinforce-
ment-learning procedure is provided in Section 2.5 and 
Appendix 1. Individual forecasts for periods y + 1, …, 
y + n formed in periods y – n + 1, …, y, respectively, 
are stored in the program and used for determining 
individual estimates of the fundamental stock value.

2.3. Estimating fundamental stock value 
and reservation prices

Quite similarly to the dividend forecasting procedure, 
agents’ estimation of the intrinsic stock value is a 
two-stage process. It embraces formation of initial es-
timates of the fundamental value, based on discounted 
dividend fl ows, and ensuing intelligent adjustment 
grounded on agents’ interaction with environment. We 
refer to this refi ned fundamental value as the reserva-
tion price.

The initial evaluation of the future dividend fl ows is a 
simple discounting exercise. To calculate the present 
value of expected dividend stream, the constant inter-
est rate is used as the discount factor. Moreover, be-
yond the forecast horizon dividends are assumed to 
remain constant. Under these assumptions, individual 

Fig. 1. Main building blocks of the ASM model

Forming private forecasts of exogenously generated dividends
Based on:

Exponential moving average
Adjustment as a result of reinforcement-learning (agents seek to minimise
forecast errors)

•
•

Making individual estimates of fundamental stock value and
its reservation price
Based on:
• Discounted expected dividend flows

Adjustment as a result of reinforcement-learning (agents seek to maximise
portfolio returns)

•

Making individual trading decisions
Based on:

Private estimates of fundamentals,
Maximisation of expected individual wealth at the end of a trading period
Publicly announced estimated probabilities of successful trades for given prices

•
•
•

Carrying out trades via the centralised exchange and collecting
trading statistics
Based on:

Double auction system
Simultaneous submission of trade orders and random queuing of individual orders

•
•

Learning to forecast dividends and learning about fundamental stock value
Based on:

Standard Q-learning with linear gradient-descent approximation•

Augmenting learning processes by specific interaction among
agents (optional)
Based on:

Successful strategy imitation
Evolutionary selection and resultant prevalence of successful investment strategies
Noise trading behaviour

•
•
•
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estimates of the present value of expected dividend 
fl ows are:

, 1 , ,
, 1

/
... ,

1 (1 ) (1 )
i y i y n i y nfund

i y y n n

d d d r
v d E

r r r
+ + +

+

⎛ ⎞
= + + + +⎜ ⎟

+ + +⎝ ⎠   
(3)

where r  is the constant interest rate. The last term 
in this equation is simply the discounted value of the 
infi nite sum of steady fi nancial infl ows. These present 
value estimates are subject to further refi nement.

To avoid excessive volatility of the estimates of the 
discounted value of dividend stream, they are again 
smoothed by calculating the exponentially weighted 
moving averages:

              , 2 , 2 , 1(1 ) .fundEWMA EWMA
i y i y i yv v v −= λ ⋅ + − λ

         
(4)

The role of these averages is very similar to that of the 
averaged dividends in the dividend forecasting process, 
namely, to provide some background for the reinforce-
ment-learning procedure and (partially) stationarise the 
environment in which agents try to adapt.

The second stage in the estimation of the individual 
reservation prices of the stock is calibration based 
on the reinforcement-learning procedure. For this we 
have to switch to the different time frame (in the base 
version of the model it is assumed that dividends are 
paid out annually, whereas agents can trade once per 
month). In a given trading round t, individual reser-
vation prices ,

reserve
i tv  are obtained from equation (4) 

by multiplying exponentially smoothed estimates of 
fundamental value by individual price adjustment fac-
tors, ,

p
i ta :

                         , , , .preserve EWMA
i t i t i tv v a= ⋅                   (5)

In this context the individual reservation price is un-
derstood as an agent’s subjective assessment of the 
stock’s intrinsic value that prompts immediate agent’s 
response (to buy or sell the security).

2.4. Making individual trading decisions

Having formed their individual beliefs about the fun-
damental value of the stock price, agents have to make 
specifi c portfolio rebalancing decisions. In principle, 
they weigh their own assessment of the stock against 
market perceptions and make orders to buy (sell) one 
unit of the underpriced (overpriced) stock at the price 
that is expected to maximise their wealth at the end of 
the trading period. We give a more detailed description 
of these processes below.

The individual reservation price refl ects what inves-
tors think the stock price should be worth. If the last 
period’s average market price 1tp −  is less than agent 
i’s reservation price today, it is willing to buy stock 

and pay at most ,
reserve
i tv . Conversely, if the prevail-

ing market price is higher than the agent’s perceived 
fundamental, it is willing to sell it at ,

reserve
i tv  or higher 

price. So its decision rule is like this:
If , 1

reserve
i t tv p −>  and 0

,i tm  is suffi cient → submit limit 
order to buy 1 share at price ,

q
i tp

if , 1
reserve
i t tv p −<  and 0

, 0i th >  → submit limit order to 
sell 1 share at price ,

q
i tp

otherwise, make no order.

Here 0
,i th  and 0

,i tm  denote, respectively, agent i’s stock 
holdings (i.e. number of owned shares) and cash bal-
ance at the beginning of a trading round, ,

q
i tp  is the 

quoted price to be determined below.

We would not expect real world investors to make or-
ders to buy or sell the stock precisely at reservation 
prices because in that case they would miss potentially 
profi table asset allocation opportunities. The real world 
investor whose perception of the stock value consider-
ably differs from the average market opinion is likely 
to take advantage of market liquidity and make an or-
der to trade at a price close to the prevailing market 
price rather than to his own reservation price. But what 
price would it be? There is no answer in the theory. 
The fi rst obvious step, implemented in the model, is 
to allow limit orders, i.e. orders to trade the security 
at a specifi ed or better price. Given the complexity 
of the agents’ interaction, the optimal pricing solution 
generally cannot be found. Thus, we proceed in the fol-
lowing, intuitively appealing way: (i) we determine the 
possible price quote grid around the prevailing mar-
ket price (i.e. determine tick sizes and possible price 
fl uctuation bands), (ii) estimate aggregate supply and 
demand schedules, (iii) compute each individual’s ex-
pected end-of-period wealth for every possible trading 
price and (iv) allow agents to make trading decisions 
that maximise their expected end-of-period wealth.

Agents, of course, aim at getting most favourable 
prices for their trades but they must take into account 
the fact that better bid or ask prices are generally as-
sociated with smaller probabilities of successful trades. 
The assumption that each agent is allowed to trade only 
one unit of stock in a given trading round has a very 
useful implication in this context – the probabilities of 
successful trades at all possible prices faced by a buyer 
and a seller can be loosely interpreted as the supply and 
demand schedules, respectively. So we further assume 
that these supply and demand schedules are estimated 
by the exchange institution from past trading data and 
constitute public knowledge.

Estimated probabilities of successful trades at given 
(relative) price quotes are computed as follows. Sim-
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ply put, these estimated probabilities should indicate 
chances of successful trading at prices that are “high” 
or “low” relative to the prevailing market price (i.e. 
last period’s average price). So the probability of the 
successful trade for a given price quote (relative to the 
benchmark price) is calculated from the past trading 
rounds as a fraction of successfully fi lled buy (sell) 
orders out of all submitted orders to buy (sell) at that 
price. Unfortunately, due to computational constraints 
the number of agents and successful trades is not suf-
fi ciently high to obtain reliable estimated probabilities 
in this straightforward way. For this reason we employ 
the following three-step procedure:

  i) estimates of probabilities of successful buy and 
sell orders for every price quote are smoothed 
over time by computing exponential moving av-
erages;

 ii) if there are no orders to buy or sell at a given 
price at time t, the exponential moving average 
estimates of successful trade probabilities are 
left unchanged from the t–1 period;

iii) the scattered estimates are fi tted to a simple 
cross-sectional regression line (with its values 
restricted to lie in the interval between 0 and 1) 
to ensure that the sets of successful trade prob-
abilities retain meaningful economic properties.

As a result, we get a nice upward-sloping line, which 
represents probabilities of successful buy orders for 
each possible price quote, and a downward-sloping 
line for the sell orders case. Fig. 2 shows a typical 
example of estimated probabilities of successful buy-
ing and selling one unit of stock at all possible prices 
(last period’s average price set equal to 25 in this rela-
tive pricing grid). This particular example refl ects an 
upward-trending market, in which agents reckon they 
have higher chances (estimated at around 60%) of sell-

ing the stock than buying it (estimated at around 40%) 
at the last period’s average price.

At this stage agents have all the components needed to 
choose prices that give them highest expected wealth at 
the end of the trading round. First, agent i estimates its 
expected end-of-period stock holdings (i.e. the number 
of shares) for each possible price quote j:

             
1 0
, , , , ,( ) ( )i j t i t i j t iE h h E q b= + ⋅  for all j.         (6)

Here , ,( )i j tE q  denotes expected number of shares to 
be bought or sold by agent i at any quotable price j (as 
was explained above, these numbers lie in the closed 
interval between 0 and 1). The indicator variable ib  
takes value of 1 if the agent is willing to buy the stock 
or –1 if it is willing to sell the stock.

Similarly, agent i’s expected end-of-period cash hold-
ings for each possible price quote j are:

        

1 0
, , , , , ,

1
, , ,

( ) ( ) ( )

( ) ( ) for all .
i j t i t i j t j t i

i j t i t

E m m E q x b c

E h E d j

= + ⋅ ⋅ − − +

⋅     (7)

Here ,j tx  denotes possible price quote j, c is the frac-
tional trading cost and ,( )i tE d  denotes the expected 
dividends, which are to be paid out following the 
trading round (this term equals zero in between the 
dividend payout periods). It is important to note here 
that the interest on spare cash funds is paid, as well as 
excess liquidity (cash holdings above some prespeci-
fi ed amount needed for trading) is taken away, at the 
beginning of the trading period. All of this is refl ected 
in 0

, .i tm  Dividends are paid out for those agents that 
hold stocks after the trading round, as can be seen from 
equation (7).

Finally, agent i’s expected end-of-period stock hold-
ings are valued at individual reservation price and each 
agent calculates its expected end-of-period wealth for 
every possible price quote:

          
1 1 1
, , , , , , ,( ) ( ) ( ).reserve

i j t i j t i t i j tE w E h v E m= ⋅ +         (8)

Hence, agent  i’s quoted price, ,q
ip  is the price that is 

associated with the highest expected wealth at the end 
of the trading round:

                         

1
,arg max ( ).

i

q
i i t

x
p E w=

�

                    
(9)

If several price quotes result in the same expected 
wealth, the agent chooses randomly among them. It 
is also important to note that in the process of the re-
inforcement learning, agents are occasionally forced 
to take exploratory actions. In those cases exploring 
agents choose prices from the quote grid in a random 
manner.

Fig. 2. Typical estimated demand and supply schedules 
in an upward-moving market
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Market price determination and actual trading take 
place on the centralised stock exchange. The trading 
mechanism basically is the double auction system, in 
which both buyers and sellers contemporaneously sub-
mit their competitive orders to implement their trades. 
Agents are assumed to have no knowledge of indi-
vidual market participants’ submitted orders.

In this model the order book mechanism works as fol-
lows. Prior to a trading round, all agents’ trade orders 
are queued randomly and then each of them undergoes 
the processing procedure. During this procedure, for an 
order that is being processed all earlier-queued orders 
are scanned in search for the most favourable match-
ing (opposite) order. If such an order is found (a tie 
among several equally good orders is broken arbitrar-
ily), the trade is fi lled at the average of the bid and 
ask price. Otherwise, the order remains open until it 
makes a match for other subsequently processed orders 
or until the end of the trading period, when it is closed 
as an unexecuted order. Following the trading round, 
all agents’ cash and securities accounts are updated 
accordingly.

The centralised stock exchange also produces a number 
of trading statistics, both for analytical and compu-
tational purposes. These statistics include the market 
price, trading volumes and volatility measures. The 
market price in a given trading period is calculated as 
the average traded price. As was mentioned before, it 
is crucially important for making further trading deci-
sions and it serves as the reference value in the subse-
quent trading round.

2.5. Learning and systemic adaptation 
in the model

We assume that agents’ behaviour is driven by rein-
forcement-learning since these learning algorithms bor-
rowed from the machine learning literature seem to be 
conceptually suitable for modelling investor’s behav-
iour. Agents take actions in the uncertain environment 
and obtain immediate rewards associated with these 
(and possibly previous) actions. A specifi c learning al-
gorithm allows agents to adjust their action policies in 
pursuit of highest long-term rewards. It is a very desir-
able feature of any fi nancial model that agents strive 
for strategic, as opposed to myopic, behaviour. The 
reinforcement-learning agents do just that. On the other 
hand, it is the immense complexity of investors’ inter-
action, both in real world fi nancial markets and in the 
model, that dramatically limits agents’ abilities to actu-
ally achieve optimal investment policies if not makes 
the optimal investment behaviour outright impossible.
In our model we use a popular reinforcement-learning 

algorithm, also known as the Q-learning, which was 
initially proposed by Watkins (1989). It is the temporal 
difference learning based on the step-wise update (or 
back-up) of the action-value function and associated 
adjustment of behavioural policies (a more detailed 
exposition of basic Q-learning principles is given in 
Appendix 1). The principal back-up rule is closely 
related to Bellman optimality property and takes the 
following form:

        

Old  estimate   of  ( , )

1 1

New  estimate    of   ( , )

( , ) (1 ) ( , )

( max ( , )).
t t

t t

t t t t
Q s a

t t
a

Q s a

Q s a Q s a

r Q s a+ +

← −α ⋅ +

α + γ

�����

�����������
    

(10)

Here ts  denotes the state of environment, ta  is the 
action taken in period t and 1tr +  is the immediate re-
ward associated with action ta  (and possibly earlier 
actions). Parameter α  is known as the learning rate 
and γ  is the discount rate of future rewards. Function 

( , )t tQ s a is usually referred to as the action-value func-
tion (or Q-function) and it basically shows the value of 
taking action ta  in state ts  under behavioural policy 
.π  More specifi cally, the action-value function is the 

expected cumulative reward conditional on the current 
state, action and pursued behavioural policy.

However, the so-called “curse of dimensionality” im-
plies that the straightforward implementation of the 
basic version of this algorithm is rarely possible in 
complicated environments. Following the standard 
practice, we apply the Q-learning algorithm with gra-
dient-descent approximation. Here we only describe 
specifi c variables that are used in the Q-learning al-
gorithm.

As was mentioned before, there are two instances of 
individual agent learning in the model: learning to 
forecast dividends and learning to adjust perceived 
fundamentals. In the dividend forecasting case agent 
i learns to adjust the dividend adjustment factor, ,

div
i ta

(see equation (2)). In each state there are three pos-
sible actions – the agent can increase the dividend ad-
justment factor by a small proportion specifi ed by the 
modeller, decrease it by the same amount or leave it 
unchanged.

Due to the complex nature of environment, the state 
of the world – as perceived by investor i – must be ap-
proximated, and it is described by a vector of so-called 
state features, sϕ

� . We choose four state features that 
are indicative of the reinforcement learner’s “location” 
in the environment and summarize some properties of 
the dividend-generating process, which can provide ba-
sis for successful forecasting. These features include 
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the size of the dividend adjustment factor, relative de-
viation of current dividend from its EWMA (compared 
to the standard deviation), the square of this deviation 
(to allow for nonlinear relation with forecasts) and the 
size of the current dividend relative to the EWMA.

The forecast decision is taken at time y and the actual 
dividend realisation is known at forecast horizon y + 
n. Then agent i gets the reward, which is the negative 
of the squared forecast error:

                 ( )2, ,( ) .d
i y n y n y i y nr d E d+ + += − −    (11)

Hence, the agent is punished for the forecasting errors. 
The learning process is augmented by modeller-im-
posed constraints on dividend forecasts. The forecast 
is not allowed to deviate by more than a prespecifi ed 
threshold (e.g. 30%) from the current level of divi-
dends. In that case, the agent gets extra-punishment 
and the dividend forecast is forced to be marginally 
closer to the current dividend level. Once the agent 
observes the resultant state, i.e. the actual dividend re-
alisation, it updates its behavioural policy according to 
the Q-learning procedure.

In the case of the individual stock value estimation, 
agent i can also take one of three actions: fractionally 
increase or decrease the price adjustment factor, ,

p
i ta  

(see equation (5)), or leave it unchanged. Analogously 
to the dividend forecasting case, the four state features 
are the price adjustment factor, the stock price devia-
tion from its exponential time-average (this difference 
is divided by the standard deviation), the square of this 
deviation and the current stock price divided by the 
weighted time-average.

The agent observes the state of the world and acts ac-
cording to the pursued policy. After the trading round, 
the agent observes trading results and the resultant 
state of the world, which enables the agent to update its 
policies according to the usual Q-learning procedure. 
In this model, the basic immediate reward, , 1,p

i tr +  is 
simply the log-return on the agent’s portfolio:

( ) ( )1 1 0 0
, , , 1 ,, 1 ln (1 ) ln .p monthly

i t t i t i t t i ti tr h p m r h p m−+ = + + − +

        (12)

Recall that tp  denotes the market price following a 
trading round in time t and monthlyr  is a one-period re-
turn on bank account. In order to ensure more effi cient 
learning – just like in the case of dividend learning – 
constraints are imposed on the magnitude of price ad-
justment factors, and additional penalties are invoked 
if these constraints become binding.

The chosen specifi cation of the reward function im-
plies that the reinforcement-learning agents try to learn 

to organise their behaviour so that they maximise long-
term returns on their investments. We could interpret 
agents in this model as professional fund managers 
that care about maximising clients’ wealth, seek best 
long-term performance among peers and shun under-
performance. They need not be risk-averse, as is con-
ventionally assumed about individual consumption-
smoothing investors. Indeed, recent evidence from ex-
tremely turbulent fi nancial markets shows that it might 
well be quite the opposite – in some cases excessive 
risk-taking might generate superior performance for 
a prolonged period of time, which in turn generates 
solid growth in fee income during that time. In addi-
tion, it should be noted that in the model an agent’s at-
titude toward risk is determined not only by its reward 
function but also by evolutionary selection and other 
systemic adaptation.

The model allows for optional alteration of agent be-
haviour via sharing private trading experience, com-
petitive evolutionary selection and noise trading be-
haviour. These options help enhance realism of the 
artifi cial stock market and arguably augment the re-
inforcement-learning procedure by removing clearly 
dominated trading policies implemented by individual 
agents and by strengthening competition among them.

In our model, dissemination of agents’ experience is 
very stylised. At the end of each period agents are 
randomly matched in pairs. In every pair, agents’ 
long-term performance measures, which are cumu-
lative past rewards, are compared to each other. If 
the difference between matched agents’ performance 
measures is suffi ciently large (the threshold level is 
allowed to fl uctuate randomly to refl ect the random 
nature of knowledge dissemination), the worse-per-
forming agent simply replicates the more successful 
agent’s experience.

Evolutionary selection is another available option in 
the present ASM. It assumes bankruptcy of worst-
performing agents and their replacement with best-
performers. So agents, whose performance relative to 
the benchmark (which is the average agents’ perform-
ance) falls below a modeller-specifi ed threshold, go 
bankrupt. Their place is taken over by best-performers, 
which then are forced to split so that the number of 
agents remains constant. This has a natural interpre-
tation: inferior fund managers are forced out of the 
market as unsatisfi ed clients bring their wealth over to 
best-performing funds and the latter then have to split 
for regulatory or any other reasons. Successful agents 
are given substantial extra rewards in the event of the 
split, to encourage their performance.
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Finally, the model allows for noise trading behaviour. 
Unlike in the evolutionary selection, the worst-per-
formers are not replaced by most successful agents. 
Rather, they scrap their prior learning experience and, 
as a result, start learning from scratch.

3. Simulation results

Like the vast majority of other ASM models, the cur-
rent model is based on a large number of parameters, 
and it is very diffi cult to calibrate the model to match 
empirical data. At this stage of the model development 
we do not attempt to do that. Instead, we assign reason-
able and, where possible, conventional values to the 
parameters and assume very simple forms of dividend-
generating processes. This enables us to determine the 
approximate fundamental stock value dynamics and 
study how the market stock price, determined by the 
complex system of interacting heterogeneous agents, 
fares in relation to stock price fundamentals. Even 
though the model is not calibrated to the market data, 
model results can offer qualitative insights about mar-
ket self-regulation, effi ciency and other aspects of mar-
ket functioning. In this section we examine these issues 
in more detail and report some of the more interesting 
simulation results.

The simulation procedure is implemented by per-
forming batches of model runs. Each run consists of 
20,000 trading rounds (about 1667 years). Batches of 
ten runs repeated under identical parameter settings are 
used to generate essential data and statistics that are 
in turn used for analysis and generalisation. In every 
run, the fi rst 5,000 trading rounds – as the learning 
initiation phase – are excluded from the calculation of 
the descriptive statistics. The simulation concentrates 
on altering features of the reinforcement-learning, in-
teraction among agents and dividend-generating proc-
esses in an attempt to understand relative importance 
of intelligent individual behaviour, market setting and 
population-level changes for the aggregate market be-
haviour. Other model parameters are kept unchanged.

Dividends are assumed to fl uctuate around an expo-
nential trend and their volatility is proportional to the 
dividend level. The role of the trend is to necessitate 
the intelligent adjustment of dividend estimates, as 
forecasts based on exponentially-weighted moving av-
erages would be clearly biased. Large dividend growth 
rates can only be sustained over relatively short time 
horizons, and hence in our very long-term model we 
have to choose very low dividend growth rates (e.g. 
0.15% per year). We also examine deterministic con-
stant dividends, as a special case.

The primary question addressed in most ASM models 
is the market effi ciency issue. Here effi ciency is loosely 
interpreted as the congruence between the stock market 
price and its fundamentals. In the current setting it is 
not possible to know the right theoretical stock price, 
so we basically want to compare the market stock price 
with risk-neutral estimates of fundamentals.

Let us start with the examination of agents’ ability 
to forecast dividends. Since dividends are driven by 
very simple data generating processes, it is not surpris-
ing that in the model version with enabled both rein-
forcement-learning and evolutionary selection, agents 
are able to form very precise forecasts. The average 
dividend forecast error for this model specifi cation is 
–0.1%, while the average absolute forecast error again 
amounts to 0.4%. To assess the actual importance of 
the reinforcement-learning behaviour for dividend 
forecasting, simulation batches with disabled rein-
forcement-learning are run (Experiment 3). In these 
runs agents neither learn to forecast dividends, nor try 
to optimise their portfolios, as their commensurate re-
inforcement rewards ,

d
i t nr +  and , 1

p
i tr +  are set to zero. In 

this case, the average forecast bias considerably in-
creases to –0.8% and the average absolute error stands 
at 1.4%. In this no-learning case the average percent-
age of agents hitting the modeller-imposed dividend 
forecast bounds increases signifi cantly, as compared 
to the enabled learning case. In other words, learn-
ing agents are able to effectively form “reasonable” 
forecasts, while non-learning agents are simply forced 
to remain within prespecifi ed boundaries but perform 
much worse, taken on individual basis. This leads us to 
a very natural conclusion that in the dividend forecast-
ing process intelligent adaptation matters.

As the next step of our analysis we examine dynamics 
of the market price in relation to the fundamentals. In 
Experiment 1 fundamentals anchor the stock price dy-
namics to some extent, and the market price fl uctuates 
in the vicinity of the perceived fundamental value. The 
average percentage bias of market price from the fun-
damentals is low and stands at –1.6%. Nevertheless, 
the valuation errors are clearly autocorrelated – due 
to the market inertia and prevailing expectations, the 
stock price may be above or below risk-neutral fun-
damentals for extensive periods of time. For instance, 
runs of uninterrupted overvaluation stretch on aver-
age for 44 trading periods and an average length of 
undervaluation runs is 60 periods. By the same token, 
average market price deviations from the fundamental 
valuation are large relative to the price volatility. The 
enabled evolutionary selection option in the model en-
sures relatively even wealth distribution among agents 
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and each trading period active agents (i.e. agents that 
have suffi cient funds and/or stock holdings to trade 
constitute on average 89.7% of total population). Fi-
nally, the average fraction of agents whose adjusted 
fundamental valuations (reservation prices) fall out of 
modeller-imposed “reasonable” bounds is very low 
and stands on average at 0.1% of total population in a 
trading round.

It turns out that the above results strongly depend on 
the evolutionary competition assumption. It suffi ces 
to disable the evolutionary selection (Experiment 2), 
and the average percentage stock price bias from the 
fundamentals boosts to 5.9% along with a dramatic 
increase in average overvaluation runs to 406. By the 
end of a simulation run the number of inactive agents 
per trading round increases to 70–80%, and wealth 
naturally concentrates in the hands of remaining 20–
30% of agents. There are some possible explanations 
to this overvaluation and wealth concentration. Such 
overvaluation can be to some extent associated with 
the model’s feature that excess liquidity is simply taken 
away from the market, which means that the agents 
that tend to sell their stock holdings are more likely to 
consume their money and become inactive. In other 
words, those agents that highly value the stock tend 
to dominate in the market. Another interpretation is 
that worse performing agents are simply driven out of 
the market. Moreover, a diminishing number of active 
participants and a smaller degree of competition allows 
agents to concert their portfolio rebalancing actions in 
such a way that the market price is driven up, which 
leads to larger unrealised returns and thereby stronger 
reinforcement for the remaining active players. These 
results make sense from the real world perspective. 
The largest mass of investors want stock prices to be as 
high as possible (though possibly still compatible with 
fundamentals), and it is not in their direct interest to 
have prices that match fundamentals precisely.

We also perform simulations to examine market’s 
self-regulation ability. In particular, we want to know 
whether economic forces are strong enough to bring 
the market to the true fundamentals if they systemati-
cally differ from average perceived fundamentals. For 
this purpose, we introduce and an arbitrary upward 
bias to the estimates of the fundamental value by add-
ing an arbitrary term in equation (3). Then simulation 
runs are implemented for different model settings, with 
or without reinforcement-learning. It turns out that the 
market is not able to fi nd the true risk-neutral funda-
mentals. In the case of no-learning, stock prices tend to 
slowly grow larger than the perceived fundamentals. In 

the case of enabled reinforcement-learning, agents tend 
to stick to the perceived fundamentals, and the market 
price fl uctuates around them as a result.

The above results confi rm that the market self-regu-
lation mechanism in this model is weak. We do not 
fi nd evidence of agents adjusting their perceived fun-
damentals so that the market price gets in line with 
modeller-imposed fundamentals or, say, the usually 
assumed risk-averse behaviour. On the other hand, it 
is not surprising. Well-known puzzles of empirical fi -
nance and recent mega-bubbles suggest that, after all, 
markets may not be tracking fundamentals so closely. 
It can be the case that markets exhibit so strong inertia 
that even fundamentally correct investment strategies 
pay out only in too distant future and may not be ap-
plied successfully or act as the market’s self-regulating 
force. The obtained results suggest that (not necessarily 
objectively founded) market beliefs of what an asset is 
worth are a very important constituency of its market 
price. Last but not least, we want to examine the rela-
tionship between the market price fl uctuations and the 
fi nancial market liquidity. This experiment also helps 
to shed light on the reasons for a relatively loose con-
nection between the market price and fundamentals. In 
this simulation run, the standard model version with 
reinforcement-learning and evolutionary selection is 
used, while dividends are assumed to be deterministic 
and constant. It is notable that even in this environment 
market price fl uctuations remain signifi cant and trading 
does not stop. The clue to understanding this excess 
volatility may be the positive relationship between 
market liquidity and the stock price. Since unneces-
sary liquidity at an individual level is removed from 
the system, overall liquidity fl uctuates in a haphazard 
way. Increases in market liquidity bolster solvent de-
mand for the stock and lift its price. As can be seen 
from Fig. 3 liquidity growth spikes are associated with 
strong price increases. The linear correlation between 
growth of money balances and stock price growth is 
found to be 0.32.

It should be noted that the latter experiment is devised 
so as to ensure that positive relationship between stock 
returns and investors’ cash holdings is not linked to 
fl uctuations in dividend payouts. This allows us to con-
clude that liquidity fl uctuations affect the asset price in 
this case, and not vice versa. The evidence that mar-
ket liquidity changes can move markets is very impor-
tant for understanding the way liquidity crises, credit 
booms and busts (deleveraging), portfolio reallocations 
between asset classes and other exogenous factors may 
affect stock markets.
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4. Short presentation of parallel decisions 
management system in capital markets

In this paper using the defi nition of parallel decisions 
management system in capital and exchange markets 
we mean the so-called double trump model (Rutkaus-
kas 2008; Rutkauskas et al. 2008), which at fi rst was 
designed for decisions management in exchange mar-
kets, and later it was repeatedly used in various capital 
markets. The description of double trump model, its 
development and possibilities of application for deci-
sions management in exchange markets can be found 
in (Rutkauskas 2005; Rutkauskas 2006; Rutkauskas, 
Stasytytė 2006).

The link of parallel system with general title of this 
paper “Building an artifi cial stock market populated 
by reinforcement-learning agents” and ability of mar-
ket participants and the market itself to match with 
consistent patterns of market behaviour and decisions 
management, disclosed by the science, could be de-
scribed by the following circumstances:

 – in fi nancial instability circumstances capital mar-
kets sophisticatedly, but cognizably change the 
supply of possibilities for investor, which is ful-
ly enough described by possibilities’ effi ciency, 
riskiness and reliability;

 – investor – individual, institutional or criterial has 
a possibility to perceive the adaptation principles 
and means of his utility function in changing be-
haviour of the capital market;

 – perception of decisions management strategies 
and criteria interdependencies becomes a pre-
sumption and guarantee of successful investing;

 – decisions are made in almost fully artifi cial mar-
ket, which is commensurated with real market 
data only by the core parameters. The space of 
stochastic processes is an adequate enough real 
market model.

The possibilities of parallel decisions management sys-
tem will be illustrated by its application for achieve-
ment of as high as possible growth of invested capital 
during the analysed period: 2007.01.02–2009.04.09, 
which also includes the most severe periods of global 
fi nancial crisis. In general, using this system a broad 
monitoring is organized, which includes about 30 vari-
ous global markets, for the search of favourable deci-
sions for capital growth. The search of favourable de-
cisions was performed selecting the so-called pseudo-
scenario, when a part of historical data – in this case 40 
days from the beginning of 2007.01.01 – is accepted as 
“real” historical data, and next data is treated as “forth-
coming”, and with regard to the latter forecasting is be-
ing performed and portfolio rebalancing decisions are 
being made. Next, the results of the experiment in fi ve 
countries’ markets will be presented: UK, France, Ger-
many, Sweden and USA. In a sections of 4–8 Figures 
we see how a unit of invested capital was changing 
during the analysed period, and in b sections we see 
the change of real prices of the 6 stocks in portfolio.

The growth of initial invested capital is obtained 
with the help of optimization of (rebalancing) port-
folio structure. While rebalancing the portfolio, a fee 
of three basic percentile points was imposed in case 
of buying as well as selling a stock. This amounts to 
nearly 30% of the whole invested capital and more 
than 50% of gross capital increase.

Fig. 3. Typical relationship between stock returns and liquidity in a constant dividend case
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a) The change of a unit of invested capital

b) The change of real prices of stocks in portfolio
Fig. 4. The results of the experiment in UK

a) The change of a unit of invested capital

b) The change of real prices of stocks in portfolio
Fig. 5. The results of the experiment in Germany

a) The change of a unit of invested capital

b) The change of real prices of stocks in portfolio
Fig. 6. The results of the experiment in Sweden
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5. Concluding remarks

In this paper we developed an artifi cial stock mar-
ket model based on the interaction of heterogeneous 
agents whose forward-looking behaviour is driven by 
the reinforcement-learning algorithm combined with 
some evolutionary selection mechanism and economic 
reasoning. Other notable features of the model include 
knowledge dissemination and agents’ competition for 
survival, detailed modelling of the trading process, ex-
plicit formation of dividend expectations and estimates 
of fundamental value, computation of individual res-
ervation prices and best order prices, etc. At this stage 
of development, the model should largely be seen as 
a thought experiment that proposes to study fi nancial 
market processes in the light of complex interaction 

of artifi cial agents that are designed to act in an eco-
nomically appealing way. Bearing in mind the uncer-
tain nature of the model environment, mostly brought 
about by this same interaction, strategies followed 
by artifi cial agents seem to exhibit a good balance of 
economic rationale and optimisation attempts. Quite a 
strong emphasis on the model’s economic content dis-
tinguishes this model from some other ASM models, 
which are most often based on evolutionary selection 
procedures and are sometimes criticised for lack of 
economic fundament.

Preliminary simulation results suggest that the market 
price of the stock in this model broadly refl ects funda-
mentals but over- or under-valuation runs are sustained 
for prolonged periods. Both individual adaptive behav-

Fig. 8. The results of the experiment in USA (NYSE)

a) The change of a unit of invested capital

b) The change of real prices of stocks in portfolio

Fig. 7. The results of the experiment in France
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iour and the population level adaptation (evolution-
ary selection in particular) are essential for ensuring 
any effi ciency of the market. However, market self-
regulation ability is found to be weak. The institutional 
setting alone, such as the centralised exchange based 
on the double auction trading, cannot ensure effective 
market functioning. Even in the case of active adap-
tive learning, the market does not correct itself from 
erroneously perceived fundamentals if they are in the 
vicinity of actual fundamentals, which underscores 
the importance of market participants’ beliefs in the 
market price dynamics. We also fi nd a positive rela-
tionship between stock returns and changes in liquid-
ity – there are indications that exogenous shocks to 
investors’ cash holdings lead to strong changes in the 
market price of the stock.

Overall, this line of research seems promising. In our 
ongoing research, we aim at developing a version of 
the model suitable for calibration to empirical data. 
This requires simplifi cation of some processes in the 
model, taking steps to ensure more effective and ro-
bust learning, etc. The noteworthy implication of the 
proposed study is that similar modelling principles 
could be expanded and applied for modelling of other 
markets, such as markets for goods or labour. More 
generally, intelligent adaptive agents could form the 
basis of applied dynamic macroeconomic models. It 
is very likely that in the future they will stand on the 
equal footing with the representative agent of dynamic 
general equilibrium models.

Parallel decisions search system, which is presented in 
the paper, exploits only part of the market – a certain 
amount of stocks. The system is based on assump-
tion about market behaviour cognition, but the main 
model of market behaviour is admitted to be a multi-
dimensional stochastic process, the identity of which 
regarding particular market is achieved with the help 
of stock prices, market indices and macro-economic 
data. Application of expert system allows to state that 
even under global fi nancial crisis conditions distinct 
investment strategies are available, which guarantee 
long-term capital growth rates much higher than the 
general growth of the market.
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