
ISSN 1611-1699 print / ISSN 2029-4433 online doi: 10.3846  /  jbem. 2010.25

Journal of Business Economics and Management
www.jbem.vgtu.lt
2010, 11(3): 511–532

TIME-VARYING VOLATILITY 
MODELLING OF BALTIC STOCK MARKETS 

Bora Aktan1, Renata Korsakienė2, Rasa Smaliukienė3  

1Yasar University, Faculty of Economics and Business, Department of Finance, 
Selcuk Yasar Campus, 35100 Bornova, Izmir, Turkey

2, 3Vilnius Gediminas Technical University, Saulėtekio al 11, 10223 Vilnius, Lithuania
E-mail: 1bora.aktan@yasar.edu.tr (corresponding author); 2renatakorsa@takas.lt; 

3rasa.smaliukiene@vgtu.lt
Received 10 October 2009; accepted 27 May 2010

Abstract. As time-varying volatility has found applications in roughly all time series 
modelling in economics, it largely draws attention in the areas of financial markets. This 
study also examines the characteristics of conditional volatility in the Baltic Stock Mar-
kets (Estonia, Latvia and Lithuania) by using a broad range of GARCH volatility models. 
Correctly forecasting the volatility leads to better understanding and managing financial 
market risk. Daily returns from four Baltic stock indexes are used; Estonia (TALSE in-
dex), Latvia (RIGSE index), Lithuania (VILSE index) and synthetic BALTIC benchmark 
index. We test a large family of GARCH models, including; the basic GARCH model, 
GARCH-in-mean model, asymmetric exponential GARCH and GJR GARCH, power 
GARCH and component GARCH model. We find strong evidence that daily returns from 
Baltic Stock Markets can be successfully modelled by GARCH-type models. For all 
Baltic markets, we conclude that increased risk will not necessarily lead to a rise in the 
returns. All of the analysed indexes exhibit complex time series characteristics involving 
asymmetry, long tails and complex autoregression in the returns. Results from this study 
are firmly recommended to financial officers and international investors.

Keywords: Baltic stock markets, conditional volatility, GARCH models, financial risk, 
returns.
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1. Introduction

Volatility is a fundamental characteristic of financial markets whose measuring and fore-
casting has always been important, but even more so in the current crisis. Volatility is a 
measure of the intensity of random or unpredictable changes in asset returns. Constant 
volatility models such as ARMA only refer to the unconditional volatility of a returns 
process. Processes that model unconditional volatility presume a constant variance of the 
time series throughout the whole data generation process. Such volatility can be defined in 
terms of the variance parameter of the unconditional distribution of a stationary returns 
process. In fact, unconditional volatility is only defined if it is assumed that a stationary 
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stochastic process generates the asset return series, but this assumption seems far more 
reasonable than many other assumptions that are commonly made in financial models. 
Time-varying volatility models describe a process for the conditional volatility. A condi-
tional distribution, in this context, is a distribution that governs a return at a particular 
instant in time. In more general terms, a conditional distribution is any distribution 
that is conditioned on a set of known values for some of the variables, that is, on 
information set (Alexander 2001). In time series models the information set at time 
t, tI is often taken as all the past values that were realized in the process. Conditional 
volatility at time t is the square root of the variance of the conditional distribution at 

time t. The conditional mean at time t is denoted 

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rV  or 2σt
 (Engle 1982). An estimation procedure for 

the time-varying parameters of the conditional distributions is based on a model where 
anything that has happened in the past is not considered to be an observation on the 
current random variable. Its value is known, and so past observations become part of 
the information set. That is, the actual rather than the expected values of anything that 
happened in the past will be used to estimate the current value of a time-varying volatil-
ity parameter. Put another way, the current (and future) conditional distributions of the 
random variable will be “conditioned” on the current information set.
The conditional volatility has no place in the standard framework for linear regression, 
because standard linear regression assumes that returns are homoskedastic – that is, 
their conditional variance is the same throughout the process. The term conditional 
heteroskedasticity means that the conditional variance changes over time. The episodes 
of high and low volatility are often called volatility clusters. 
This phenomenon shows the possibility of forecasting volatility. High volatility periods 
tend to persist before falling to lower levels. Financial returns also tend to be leptokur-
tic, which makes them even harder to model since they are not even asymptotically 
normal. These characteristics of financial time series were noted in the early works 
of Mandelbrot (1963), Fama (1965), Clark (1973) and Blattberg and Gonedes (1974). 
This early research led to modelling financial returns as IID draws from thick tailed 
distributions such as Student’s t and a family of distributions known as Stable Paretian 
distributions.
The increased interest in risk management in financial theory has necessitated the devel-
opment of new econometric time series models that take into account time variation of 
variances and covariances. Volatility can be thought of as a random variable that follows 
a stochastic process. Discovering the underlying stochastic process is the task of every 
volatility model. Financial data shows that volatility clusters vary significantly in their 
persistence i.e. life span. Volatility clusters can be very short-lived, lasting only hours, or 
they may last for decades. These long-term volatilities are usually driven by certain eco-
nomic processes or/and institutional changes. The primary source of changes in market 
prices is the arrival of news about the asset’s fundamental value. If the news arrives in 
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rapid succession, the returns exhibit a volatility cluster (Engle and Mezrich 1995). 
The moving average model of volatility assumes that asset returns are independent and 
identically distributed (IID). There is no time-varying volatility assumption in any of 
the weighted moving average methods, be it a simple moving average or an exponential 
moving average. Moving average models only provide an estimate of the unconditional 
volatility, assumed to be a constant, and the current estimate is taken as the forecast. 
The volatility estimates do change over time, but this can only be attributed to noise or 
sampling errors in a moving average model (Alexander 2000). 
In a GARCH model, returns are assumed to be generated by a stochastic process with 
time-varying volatility. Instead of modelling the data after they have been collapsed 
into a single unconditional distribution, a GARCH model introduces more detailed as-
sumptions about the conditional distributions of returns. These conditional distributions 
change over time in an autocorrelated way, in fact the conditional variance, is in it self 
an autoregressive process. GARCH volatility forecasts are very flexible and can be 
adapted to any time period. The forward volatilities that are generated by GARCH mod-
els can have many applications. Valuing path-dependent options or volatility options, 
measuring risk capital requirements, calibration of binomial trees – all of these require 
forecasts of forward volatilities that have a mean-reverting property. Perhaps the most 
important of all the advantages of GARCH models is that they are based on a statistical 
theory that is justified by empirical evidence. Unlike constant volatility models, there is 
no need to impose unrealistic assumptions to force it into a framework that is inconsist-
ent with its basic assumptions. This coherency has led to many applications of GARCH 
models to measuring financial risks and pricing and hedging of options.
Several studies investigate the performance of GARCH models on explaining volatility 
of some mature and emerging stock markets (e.g. Akgiray 1989; Sentana and Wadhwani 
1992; Kim and Kon 1994; Kearney and Daly 1998; Tay and Zhu 2000; Teresiene 2009). In 
the study of Gurgul et al. (2006), they used GARCH models to illustrate that for the rev-
elation of stock-market reactions to firm-specific news, trading volume contains precious 
information in excess of that manifested in stock prices. In addition to the studies conducted 
in mature market, Yalcın and Yucel (2006) analyzed 20 emerging markets for examining 
the Day-of-the-Week Effect in stock return through EGARCH-M model. Pošta (2008), with 
the use of an E-GARCH model of the volatility, shows how quickly the Prague Stock Ex-
change, represented by its PX index and PX-GLOBAL index, has gradually moved toward 
the condition of weak efficiency. Aslanidis et al. (2009) with the use of smooth transition 
conditional correlation (STCC) GARCH specification demonstrate that an investor will 
gain little from portfolio diversification across US and UK markets. Christiansen (2010) 
with the use of GARCH based family models decompose European bonds and stock vola-
tility and found significant volatility-spillover effects. Mcmillan and Speight (2006) with 
the estimation of a FIGARCH model supports the contention that volatility dynamics result 
from multiple sources for high-frequency S&P500 index and DM/$ exchange rate. 
In this paper we analyse characteristics of three national Baltic stock indexes; Estonia 
(TALSE index), Latvia (RIGSE index), Lithuania (VILSE index), and BALTIC bench-
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mark index1. Over a period of seven years, we test a large family of GARCH models, 
including; the basic GARCH model, GARCH-in-mean model, asymmetric exponential 
GARCH and GJR GARCH, power GARCH and component GARCH model. Asym-
metric GARCH models have the additional advantage of explaining the potentially 
asymmetric nature of the response to past positive and negative shocks.
The paper has two goals; explain volatility modelling using recent daily data from Bal-
tic stock markets, and evaluate the performance of GARCH-type models in explaining 
market risk in these markets prior to and during the current global financial crisis. The 
motivation for our paper is to add new evidence from three Baltic stock markets to the 
modelling of financial time series by explaining volatility clustering in these markets. It 
is important to both practitioners and academic to understand the evolution of prices in 
the emerging stock markets over time, as well as understanding the process of reaching 
financing decisions through volatility modelling. 
The paper is organised as follows: Section 2 presents the characteristics of the used 
Baltic markets data set. Section 3 explains the employed GARCH methodology, while 
Section 4 presents the main empirical results. Section 5 concludes the paper and sum-
marises the main findings.

2. Data

The data used in the analysis of volatility are the daily observations of the Baltic states 
(Estonia, Latvia and Lithuania) stock market indexes.  The returns are collected for 
Bloomberg website in the period 01.02.2002–03.01.2009, which includes the current 
financial crisis in the global and regional markets. The data series range from 1795 
daily observations for BALTIC benchmark index to 2079 daily observations for TALSE 
index. 
Table 1 gives the descriptive statistics for daily stock market returns. All of the analyzed 
indexes show a slightly positive mean, which is not significantly different from zero, a 
finding that can be expected in the midst of the global crisis in emerging stock markets 
that were performing exceptionally strong prior to the crisis. Distribution of returns is 
not symmetrical and shows significant negative asymmetry (especially the combined 
BALTIC benchmark index). High excess kurtosis indicates the presence of extreme 
events that are highly unlikely to occur under the normality assumption. Consequently, 
all of the normality tests show that there is virtually no probability that the data generat-
ing processes behind these indexes are normally distributed. 
In terms of stationarity, the results from the Augmented Dickey Fuller (ADF) and Phi-
llips–Perron tests indicate that both series are I(1), and therefore, time-series models 
can be used to examine the behaviour of volatility over time. The daily index values 
and returns for each index are presented in Figures 1–4.

1 For a broad discussion on Baltic States see Adekola et al. (2008); Tvaronaviciene et al. (2009); 
Melnikas (2008) and Plinkus (2010). 
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Table 1. Descriptive Statistics for TALSE, VILSE, RIGSE and BALTIC Benchmark Index, 
Period 01.02.2002–03.01.2009

Main Statistics TALSE VILSE RIGSE BALTIC

Descriptive Statistics

Mean 0.0003 0.0004 0.0001 0.0003

Median 0.0000 0.0000 0.0000 0.0008

Minimum –0.0705 –0.0911 –0.0786 –0.0882

Maximum 0.0718 0.1100 0.0916 0.0794

St. Dev. 0.0100 0.0105 0.0110 0.0102

Skewness –0.7412 –0.6749 –0.4512 –1.1451

Kurtosis 12.01 20.29 13.37 15.43

Normality Tests

Lilliefors 7 216.71 25 667.56 9 336.32 11 948.16

(p value) 0.00 0.00 0.00 0.00

Shapiro Wilk/Francia 0.137 0.126 0.126 0.130

(p value) 0.00 0.00 0.00 0.00

Jarque-Bera 0.863 0.830 0.846 0.841

(p value) 0.00 0.00 0.00 0.00

Unit Root Tests

ADF (AR + drift) –27.211 –27.729 –30.401 –25.393

P-P (AR + drift) –36.831 –38.059 –44.376 –34.236

Source: Authors’ calculations

3. Methodology

The fundamental idea in GARCH is to add a second equation to the standard regression 
model: the conditional variance equation (Enders 2004: 112). This equation describes 
the evolution of the conditional variance of the unexpected return process, 2( )ε = σt t tV
The dependent variable, the input to the GARCH volatility model, is always a return 
series, and accordingly a GARCH model consists of two equations. The first equation 
is the conditional mean equation. This can be anything, but since the focus of GARCH 
is on the conditional variance equation it is usual to have a very simple conditional 
mean equation. Many of the GARCH models used in practice take the simplest possible 
conditional mean equation = + εt tr c , where c is a constant. In this case the unexpected 
return εt  is jus-t the mean deviation return, because the constant will be the average 
of returns over the data period. In some circumstances it is better to use a time-varying 
conditional mean, but on the other hand, using to many parameters in the conditional 
mean equation might lead to convergence problems. 
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Fig. 1. VILSE Index Values and Return, Period 01.02.2002–03.01.2009

B. Aktan et al. Time-varying volatility modelling of Baltic stock markets

If there is significant autocorrelation in returns, autoregressive moving average condi-
tional mean should be used to model the returns. The second equation in a GARCH 
model is the conditional variance equation. Different GARCH models arise because the 
conditional variance equations are specified in different forms. There is a fundamental 
distinction between the symmetric GARCH models that are used to model ordinary 
volatility clustering and the asymmetric GARCH models that are designed to capture 
leverage effects. In symmetric GARCH the conditional mean and conditional variance 
equations can be estimated separately. This kind of estimation is not possible for asym-
metric GARCH models making their estimation more complex (Alexander 2001: 70). 
Underlying every GARCH model there is also an unconditional returns distribution. 
The unconditional distribution of a GARCH process will be stationary under certain 
conditions imposed on the GARCH parameters and if necessary these conditions can 
be imposed on the estimation.
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Fig. 2. TALSE Index Values and Return, Period 01.02.2002–03.01.2009

GARCH model extends the ARCH model by allowing for both the longer memory and 
a more flexible lag structure. In a GARCH model tε  denotes a real-valued discrete-time 
stochastic process whose conditional distribution is assumed to be normal (other prob-
ability distributions could also be applied such as Student’s t) and ψt the information set 
(σ−field) of all information up till time t. Equations 1–3 represent next period’s variance, 
forecasted by the GARCH (p, q) process (Bollerslev 1986: 309). Following:
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Fig. 4. BALTIC Benchmark Index Values and Return, Period 01.02.2002–03.01.2009

( ) ( )2 2 2
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Fig. 3. RIGSE Index Values and Return, Period 01.02.2002–03.01.2009

when p = 0 the process is reduced to the ARCH(q) process, and when p = q = 0 the 
process becomes a white noise series (ε). In the ARCH(q) process the conditional vari-
ance is specified as a linear function of past sample variances, whereas the GARCH(p, 
q) process uses also lagged conditional variances. 
The size of the parameters α and β determines the short-run dynamics of the resulting 
volatility time series. Large GARCH lag coefficients β  ndicate that shocks to condi-
tional variance take a long time to die out, so volatility is persistent. Large GARCH 
error coefficients α mean that volatility reacts intensely to market movements, and so 
if alpha is relatively high and beta is relatively low, volatilities tend to be spikier. In 
financial markets it is common to estimate lag coefficients based on daily observations 
in excess of 0.8 and error coefficients of no more than 0.2 (Alexander 2001: 73). 
Presuming that the process starts indefinitely far in the past with 2m finite initial mo-
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ments and structure of the GARCH process,  suffices for wide-sense station-
arity. Equations 4–5 represent a necessary and sufficient condition for existence of the 
2mth moment in a GARCH(1,1) process (Bollerslev 1986: 311). Following:
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The 2mth moment can be expressed by the recursive Equation 6. Following:
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As εt is conditionally normal, by symmetry it follows that if the first 2mth moments 

exist, ( )2 1 0−ε =m
tE . This directly relates to the fact that skewness coefficient (third 

moment) must be equal to zero. For , Equation 4 reduces to the well-known 

condition for the ARCH(1) process, 1 1<m
ma a   (Engle 1982: 992). If ( )

1

1 1 −> mma a   in 

the ARCH(1) process, the 2mth moment does not exist, whereas in the GARCH(1,1) 

process, even if ( ) ( )
11
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1

1
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=
δ = −β >∑ mi m

i
a a , the 2mth moment might exist because 

of the longer memory in GARCH process.
Higher moments indicate further interesting information about the nature of the GARCH 
process. Equations 7–8 estimate that if 2 2

1 1 1 13 2 1,+ β + β <a a  the fourth-order moment 
(kurtosis) exists. Threfore since:

( ) ( ) 12
0 1 11 −ε = − −βtE a a (7)

and 
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1 0β =
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Equation 9 estimate the coefficient of kurtosis. Following:

(9)

which is greater than zero by assumption, and hence greater than assumed under normal 
distribution. This means that a GARCH(1,1) process is leptokurtic, meaning that it has 
heavier tails than assumed under normal distribution, a property that the process shares 
with the ARCH(q) process. The property of being leptokurtic, although the probability 
distribution of stochastic variable )(ε  is normal, makes the ARCH and GARCH proc-
esses very convenient for modelling fat tailed observations, a characteristic that is usu-
ally displayed by asset returns. The lack of this property would mean that the modelling 
of heavy tailed behaviour of asset returns would require other, more computationally 
demanding distributions such as Student’s t, GED or a mixture of normal distributions. 
In fact Nelson (1991) demonstrated that under suitable conditions, as time interval goes 
to zero, a GARCH(1,1) process approaches a continuous time process whose stationary 
unconditional distribution is Student’s t. 
In finance, the return of a security may depend on its volatility. To model such a phe-
nomenon, Engle et al. (1987) introduced the ARCH in the mean (ARCH-M) model in 
which the conditional mean is a function of conditional variance of the process (Engle 
et al. 1987: 395):

(10)

1−tz  is a vector of predetermined variables, g is some function of 1−tz  and 2σt  is gener-
ated by an ARCH(q) process. The most simple ARCH-M model has ( )2 2

1, .− σ = δσt t tg z  
When 2σt  follows a GARCH process, Equation 10 will become a GARCH in the mean 
(GARCH-M) equation. A simple GARCH(1,1)-M model can be written as (Lucchetti 
and Rossi 2005: 310):

(11)

where µ and c are constant. The parameter c is called the risk premium parameter. A 
positive c indicates that the return is positively related to its past volatility.  The formu-
lation of the GARCH-M model in Equation 11 implies that there are serial correlations 
in the return series tr . These serial correlations are introduced by correlations in the 
volatility process { 2σt }. The existence of risk premium is, therefore, another reason 
that some historical stock returns have serial correlations.
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Another symmetric variation of the general form of GARCH model is the components 
GARCH model. When a GARCH model is estimated over a rolling data window, dif-
ferent long-term volatility levels will be estimated, corresponding to different estimates 
of the GARCH parameters. The components GARCH model extends this idea to allow 
variation of long-term volatility within the estimation period (Engle and Lee 1993a, b; 
Engle and Mezrich 1995). It is most useful in currency and commodity markets, where 
GARCH models are often close to being integrated and so convergent term structures 
that fit the market implied volatility term structure cannot be generated. The components 
model is an attempt to regain the convergence in GARCH term structures in currency 
markets, by allowing for a time-varying long-term volatility.
The GARCH(1,1) conditional variance may be written in the form of Equation 12. 
Following:

(12)

In components GARCH 2σ  is replaced by a time-varying permanent component given 
by:

(13)

Therefore the conditional variance equation in the components GARCH model is:

(14)

Equations 13 and 14 together define the components GARCH model. If p = 1 the per-
manent component to which long-term volatility forecasts mean-revert is just a random 
walk. While the components model has an attractive specification for currency markets, 
parameter estimation is, unfortunately not straightforward. Estimates may lack robust-
ness and it seems difficult to recommend the use of the components model – except in 
the event that its specification has passed rigorous diagnostic tests.
Ding et al. (1993) developed the Power ARCH model, in which the power parameter 

 of the standard deviation can be estimated rather than imposed, and the optional 
 parameters are added to capture asymmetry of up to order r in Equation 15. Fol-

lowing:
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( ) ( )( ) ,t t t tg z z z E z= λ + ϑ −

where 1,01 ≤> iγβ  for i=1...r , 0=iγ  for all i > r, and pr ≤ . The symmetric model 
sets 0=iγ  for all i. Note that if 1β  = 2 and 0=iγ  for all i, the PGARCH model is simply 
a standard GARCH specification. The asymmetric effects are present if 0≠γ .
An important feature of financial returns known as “leverage effect”, that was first 
documented by Black (1976) describes the tendency for changes in the financial re-
turns, especially in the stock market, to be negatively correlated with changes in stock 
volatility. A part of this phenomenon can be explained by the fixed costs that companies 
incur, such as financial and operational leverage. Lowering of stock price reduces the 
value of company’s equity relative to its debt, thus raising its debt to equity ratio, which 
raises the volatility of a stock making them riskier to hold. Black (1976) argues that the 
response of stock volatility to the direction of returns is too large to be explained by 
leverage alone. This conclusion is also supported by the work of Christie (1982) and 
Schwert (1989). Simply stated, if volatility is higher following a negative return than it 
is following a positive return, then the autocorrelation between yesterday’s return and 
today’s squared return will be large and negative.
It is interesting that empirical research using robust test statistics that are much more 
sophisticated than the simple Ljung-Box Q-test procedure, (see Hagerud 1997) has 
found that relatively few stocks show signs of asymmetric volatility clustering. Hagerud 
(1997) finds that only 12 out of his sample of 45 Nordic stocks exhibited a noticeable 
leverage effect. The volatility skew may still be very pronounced in these stocks, so 
where implied volatility smiles have noticeable skew effects, these may or may not be 
indicative of a leverage effect.
Literally, dozens of different variants of asymmetric GARCH models have been pro-
posed and tested in a vast research literature. However, asymmetric GARCH models 
have a fairly limited practical use. It is a good thing to be able to include the possibility 
of asymmetry in the GARCH model so that any leverage effect will be captured, but 
one should do so with caution because the estimation of asymmetric GARCH models 
can be much more difficult than the estimation of symmetric GARCH models.
To overcome some weaknesses of the GARCH model in handling financial time series, 
Nelson (1991) proposed the exponential GARCH (EGARCH) model. The conditional 
variance equation in the E-GARCH model is defined in terms of a standard normal 
variate tz . In particular, to allow for asymmetric effects between positive and negative 
asset returns, he considers the weighted innovation (Nelson 1991: 351):

(16)

where λ and  are real constants. The parameter ϕ allows for the asymmetry in the 
model. If φ = 0 then a positive surprise  the same effect on volatility as a nega-
tive surprise of the same magnitude. If  a positive surprise increases volatility 
less than a negative surprise. If , a positive surprise actually reduces volatil-

ϕ

( )0t j−ε >
1 0− < ϕ<

1ϕ< −1ϕ< −
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ity while a negative surprise increases volatility. A number of researchers have found 
evidence of asymmetry in stock price behaviour – negative surprises seem to increase 
volatility more than positive surprises of the same magnitude (Black 1976; Pagan and 
Schwert 1990; Engle and Ng 1993). 
Both tz  and | tz  | − E (| tz  |) are zero-mean IID sequences with continuous distributions. 
Therefore, E [ ( ) ] 0=↓tzg . The asymmetry of g ( tz ) can be seen by rewriting Equation 
16 into Equation 17. Following:

( ) (| |) 0

( ) (| |) 0
( )

λ+φ −φ ≥

λ−φ −φ <

  =  
  

t
t t t

t t t

z E z zif

z E z if z
g z (17)

For the standard Gaussian random variable 2, (| |)ε = πt tz . For the standardized Stu-
dent’s t distribution |)(| tzE  can be expressed as in Equation 18. Hence, |)(| tzE  equals 
(McDonald 1996: 430):

(18)

where B is a beta function2, and ν is degrees of freedom.
An EGARCH(p, q) model can be written as Equation 19 (Nelson 1991: 354):

(19)

where ω , α and β  are not restricted to be nonnegative, B is the back-shift (lag) op-
erator such that 1( ) ( )−↓ = tBg z t g z  and 11 ...+ β + + β p

pB B and 11 ...− − − q
qa B a B    are 

polynomials with absolute values of their zeros greater than one. Based on this repre-
sentation, some properties of the EGARCH model can be obtained in a similar man-

2  Beta function, B(p,q), is defined by (McDonald 1996: 455),
1

1 1
0 0

( , ) (1 )
(1 )

−∞ ∞− −
+

= − =
+∫ ∫

p
p q

p q

t
B p q t t dt dt

t
for positive p and q. B(p, q) can also be expressed in terms of a gamma function:
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2 2 2
1

1 1
,

q p

t i t t i t j
i j

a l j− −
= =

σ = ω+ + γ ε + β σ  ∑ ∑

ner as those of the GARCH model. For instance, the unconditional mean of ( )2ln ( )σ t  
is ω. However, the model differs from the GARCH model in several ways. First, it 
uses logged conditional variance to relax the positiveness constraint of model coeffi-
cients. Second, the use of )( tzg  enables the model to respond asymmetrically to posi-
tive and negative lagged values of tε . Several studies have found that the exponential 
GARCH model fits financial data very well, often better than other GARCH models. 
Even without significant leverage effects, the logarithmic specification appears to have 
considerable advantages (Taylor 1994). Unfortunately, exponential GARCH is difficult 
to use for volatility forecasting because there is no analytic form for the volatility term 
structure.
GJR-GARCH model is similar to the EGARCH model in spirit but have better forecast-
ing properties (Engle and Mezrich 1995). The GJR-GARCH model accounts for the 
asymmetry by allowing two different coefficients into the conditional volatility equa-
tion, and the GJR-GARCH model, by adding to volatility forecast in case of a negative 
return via an indicator function.
The GJR-GARCH put forward by Glosten et al. (1993) is given by Equation 20. Fol-
lowing:

(20)

tl  = 1      if   0<−itε ,

tl = 0     if    0≥−itε .

Positive surprises have an impact of α while negative surprises have an impact of γ+a .

4. Empirical results and discussion

Ljung-Box Q tests on mean adjusted returns and squared returns show that all analyzed 
stock indexes are characterized by significant autoregression and heteroskedasticity. 
The dynamics of the data generating processes are complex because changes in the ef-
ficiency of the market alter the long-run level and persistence of volatility. Furthermore, 
there is ample of empirical evidence on a positive relationship between trading volume 
and volatility. Supposing that some predictability (significant AR term) is present in 
the series, increasing efficiency tends to lower the level and persistence of volatility, 
but larger volume might push its level up. Volatility can be raised due to other reasons 
too, for example when news in the return series arrives more often and is of a larger 
magnitude than usual (shift in the volatility of error term). The increasing integration 
of the local stock markets into the global capital market may only further amplify this 
effect. 
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The estimation procedure consists of two parts. Since the final goal is to obtain identi-
cally and independently distributed (IID) innovation we first clean the conditional mean 
structure of the return series from the autoregression by using an ARMA(p, q) model. 
The order of ARMA(p, q) for each index is determined according to smallest value of 
Bayesian information criterion (BIC). Since the conditional mean equation for all of 
the Baltic indexes is complex in case of we RIGSE index even had to use ARMA(3, 3) 
model to successfully get rid of autocorrelation. In the next step, we estimate six dif-
ferent GARCH models in order to capture conditional variance and volatility clustering 
and get the insight into the true nature of volatility in the Baltic stock markets. Table 
2 reports the parameter estimates of all tested GARCH volatility models that were 
described in the previous section. For TALSE and BALTIC benchmark indexes, the 
sum of ARCH and GARCH coefficients is very close to one, indicating that the series 
is close to being integrated. Based on GARCH parameters TALSE index has the high-
est volatility persistence (0.896) and RIGSE index has the lowest volatility persistence 
(0.664), meaning that the shocks – “old news” in this time series fade unusually quickly. 
The mean values of GARCH volatility are significant for all of the indexes. The high-
est value is recorded for the RIGSE index (0.1), while the lowest value is recorded for 
BALTIC benchmark index (0.009). This means that, over the analysed period, RIGSE 
had the highest volatility while, as expected, due to the effect of diversification BALTIC 
benchmark index was the least volatile index. 
A very interesting finding is the result from GARCH-M estimation which shows that 
the coefficients of the conditional variance in the mean equation, denoted as 2β , are 
negative but insignificant. This suggests that higher conditional volatility – market risk 
is not significantly related to negative returns. 
Asymmetric EGARCH model parameters show the existence of the leverage effect in 
returns of all analysed indexes during the sample period. Surprisingly, we find the exist-
ence of a significant negative leverage (γ ) parameter for VILSE and RIGSE index, as 
oppose to TALSE and BALTIC benchmark where this parameter is significantly posi-
tive. The evidence is that much strong since GJR-GARCH model tells the same story. 
In case of VILSE and RIGSE index negative leverage parameter in EGARCH model 
(i.e. positive leverage parameter in GJR-GARCH model) means that as expected under 
the “leverage effect” paradigm “bad news” – negative returns increases volatility. As 
opposed to this in case of TALSE and BALTIC benchmark index the relation is reversed 
in that “good news” – positive returns increases volatility.
The results of the estimation of CGARCH(1,1) model show that the long-run compo-
nent is significant and positive for all indexes except VILSE index.  The results of the 
estimation of APARCH(1,1) model confirm that the asymmetric effects are present in 
TALSE and VILSE index (the asymmetric parameter is of the same sign as indicated 
by GJR-GARCH model). 
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5. Conclusion

This paper addresses the issue of conditional volatility modelling by using symmetric 
and asymmetric GARCH models on daily returns from Baltic stock markets. We empiri-
cally investigate stock market volatility using daily data from three Baltic stock indices 
and their joint benchmark index, namely Estonia (TALSE index), Latvia (RIGSE index), 
Lithuania (VILSE index), and BALTIC benchmark index. We find strong evidence that 
daily volatility from Baltic stock markets can be explained by GARCH-family models. 
For TALSE and BALTIC benchmark indexes, the sum of ARCH and GARCH coeffi-
cients is very close to one, indicating that the series is close to being integrated. During 
the analysed period, RIGSE had the highest volatility while, as expected, due to the 
effect of diversification BALTIC benchmark index was the least volatile index. A very 
interesting finding is the result from GARCH-M estimation which shows that the coef-
ficients of the conditional variance in the mean equation are negative but insignificant, 
suggesting that higher conditional volatility - market risk is not related to negative 
returns. Asymmetric EGARCH model parameters show the existence of the leverage 
effect in returns of all analysed indexes during the sample period. We find the existence 
of a significant negative leverage parameter for VILSE and RIGSE index, as opposed 
to TALSE and BALTIC benchmark where this parameter is significantly positive. The 
evidence is that much strong since GJR-GARCH and APARCH model tells the same 
story. In case of VILSE and RIGSE index negative leverage parameter in EGARCH 
model (i.e. positive leverage parameter in GJR-GARCH model) means that as expected 
under the “leverage effect” paradigm “bad news” – negative returns increases volatil-
ity. As opposed to this in case of TALSE and BALTIC benchmark index the relation is 
reversed in that “good news” – positive returns increases volatility. These findings are 
of interest to risk managers and investors investing in Baltic stock markets. 
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BALTIJOS VERTYBINIŲ POPIERIŲ RINKŲ NEPASTOVUMO MODELIAVIMAS 

B. Aktan, R. Korsakienė, R. Smaliukienė

Santrauka

Straipsnyje analizuojamas sąlyginis Baltijos vertybinių popierių rinkų (Estijos, Latvijos ir Lietuvos) 
nepastovumas, taikant eilę GARCH kintamumo modelių. Pažymėtina, kad tinkamai prognozuojant 
nepastovumą, galima geriau suvokti ir valdyti finansinių rinkų riziką. Straipsnyje remiamasi keturių 
Baltijos šalių kasdienėmis akcijų indeksų grąžomis; Estijos (TALSE indeksu), Latvijos (RIGSE indek-
su), Lietuvos (VILSE indeksu) ir sintetiniu palyginamuoju BALTIC indeksu. Pritaikius eilę GARCH 
kintamumo modelių, galima teigti, kad didėjanti rizika Baltijos šalių rinkose nebūtinai įtakos vertybinių 
popierių grąžos augimą. Tyrimo metu gauti rezultatai rekomenduojami finansų specialistams ir inves-
tuotojams. 

Reikšminiai žodžiai: Baltijos vertybinių popierių rinkos, sąlyginis nepastovumas, GARCH modeliai, 
finansinė rizika, grąža.
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