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Abstract. In game theory agents have the possibility to make binding agreements. The
agents are assumed to determine their strategies based on intended but bounded rational-
ity. The field of strategic games provides the possibility to an agent to understand the
optimality of his behaviour. In coalition and network games stability, Pareto-efficiency
and fairness of agreements is investigated. The paper shows the relationship between the
different fields of game theory in the case of 3 agents. On that basis it shows the ubig-
uity of time-inconsistency in dynamic setting due to bounded rationality, deception and
environment changes. The paper explains why allocation rules like the Shapley-based
Aumann-Dréze-value and the Myerson-value for coalition structures must be modified
in dynamic setting in order to consider the influence of excluded agents, the outside op-
tion. An accordingly modified allocation rule is introduced and investigated. It is shown
that the “Aumann-Dréze-value” and the “Myerson-value for coalition structures” remains
relevant for the case that the switching of the partner is connected with high costs. It is
shown through the example of enterprise cooperation in supply chains that low partner
switching costs require the introduced allocation rule that considers the outside option.
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1. Introduction

This paper addresses the question of the ubiquity of time-inconsistency in contract
conclusion and the “outside options” of cooperation partners. Enterprises or generally
economic agents who intend to form a cooperative relationship have to take into account
in dynamic setting that

* circumstances (i.e. environment),

« the ability of contemplation and

* the availability of information might change.
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With a big enough change, it possibly becomes advantageous for a cooperation partner
to break the contract and switch to a new partner that represents the “outside option”.

The allocation rules propose certain allocations in accordance to efficiency and fairness
criteria. They are part of coalition and network games where the stability of binding
agreements is investigated. Allocation rules represent the anticipation of the negotia-
tion result if all agents perfectly compete for their interests. If not all agents cooper-
ate, “coalition structures” are formed. The most important allocation rules for coali-
tion structures are the “Aumann-Dréze-value” and the “Myerson value for coalition
structures” (generalizations of the famous Shapley-value for coalition structures). Both
values equivalent in the case of 3 agents, when 2 agents cooperate and 1 agent is ex-
cluded. However, both values neglect the possible impact of the excluded agent on the
allocation. By giving his own offer, the excluded agent represents the outside option.
This becomes important in models with dynamic setting, if the excluded agent preserves
his offer, and the costs of switching the cooperation partner are not too high. The al-
location rule must then fulfil a stricter notion of stability where it is not required that
the agreement is binding (in accordance to coalition and network formation in non-
cooperative games).

It 1s shown that an allocation rule where Myerson’s “axiom of balanced contribu-
tions” (interpretation of symmetry) is modified fulfils these needs. Finally the applica-
bility of the proposed allocation rule in comparison with the other listed rules is shown
with a supply chain example.

The paper is structured as follows:

* Chapter 2 provides a definition of game theory and introduces the main fields “stra-
tegic games”, “coalition games” and “network games”.

* In chapter 3 an overview is given about the reasons why agents’ rationality is
bounded (despite of the intention to act rationally) and about the ubiquity of time-
inconsistency of agreements.

* The chapters 4, 5 and 6 introduce “‘strategic games”, “coalition games” and ‘“net-
work games” with 3 agents.

* In chapter 7 the allocation rule under consideration of the outside option is devel-
oped.

* In chapter 8 it is shown how the developed allocation rule can be applied in prob-
lems of supply chains if the switching of the cooperation partner is not too expen-
sive.

2. Definition and the fields of game theory

The object of game theory (Holler, Illing 2000; Peldschus 2008, 2009; Turskis et al.
2009) is the analysis of strategic decision situations, i.e. of situations in which the
result depends on the decisions of more than one decider in a way that the result cannot
be determined independently from the decisions of the others (Ginevicius et al. 2007;
Liaudanskiene et al. 2009; Sobotka and Rolak 2009; Ustinovichius et al. 2006). It is
a normative economic theory where the agent (economic decider) is led to an optimal
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decision (Jakimavic¢ius and Burinskiené 2009a, b; Mitkus and Trinkiiniené 2008; Zavad-
skas and Vaidogas 2008). He is aware of the interdependency and all consequences of
all decisions, and tries to act in the best possible manner (Plebankiewicz 2009; Ulubeyli
and Kazaz 2009). Interest conflicts and allocation problems are the typical issues (Brau-
ers et al. 2007; Zavadskas et al. 2008a). Game theory provides a language with abstract
and formal instruments in order to analyze and understand such situations (Ginevicius
and Krivka 2008; Ginevi¢ius and Podvezko 2008b; Peldschus and Zavadskas 2005;
Podvezko 2008; Zavadskas and Turskis 2008).

In the more restrictive definition i.e. by Holler, IlI-

Strategic gartnes (SG) (Ch. 4) ing (2000), each agent is aware of the agents’ inter-
- (non-Gooperafive games) _____ _ dependency and each one anticipates that all other
: (":Z;‘t"r'l‘;:gg cggé‘;:famg)games) (Ch.6) agents are aware of that interdependency as well.
: N However many approaches violate this narrow defi-
| g%zggg;i\?: g;enﬁéga) (€. nition. In figure 1 the structure of the main fields
of game theory is proposed, as it is understood in
Intended but bounded (Ch. 3) .
rational behavior this paper.

The preceding definition claims that the agent (or in
the strict case all agents are in accordance with the
ideal of the rational decider (“homo economicus”).

Fig. 1. Structure of main fields
of game theory

However due to

* the complexity of decisions,

* cognitive restrictions or the of lack of contemplation or

* incomplete information,
humans’ rationality is bounded. That is why in modern game theory the rationality
postulate is weakened to “intended rationality” (Simon 1994; Rubinstein 1998).

In the “strategic games” (or non-cooperative games) agents’ strategies are explicitly
analyzed. “Coalition games* (or cooperative games) delve into the problems of influ-
ence and dominance in cooperation relationships based on binding agreements. “Net-
work games” (or restricted cooperative games) are the newest direction of game theory
and a generalization of coalition games. Situations where communication is restricted
can be analyzed. Despite of the different formalizations, the fields of game theory are
very close to each other. Coalition games are a special case of network games and only
have a separate formalization due to historical reasons. The strategic games seem to
be separated very strongly (due to formalization), but each coalition or network game
has an implicit strategic game (Zavadskas et al. 2008b). If agreements are not binding
(or the costs of breaking the agreement are low), the concepts of coalition and network
games are in general not relevant.

3. Bounds on the “Homo economicus” principle and time-inconsistency

The theory of choice in economics is only a small part of the general philosophical
problem that deals with decision making (Ginevi¢ius and Podvezko 2009; Ginevicius
and Zubrecovas 2009; Podvezko 2009; Selih ef al. 2008; Zavadskas et al. 2009). The
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ideal of the rationally thinking and acting person, the “homo economicus”, is predomi-
nant in the economic theories. Though this ideal is barely achievable, it represents the
target-state for the normative approach. The figures 2a—2c¢ list
* the characteristics of a rational decider (2a),
* typical problems in the connection with rationality (bounds on rationality, Rubin-
stein 1998): contemplation and information (2b),
* the ubiquity of time-inconsistency (2c¢).

"Homo economicus": the rational decider (Ch.3.1)
« Individual rationality: perfect problem understanding,
consideration of al consequences of decision
« Preference orders: axioms of completeness and
transitivity, ordinal scaling (if no further assumptions)
« Assumption of cardinal scaling in game theory: intensity
of preferences (monetary value) is known
« Aggregation of preferences: attempt of > 2 agents
to achieve Pareto-efficient (collectively rational) agreement

Fig. 2a. Bounds on rationality: “Homo economicus” — postulate of perfectly rational decider

Problems with rationality: contemplation (Ch.3.2)

« Quantification: Assessment of values of relevant elements,
and recognition of the dependencies between elements

« Prospect theory: endowment effect, loss aversion,
refraining effect

» Myopia in dynamic setting: incapability of farsightedness
» Complexity problem: complexity classes of algorithms,
contemplation costs and possibilities of simplification

Problems with rationality: information (Ch.3.3)

« Imperfect information: insecurity about other agents,
insecurity about environment

Fig. 2b. Bounds on rationality: problems of contemplation and information

Time-inconsistency of agreements: (Ch. 3.4)

« Agreements becoming obsolete due to:
changing circumstances (preferences, environment, etc.)
improved contemplation, new information (learning)
obliviousness, imperfect recall (forgetting)

« Qutside-option: impact of excluded players
on coalition agreement due to giving possibility
offonning alternative coalition

Fig. 2¢. Bounds on rationality: ubiquity of time-inconsistency and outside options

3.1. Characteristics of the “Homo economicus”

According to the explicated definition of game theory, it must be distinguished between:
* Individual rationality of the regarded agent,
* Rationality of all agents as common knowledge (more restrictive but often assumed,
e.g. for Nash equilibria).
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The “Homo economicus” postulate requires from the agent perfect individual rationality.
This means particularly:

* Knowledge and understanding of the problem and its implications,

* Ability to optimize,

* Clear preferences.

* Indifference to logically equivalent descriptions of alternatives and choice sets.

The agent has to overview all consequences of his decisions perfectly and must under-
stand what the best possible decisions are.

He must be able to give a preference order to all possible strategies and must not be
influenced by different but equivalent descriptions of the problem. In order to recog-
nize his preference order, the agent compares all alternatives pairwise (Giith 2007). A
preference order is an n-tuple (o, ®', ..., ®") from the set Q" and fulfils the axioms
“completeness” and “transitivity””:
* Completeness: the decision maker determines the preference relations for all pairs
of alternatives,
* Transitivity: for the three elements o, ®’, ®" € Q the following is fulfilled: if
o> o and o' > o' then © > ®".

E.g. a general preference order of an agent with 5 alternatives is of the form:
o> >o0">o">an"" So far nothing is said about the intensity of the preferences.
Therefore in the general case only ordinal scaling (first, second, third, etc.) is justified.
However models with ordinal preferences are connected with fundamental problems
(Binmore 1994):

* Intractability: if an agent cannot recognize the exact value of his decision, complex-
ity increases tremendously.

* General impossibility of preference aggregation (impossibility theorem, Condorcet
1785; Arrow 1970): it is generally impossible to find commonly accepted (no dicta-
tor) agreements for >2 players and >3 alternatives, if the preferences are ordinal,
and the rationality requirement should be fulfilled.

Due to these problems, it is assumed that all agents exactly understand the monetary
values of their decisions. Von Neumann and Morgenstern (2007) have determined car-
dinal preferences as the standard in game theory. Thus in opposite, the social choice
theory attempts to deal with ordinal preferences.

The crucial criterion for preference aggregation in order to make an agreement is Pare-
to-efficiency (or Pareto-optimum, Pareto-dominance, collective rationality) that repre-
sents unanimity among the agents. If an allocation (e.g. distribution of goods among
agents) is Pareto-efficient, no agent can be put into a better position, without worsening
the position of another agent. That means that the total profit is distributed among the
agents and nothing is left. If all agents participate, “welfare is maximized”. However
Pareto-efficiency can also refer to a subgroup of agents (component-Pareto-efficiency,
link-Pareto-efficiency). In this case it is not welfare maximizing. Pareto-efficiency has
no connection to fairness considerations.
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3.2. Problems with rationality: contemplation

Human decisions and behaviour are in general not perfectly rational. However this
does not mean that they are chaotic. Simon (1994) introduced the distinction between
substantive rationality and procedural rationality.

Substantive rationality means behaviour that “is appropriate to the achievement of
given goals within the limits imposed by given conditions and constraints”. Therefore
all thinkable information and implications must be considered for strategy determina-
tion. Simon declares that substantive rationality is generally not achievable. In opposite,
behaviour is procedurally rational if it is the outcome of appropriate deliberation.
Roughly said, procedural rationality is the attempt to behave rationally. Impulsive deci-
sions without intervention of thoughts are forbidden. Procedural rationality is also called
intended rationality.

In connection with the bounded ability of contemplation, the following has to be
considered:

* Quantification of factors, events or processes (Chen 2006),

* Problems of prospect theory,

* Myopia in dynamic setting,

* Problems of complexity (Rubinstein 1998).

It is often difficult to quantify, i.e. to count or measure relevant factors, events or proc-
esses (Brauers and Zavadskas 2006; Figuera and Greco 2005; Ginevic¢ius and Podvezko
2008a; Ginevicius et al. 2006, 2008a, b; Liu 2009; Sivilevic¢ius ef al. 2008; Srnka and
Koeszegi 2007; Sijanec Zavrl et al. 2009). The

* values of the relevant elements have to be assessed (Aumann 1970) and

* the dependencies between elements have to be identified.

The quantifiable components of a problem have to be separated from the non-quantifia-
ble ones. In the best case it is possible to depict a problem perfectly in a formal way and
quantify all elements on a cardinal scale (determination of monetary value). However if
this is not possible, it must be assessed in the particular case in how far approximations
lead to usable models and results.

The prospect theory of Kahneman and Tversky (1979) deals with systematic mistakes
of human contemplation if not all information is known. These are typical mistakes that
are approved by experiments:
» Overconfidence bias: people often overestimate their ability of understanding a
situation and determining the right strategy,
* Endowment effect/loss aversion: people valuate thing higher if they possess them,
* Pseudo-certainty/reframing effect: people’s decisions are often influenced by the
way an uncertain situation is expressed.

Arieli (2008) has given new important contributions at the field of systematics of incor-
rect inferences, like the systematic human weakness to assess one’s own willingness to
pay and how it can exploited by smart negotiation.
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In dynamic setting, myopia is the incapability to understand and predict all future
implications of one’s own decisions (Dutta ef al. 2004). Especially the stability of one-
shot agreements might not be ensured if the game is dynamic. Connections between
the agents may fall apart and other connections occur. The questions “Where will it all
lead? Is the end result good or bad for me?” (Aumann and Myerson 1988) brings out
the claim of farsightedness, i.e. the prerequisite of rationality in decisions with dynamic
implications.

Complexity of problems restricts both the ability of humans and machines to make
rational decisions. Particularly

« if the number of players increases,

« if information is incomplete,

« if players deceive,

* or the game is dynamic etc.,
complexity can increase tremendously. It is barely possible to measure the effort that an
agent puts into contemplation. Therefore, in order to classify the complexity of game
theoretic models, the approach of complexity classes of algorithms is borrowed from
informatics. The most important complexity classes are (Steimle 2008; Nisan Rough-
garden 2007):

* Polynomial-time algorithm (P-class),

* Non-polynomial-time algorithm (NP-complete class),

* Exceeding of NP-complete class (NP-hard class).

P-class problems are the easiest ones. There exists an algorithm that needs a number
of calculation steps that can be expressed by a polynomial function, so that it can deal
with big numbers. Problems of NP-complete class need an exponential function and
therefore basically cannot deal with high numbers. Problems of NP-hard class are of
that high complexity that it is not known whether there exists a general formula that
estimates the computation steps. Usually, the finding of solutions in game theory is in
the NP-complete class. In network games many problems are even in the complex-
ity class NP-hard. However, the computer verification of an already found solution is
mostly “just” in the simpler P-class.

If contemplation is connected with expenses, thinking about the problem becomes to
a part of the problem in a broader sense. Then it is rational to simplify the problem.
Problems of NP-complexity (exponential complexity growth) or NP-hardness (dubiety
whether complexity is quantifiable) need simplification in the case of big numbers.
Roughly said simplification can be reached by:

« implication (e.g. unification of agents to one representative),

* approximation (e.g. using of cardinal scaling).

Simplification in order to reduce complexity generally does not reduce the explanatory
power of a model. Friedman (1966) argues that models can be useful even if they are
based on wrong (or simplified) assumptions. Therefore models should be evaluated only
with regard to the application. An example is ancient sea navigation that was based on
earth-centred astronomy. Hence, incorrect assumptions are not necessarily a knock-out
criterion in game theory.
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3.3. Problems with rationality: information

Game theory has various approaches that deal with insecurity. Agents have to under-
stand consistently their own risk attitude when they face
* incomplete information about the moves and attitudes of other players (imperfect
information),
* incomplete information about external factors or environment.

In the case of incomplete environment information, Harsanyi (1967) has proposed to
depict nature, as if it was an agent. Games with incomplete information can be based
on the formula of conditional probability of Bayes, if new information successively
influences the decisions. However this is not the subject of this investigation.

3.4. The time-inconsistency of agreements

In dynamic setting circumstances steadily change, as the agents change their preferences
and the exogenous factors (environment). Additionally, as rationality is restricted by
contemplation and information problems, agents who intend to act rationally, stand in a
permanent process of learning and forgetting. Learning can be understood as

* the improvement of contemplation or

* the reduction of incomplete information.

Obliviousness (or imperfect recall) can be regarded as an antagonistic force to learn-
ing or simply learning with negative sign. It is the inability to remember all obtained
knowledge (Kuhn 1953).

These are some reasons why the time-inconsistency of agreements is ubiquitous.
Therefore in dynamic setting the stability notion of solutions has to be refined. E.g. the
net present value for breaking the contract can be compared with not breaking (Hell-
man 2008).

The outside option is the offer by an excluded agent to a participating agent to break
an existing agreement in order to start a new one. As soon as it is advantageous, rational
agents (single agents or groups) break the agreement (Casajus 2007). After Harsanyi
(1977) the outside option can refer to agents:

* that are within the agreement group or

* that are partly within the group and partly outside.

In this paper only the case of 3 agents is regarded, where one agent is outside the co-
operation and tries to “seduce” one of the 2 cooperating agents.
4. Strategic games (non-cooperative game theory)

Strategic games are covered by non-cooperative game theory. Though all fields of
game theory are at least implicitly strategic, the non-cooperative game theory has its
own formalization. Figure 3 gives an overview over strategic games.
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Strategy: complete determination of actions for
all situations based on available information

Strategies and strategic games: (Ch.4.1)
« Information: Depicted as matrices or tree diagram
« Function: information — action

Nash-equilibria and refinements: (Ch.4.2)
» Nash-equilibrium: assumption of all agents' rationality

Stochastic games: mixed strategies

Sequential games: backward induction
 Dominant equilibrium: no assumption about other

agents' rationality

Network (special case: coalition) formation: (Ch.4.3)
(Component-) Pareto-efficient Nash-equilibria:

« Coalition-proof Nash-equilibria

« Strong Nash-equilibria

Approval of coalition network formation:

« Coalitions: by all participating players

« Networks: by pairs of players

Fig. 3. Overview over strategic games

4.1. Strategies and strategic games

The strategy of agent i, s; is in the sense of game theory a function of the information
set (all available information) H; on the action set 4;. Hence a strategy is defined as
(Vega-Redondo 2003):

s; H, > A; with Vh e H; and s(h) € A(h).

The information is depicted in matrices or a tree diagram with knots and relations. A
strategy considers all possible outcomes for all thinkable situations, even if the prob-
ability of occurrence is expected as extremely low. All information has to be considered
and an agent who intends to play rationally constructs a stringent decision model.

A strategic game is a 3-tuple consisting of the players N, the set of all possible strategy
decisions §; and all possible outcomes =; (Vega-Redondo 2003):

SG = {N, (S}, {n;.;l}} with s, € S,.

4.2. Nash-equilibria and refinements

The Nash-equilibrium is a solution that has proven to be a fundamental concept in
strategic games in order to find the right strategy. It results from the mutual anticipation
that all other agents deploy optimal strategies and the rationality of all agents is “com-
mon knowledge”. In the Nash equilibrium no agent has an incentive to deviate. The
strategy choice is optimal because no agent can achieve higher outcome by deviating
in consideration of the rational decisions of the other agents. Therefore the following
infinite chain of statements is valid:

* every agent acts rationally,

* every agent knows that every agent acts rationally,

* every agent knows that every agent knows that every agent acts rationally,

e every agent ..., etc.
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A reaction function defines the assumed reaction of one agent on the assumed action of
the other agents. The Nash-equilibrium is a fixed point of (set-valued) reaction functions
formulated by Kukitani (1941). A fixed point is the intersection of a function with the
identity f(x) = x. Therefore, if the argument of a reaction function is a Nash-equilibrium
the result is the same Nash-equilibrium. Each agent selects an optimal strategy s; given
the optimal strategies of all other agents. For agent i the following must be fulfilled:

* * *
u (sl- ,S_i) Zu, (Si,S_l-) Vs,,s_; €S;.

In a stochastic game the agent does not select one alternative but he implements a lot-
tery over several alternatives according to his knowledge about the probabilities. This is
called a mixed strategy. In opposite, in a deterministic game he selects a pure strategy.
Pure strategies can be regarded as special cases of mixed strategies, where only the
probabilities 0 or 1 are allowed.

In a sequential game the agents face multi-stage decisions. At each stage the respective
strategy is dependent on the information set about the future and the previous steps of
the other agents. Sequential games are depicted in the form of a game tree. Important
applications are:
» games with time dimension,
» games with more than two agents or imperfect nature information after Harsanyi,
when one agent firstly has to wait for the decisions of others.

Then the Nash-equilibrium is determined by backward induction. That means that the
sequential game is fragmented into sub-games and the equilibria are firstly determined
for the chronologically last sub-games. Stepwise the equilibria are identified for the
preceding steps until all sub-games are included. The resulting optimal strategy path is
the Stackelberg Nash equilibrium.

The concept of dominant equilibria as the result of the iterated elimination of dominat-
ed strategies i1s very similar to the determination of the Nash-equilibrium. However the
strict assumption that all other agents act rationally is dropped. Thus dominant equilibria
are particularly relevant in games with bounded rationality. If an alternative is always
disadvantageous independently to the decisions of the others, it is crossed off the list.
The iteration is continued in the residual game. Thus for player i the following is valid:

*
ui(sl. ,S_l.) Zui(si,s_i) Vs,s ;€S

The results of the iteration are always Nash-equilibria but are rarer due to higher re-
quirement (Harsanyi, Selten 1988), as shown in figure 4.

Nash-equilibria:

« Assumption that all other agents act rationally

! Dominant equilibria:

| Result of iterated elimination of Pareto-dominated strategies
|« No rationality assumption about other agents

Fig. 4. Nash-equilibria and dominant equilibria as subset
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4.3. Network formation and the special case of coalition formation

Coalitions and networks can only be formed endogenously if they are mutually best
strategies (Hart and Kurz 1983; Kahan and Rapoport 1984; Joshi 2006; Ray 2007; Sun
et al. 2008). If one agent cannot force another one to “agree”, the agreements must
be self-enforcing. Self-enforceability means immunity to deviations by single agents
or subcoalitions. Pareto-domination (= Pareto-efficiency) is the precondition for self-
enforceability. The outcome cannot be dominated by other ones. Coalition or network
formation is never unilateral. Networks are aggregations of bilateral links and therefore
for each link the both participating agents have to agree. A coalition is a special case
of a network where each agent is linked to each other one equally. Oppositely, in order
to disband a coalition or network-link, only 1 participant needs to leave. This is shown
in Table 1.

Table 1. Necessary agents to form or disband a coalition or network-link

Coalition Network-link
Formation >2 agents Exactly 2 agents
Disbandment >1 agent 1 or 2 agents

Traditionally, non-cooperative and (restricted) cooperative game theory is divided by
the criterion of whether binding agreements are possible. However in dynamic setting
this border often blurs. Agreements might be binding not more than over one or few
rounds. There can be structural issues or contractual penalty that makes the exit from
the coalition or network costly. The crucial question in coalition and network games is
the stability of agreements (or the possibility of blocking agreements).

Regarding the difficulty of making binding agreements in the long run, two stability
approaches of non-cooperative games become relevant in coalition and network games.
Both are Pareto-efficient Nash-equilibria. They are relevant, if there is the possibility of
forming a coalition or network with at least 3 agents:

* the strong Nash equilibrium,

* the coalition-proof Nash equilibrium.

Aumann (1959) defined the “strong Nash equilibria” (SNE) as follows: “An equi-
librium is strong if no coalition, taking the actions of its complement as given, can
cooperatively deviate in a way that benefits all of its members.” In opposite to usual
Nash equilibria, the strong Nash equilibrium regards the possible deviations of all con-
ceivable coalitions instead of single agents. However that approach has two important
weaknesses. Firstly, the criterion is too strict so that the SNE rarely occurs. Secondly,
the subcoalitions that decide to leave the coalition do not care anymore about self-
enforcement (and actually need a binding contract). Bernheim / Peleg call this “internal
inconsistency”. They define “internal consistency” as the judgment of the validity of
deviations by the same criteria the original agreement is judged.

Therefore Bernheim and Peleg (1987), Bernheim and Whinston (1987) proposed the
coalition-proof Nash-equilibrium (CPNE). They define: “An agreement is coalition-
proof if and only if it is Pareto-efficient within the class of self-enforcing agreements. In

66



Journal of Business Economics and Management, 2010, 11(1): 56-96

turn, an agreement is self-enforcing if and only if no proper subset (coalition) of agents,
taking the actions of its complements as fixed, can agree to deviate in a way that makes
all of its members better off.” In other words, a coalition-proof Nash-equilibrium cannot
be attacked by a Pareto-superior subcoalition that cannot be attacked by Pareto-superior
subcoalitions themselves. That means internal consistency. In comparison to the strong
Nash-equilibrium it is less restrictive, because internal consistency of the deviating
subcoalition is a restriction on the restriction as shown in figure 5.

Pareto-efficiency: N=2
no Pareto-dominanceby other Nash-equilibria
Fm — e ____
I Coalition-proof Nash-equilibrium N=3
I deviating subcoalition must be internally
I consistent (restriction is restricted, thus less strict)
: coincides: Pareto-efficiencv + dominant equilibrium
I
I
I
I

I Strong Nash-equilibrium N=>3
| deviating subcoalition can be internally |
: nconsistent (strict restriction)

Fig. 5. Non-binding agreements: relationship of Pareto-efficient NE,
strong and coalition-proof NE

The CPNE has properties that make it very interesting in the context of coalition and
network formation:
* CPNE coincides with Pareto-efficient solutions that are dominant equilibria
(Moreno and Wooders 1996),
* CPNE almost always exist (Moldovanu 1992).

CPNE cannot be Pareto-dominated and at the same time it is not demanded that the
other agents act rationally. Nouweland (2003) argues that CPNE always exists if a game
has the property that additional agents always bring additional profit (superadditivity).
However though this demand is relatively weak, it is not always fulfilled either.

In the following chapters, the stability of binding agreements is only compared with the
stability notion of coalition-proof Nash-equilibria (non-binding agreements).

5. Coalition games (cooperative game theory)

The main feature of cooperative game theory or coalition games is that binding agree-
ments are made (Wiese 2005). The contracts the agents make are asserted by a higher-
ranking institution, usually the state. Agents that are connected by contracts, form a
“coalition”. Coalitions do not eliminate the agents as individual decision makers but act
as “representative agents” for the agents. Coalitions can be instances of institutions like
supply chains, cartels, syndicates, trade unions, political parties, etc. However, they are
ordinarily modelled in a neutral sense, without institutional implications. The fields of
coalition games focused on the one hand on

* the possibility and

* the stability
of sets of allocations. On the other hand they focus on rules that determine the alloca-
tions exactly. In this paper the transferability of utility between the agents without losses
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is assumed (TU-games). Aumann (1961) defines the following preconditions for utility
transferability:

« Utility is linear and divisible.

* There is an accepted medium (money) (Bergstrom and Varian 1985).

The generalized assumption of non-transferable utility leads to highly more complex
games (NTU-games) but is not regarded in this paper.

A coalition game CG = (N, v)

contains a non-empty set of agents and a characteristic function v that assigns outcomes
to all possible coalitions (Wiese 2005). v is a correspondence (set-valued function) be-
tween finite partly ordered sets (Peleg and Sudhélter 2003):

v : Powerset(N) = 2N — R, .

Thus characteristic functions of three agents have the following structure:
v(Powerset(3)) :v({A}; {B}; {C}; {4;B}; {4;C};{B;C}; {A;B;C}).

It is convenient and usual to normalize the outcomes of 1-agent-coalitions to 0:

v(Powerset(3)) = V(O; 0; 0; {4; B}; {4;C}; {B;C}; {A;B;C}).

Coalition: representative player as result of (Ch.5.1)
binding agreement

Characteristic (coalition) function:

values of all subcoalitions (components) of N players: 2N >R

« Possible properties: superactivity, convexity, balancedness

« Imputation sets: individual rationality (IR), Pareto-efficiency (PE)

« Dynamic setting: problem of time-inconsistency of agreements

: Stability notions of coalitions and axiomatic allocation rules

Fig. 6a. Coalition games (with transferable utility): characteristic coalition functions

Stability notions of coalitions and axiomatic allocation rules

Not balanced characteristic function: (Ch.5.3)
« Properties: grand coalition not stable, core does
not exist (empty), stable subcoalitions exist
« Allocation set: Maschler-Aumann-Bargaining set (Properties:
IR, component-PE, subcoalitions cannot block; outside option)
« Allocation rule: Aumann-Dreze-Value (Properties:
component-PE, balanced contributions, no outside option)

: Balanced characteristic function: (stable grand coal.) (Ch. 5.2)
| < Allocation set: core (Properties: IR. PE. subcoalitions

I influence but cannot block; power of all non-dummy agents)

: « Allocation rule: Shapley-value (Properties: PE,

| balanced contributions)

| o If characteristic function convex, Shapley-Value

I inside core

1

Fig. 6b. Coalition games (with transferable utility): stability notions, axiomatic allocation rules
for balanced and non-balanced characteristic functions
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The figures 6a and 6b give an overview of coalition games with the following issues:
* characteristic (coalition) functions (6a),
» games with balanced cores (6b),
» games with empty cores (6b).

As it 1s assumed in coalition and network games that higher-ranking institution assert
the agreement (self-enforceability is not required), the stability notion is less strict than
the non-cooperative games (CPNE, Aumann’s strong equilibrium).

5.1. Characteristic functions

Characteristic functions capture the potential worth of each coalition or subcoalition
of agents in a single numerical index. The values can be interpreted as the outcomes of
optimal strategies of agents that make binding agreements. Therefore strategic games
can be regarded as implicit in coalition games. The difficulties of the strategic interde-
pendence or of the transactions themselves are separated or eliminated. In chess, for in-
stance if the characteristic function would be known, it would simply state “white wins
(value: 1)”, “black wins (value: —1)” or “draw (value: 0)”. Therefore the characteristic
function is a collection of pre-solutions.

In a coalition game not all agents necessarily cooperate. There can be concurrently
several coalitions that together form a coalition structure CS (synonym: partition). In
that case the single coalitions are subcoalitions (synonym: components). In the special
case that all agents cooperate and the coalition-structure consists of one component it is
called “grand coalition”. Traditionally, in the coalition games, the components of a CS
do not overlap and are non-empty. However, this assumption is not valid in the more
general network games.

If a coalition game has a coalition structure with more than one subcoalition it is a
proper CS. As the agents decide individually rational, the notion of Pareto-efficiency
is modified to the more general “component-Pareto-efficiency”. In the case of only
2 connected agents (bilateral) it is the “link-Pareto-efficiency”. It means that Pareto-
efficiency is only achieved inside the subcoalition. In general individual rationality does
not imply the wish of overall welfare.

The left Hasse-diagram (picture of a power set) in figure 7 depicts all possible sub-
coalitions for three agents in the form of a half-ordered closed combinatorial structure
(Bilbao 2000). The right Hasse-diagram shows all possible and coalition-structures for
three agents.

The rows in the both Hasse-diagrams in figure 7 are interpreted as follows:

* First row: the “grand coalition” is shown. All three agents appear at the market as
one representative agent (monopoly, cartel, etc.). It is thinkable that a single agent
or subcoalition blocks or raises an objection. The partition is of one component and
is therefore not proper.

» Second row: on the left side all 2-person coalitions are shown. On the right side all
three possible {2-1}-agent partitions are shown. As the partitions have two com-
ponents they are proper. Each {2-1} partition is possibly dominated by a grand
coalition, blocked by a 2-agent subcoalition or one agent out of the 2-agents’-
component.
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(Sub-) Coalitions Coalitions-Structures
(components) (Partitions)
1. row A B, C) {4 B, C)

2. row

{tA CH{BY

{A B} {A C} {B, C}
{tA BY{CY {iB, C}{A}

{lA {B}{C}

Fig. 7. Hasse-diagrams for 3 agents (left: all (sub-) coalitions; right: all coalition structures)

 Third row: these are “single-agent-coalitions” as the number of components equals
the number of agents. Such a partition implies a strategic game without binding
agreements.

» Lowest row: The empty set has the value 0. There are no exceptions.

An imputation set (synonym: budget constraint) contains all Pareto-efficient allocations
of a particular coalition. A characteristic function contains the values (total outcomes)
of all possible coalitions or subcoalitions. Thus, imputation sets fulfil the minimal rules
. individual rationality,

. Pareto-efficiency.

An imputation set is formally:

X; 2vi5i= {A;B;C}}
x=2v({i})

Geometrically, an imputation set is an (N-1)-dimensional simplex (N: number of agents).

A simplex is an n-dimensional generalization of a triangle. For instance, 4 cooperating

agents in a TU-game have an imputation set in the form of a tetrahedron (3 dimensions)
in a 4-dimensional space.

I.Setz{xeiﬁN:

Figure 8 shows examples with 3 agents (all variants with 2 agents are inclusive). The
three lines under the triangle represent the respective budget constraints / imputation
sets for the 2-agents coalitions {4; B}, {4; C}, {B; C}. These lines (2-simplexes) are
delimited by the axes due to the individual rationality (each agent obtains 0 without
cooperation). In the case of 3 agents the imputation set is a triangle (3-simplex in R3).
That triangular 3-person imputation set is above the 3 2-person imputation sets. This
is because in this example all agents together can achieve more profit than two agents
alone (superadditivity). At the edges, one of the three agents does not obtain anything
from the profit. Furthermore, in the corners one agent obtains everything and the other
two nothing. Usually this 3-persons imputation set is depicted as projection triangle,
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Core (if game balanced)

Fig. 8. Imputation sets of a superadditive and balanced characteristic function
with 3 agents for all 2-agents’ subcoalitions and the core (chapter 5.2)

where the origin of the coordinate system is exactly in the middle of the image, as
shown in the next chapters.

Three important properties of characteristic functions in the context of dominance or
blockings are:

* superadditivity,

* balancedness,

* convexity.

Superadditivity means that the total profit increases monotonously if new agents enter
the coalition. The imputation sets in figure 9 result from a superadditive characteristic
coalition function with 3 agents (because the triangle is above all 2-agents imputation
sets). Formally expressed that means for all subcoalitions R, S < N, if the coalitions do
not overlap:

v(R)+v(S) < v(RUS).

Balancedness is crucial for the dominance of the “grand coalition” over the subcoali-
tions. The following relation ensures balancedness:

v(N)Z(Nl Jxﬁv(zv\j).

— A

With a balanced characteristic function the “grand coalition” provides a higher value
than the “sum of all coalitions where 1 agent is missing, divided by the number of
these”. Then it is possible to form a grand coalition in a way that it cannot be blocked
by any subcoalition (or single agent). In characteristic functions with 2 agents balanced-
ness is identical with superadditivity. In the case of 3 agents, superadditivity is implied.
Balancedness has the following condition:

v(A;B) +v(A;C)+v(B;C)

V(A;B;C)Z 5 )
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Convexity of a characteristic function means that the larger a coalition the higher is
the marginal contribution of any entering agent. Convexity implies superadditivity but
goes one step further (Topkis 1998). If a new agent enters the coalition, all agents in
the coalition benefit. A coalition game (V, v) is convex if for all (sub-) coalitions S, S’
with S © S’ the following is fulfilled:

v(SUi)—v(S)Sv(S’Ui)—v(S’).

In order to illustrate superadditivity, balancedness and convexity, four examples of char-
acteristic functions are given:

1. v=(0; 0; 0; 40; 60; 50; 0)
2. v=(0; 0; 0; 40; 60; 50; 65)
3. v=(0; 0; 0; 40; 60; 50; 75)
4. v=(0; 0; 0; 40; 60; 50; 120)

The characteristic function 1 is not superadditive because the “grand coalition” provides
a profit of 0. Therefore balancedness and convexity are disproved as well. Example 2 is
superadditive, what means that the grand coalition provides the highest value. However
as it 1s not balanced, the grand coalition is dominated by subcoalitions. Example 3 is
superadditive and just balanced. Therefore there is exactly one profit distribution where
the grand coalition cannot be dominated. Example 4 additionally fulfils convexity. Eve-
ryone has become better off by the entering of the last missing agent.

In convex characteristic functions network effects (or network externalities) occur. For
instance, the more people use a technology, institution or standard (phones, industrial
norms, virtual markets, etc.) the more utility arises for each single user.

Repeated coalition games are a sequence of static games whose value is determined
by the (discounted) stream of payoffs. The characteristic function is time-separable, i.e.
the agents are aware and are able to recognize their valuation of the game at any point
of time. These are the sequences:

* sequence of characteristic functions:

(vl,...,vT);
* sequence of coalition games:
(CGH (N ),....CGT (NT)).

For instance, agents conclude a binding agreement in order to accumulate capital over
several periods. Furthermore discounting can be considered after the principle of net
present value (NPV).

If coalition games are repeated, the problem of time-inconsistency becomes important.
Changing environment, bounded ability of contemplation and incomplete information
cause permanent changes in preferences. The stability notion of CPNE is relevant, if
the agreement is not perfectly binding. This paper restricts on time-inconsistency in
games with non-balanced characteristic function so that there exists an excluded agent
that represents the outside option.
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5.2. Games with cores (balanced games): mutual influence in grand coalitions

The core is the set of possible outcomes for a grand coalition that cannot be blocked
by any other coalition or agent (Bhattacharya 2004; Kranich ez al. 2005). It is the most
important stability or dominance notion for grand coalitions (Jain and Vohra 2006). It is
always a subset of an imputation set (as shown in figure 8) and therefore at least fulfils
its rules “individual rationality” and “Pareto-efficiency”. Additionally, as the Russian
mathematician Bondavera (1963) and Shapley (1967) have shown, the core exists if
and only of the characteristic function is balanced (Bondavera-Shapley-theorem). The
core is defined as follows:

le. >(S)VS €2V \{empty _set}
ieS
Core={xe RV : i={4; B; C}

x=2v(i})

Allocation rules provide or propose a certain distribution that fulfils certain criteria
(axioms) like Pareto-efficiency or fairness (Holler and Owen 2001). Usually these val-
ues depend on the relative power of the agents. Therefore the total outcome of the game
is compared with the total outcome it would have without the agent what is called the
“added value” or the “contribution’:

Added value/contribution of player i = Value(coalition with i) — Value(coalition without i)

Power is also caused by threats. Then the “contribution” consists of not implementing
the threat in comparison with implementing.

The most popular allocation rule in literature (Shapley 1953) that depicts relative power
is the Shapley-value S/ (for grand coalitions). It assumes that the agents do not know
ex ante in which order the grand coalition will be formed and that they are risk neutral.
It is defined as follows:

S[\(n—[s]-1)"

n!

Sh; (V)ZZSQN\{i} [V(Su{i})—v(S)].

There are several equivalent axiom systems for the Shapley value. Two important systems
are presented here. The first one is the original proposition by Lloyd Shapley, the second
one by Roger Myerson. Shapley (Winter 2001) defines the axioms “Pareto-efficiency”,
“symmetry”, “linearity” and “dummy agent”. Pareto-efficiency determines that the
complete outcome is distributed among the agents. Symmetry is the fairness condition
that was firstly written down by Aristotle (Stanford Encyclopedia of Philosophy 2007).
The relative outcome of each agent only depends on the relative contribution. Linearity
assures the invariance to linear transformations and the dummy agent axiom determines
that those agents who do not contribute anything to the common profit do not obtain
anything of it. Only the Shapley-value exactly fulfils there requirements.

However there are other equivalent axiom systems that yield the Shapley-value. Roger

Myerson has proposed a value for games with communication restrictions and has
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shown that the Shapley-value is a special case. His axiomatization of the Shapley-value
has two requirements (Myerson 1980):

* Refinement of Pareto-efficiency: valid for N and all subsets of N.

* Balanced contributions.

Thus in the case of 3 agents, not only the total outcome is distributed, but also the dis-
tribution among all pairs of agents is component-Pareto-efficient. The refined Pareto-
efficiency axiom is:

For all S € N: Z Sh. (v) = v(S).
ieN
The axiom of balanced contributions means for the grand coalition or a subcoalition

that the cutback of outcome for each agent is equal, independent from which agent
exits. For all S & N:

Sh; (v(8)) = Sk, (v(S\{/})) = Sk, (v(S)) = Sh, (v(S\{i})).

For the stability (= non-blockability) of allocations that are determined by the Shapley-
value it is important to distinguish whether the characteristic function is convex or not
(Shapley 1971). If the characteristic function is

» convex: the Shapley-value lies inside the core,

* non-convex: it lies outside the core.

Therefore only with convex characteristic functions the Shapley-value proposes an al-
location that cannot be blocked by subcoalitions.
Despite of the wide applicability the Shapley-value has its limitations. These are:
* It can be regarded as a recommendation for fair division. However it neglects the cru-
cial questions of stability and dominance (that are covered by concepts like the core).
* Profit is only distributed among grand coalitions, when no subcoalition is able to
block.
« It is calculated before the grand coalition started to form (ex ante value).
* It is assumed that the agents care about the order of coalition entrance, they do not
know it and are risk neutral.
* In the original version the utility is transferable and the distributed good is homo-
geneous.

Now three examples are given to illustrate the relationship between the core and the
Shapley-value in the case of balanced characteristic functions. These can be snapshots
of a dynamic game where formerly made agreements become time-inconsistent:

(G1 (N,vl),G2 (N,vz),G3 (N,v3))
In figure 9a the characteristic function
vl =(0; 0; 0; 20; 15; 10; 30)

is given. The last value 30 is the common profit that can be allocated with the restric-
tions of the imputation set. It determines the size of the triangle. A subcoalition {4; B}
achieves 20, {4; C} achieves 15 and {B; C} 10. In all points of the imputation set each
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agent contributes to the common profit. However at the edges the agent of the respective
opposite corner is excluded from profit distribution/allocation. Therefore the edges repre-
sent the 3 possible (2-agents) subcoalitions. At the corners, one respective agent gains eve-
rything, and is therefore a dictator. The core contains all allocations that cannot be blocked
by subcoalitions. However the lighter areas are not stable because they can be blocked.

The Shapley value proposes a “fair” division of the total profit into (12.5; 7; 10.5) before
the agents have started to enter the game. As the Shapley-value lies in the core, the
game is convex and a stable and fair allocation is possible.

In figure 9b the characteristic function

v2 =(0; 0; 0; 20; 15; 10; 25)

is depicted. The grand coalition profit is decreased to 25. Therefore the imputation set
triangle is smaller than in figure 9a. The core is relatively small because the agents
A and B can almost achieve the grand coalition profit without C. The function is not
convex so that the Shapley-value lies outside the core. It can still be profitable all if
C enters the {4; B} — subcoalition, but C cannot expect a “fair” solution (that is based
on “balanced contributions”, Shapley-value, etc.).

Figure 9c shows the characteristic function

v =(0; 0; 0; 20; 15; 10; 20).

(0; 0; 30) Coalition Values

AB 20

AC 15

BC 10

ABC 30

Core o 7 Shapley-value
/\ Shapley-value (12.5; 10; 7.5) 125
A / B B 10
(30; 0; 0) (0; 30; 0) 75

Fig. 9a. Balanced, convex characteristic function, Shapley-value inside the core

(0 0; 25) Coalition Values

Shapley-value (10.8; 9.3; 5.8)

AB 20
AC 15
BC 10
ABC 25

Shapley-value

10.8
A B 9.3
(25:0;0) (0;25,0) 58

Fig. 9b. Balanced, non-convex characteristic function, Shapley-value outside the core
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(0; 0; 25) Coalition Values

AB 20

AC 15

BC 0

ABC 20

Shapley-value
Shapley-value (12.5; 5; 2.5)

O 125

A Core (line) B B 5
(25, 0; 0) (0 25:0) 25

Fig. 9¢. Balanced, non-convex characteristic function with edge-core, participation of

As the whole core is at the edge, all allocations inside the core are also stable for the
subcoalition {4; B}. However, only coalitions where agent A participates make profit.
If there is already the subcoalition {4; B}, C can join but neither brings harm nor util-
ity, so that each attempt of C of participating in the profit division can be blocked. On
the other hand if B claims a share that is >5, C can block it as well, so that despite of
being “excluded”, C has tremendous power on the allocation (outside option). Thus it
is a peculiar case that the core or elements of the core lay at the edge, where it does not
matter whether the grand coalition “officially” exists as it is equivalent to an according
2-agents-coalition (2 agents can make a stable agreement without officially leaving the
grand coalition).

The change of the characteristic functions over the time leads to time-inconsistency of
agreements. Both

« Stability, fairness and

* the bindingness of the agreement
are challenged. Hence, if the costs of breaking the agreement are “sufficiently low” the
stricter notion of stability of non-cooperative games (i.e. CPNE) has to be investigated.

5.3. Games with unbalanced characteristic function (empty core)

If the core is empty, each grand coalition can be blocked by subcoalitions. Coalitional
games with proper coalition structure come into the focus. Casajus and Tutic (2007)
propose the partitional core (PCore), a generalization of the core for coalition struc-
tures. An important allocation rule for games with coalition structures is the Aumann-
Dreéze-value (AD-value) (Aumann and Dreze 1975).

An approach that is very close to the PCore and is well investigated, is the bargain-
ing set M that was introduced by Maschler and Aumann (Davis and Maschler 1962;
Aumann and Maschler 1964). It is a generalization of the core but provides informa-
tion about the stability of payoff allocation if the core is empty. In the context of the
bargaining set, a negotiation is described as a sequence of objections and counter-
objections. It is regarded as a kind of stability when no objection (that is not neutralized
by counter-objections) is made against an allocation. The objection can also be made
by any subcoalition of agents so that concept of strong Nash equilibria is implicit in
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the bargaining set M (thus CPNE implicit as well). In the case of convex characteristic
functions the core and the bargaining sets are identical (Peleg and Sudholter 2003). The
bargaining set J is the set of stable coalitionally rational payoff configurations with the

* payoff configuration: (S, x) and

* coalitional rationality: in > v(S ) Sfor all S & M.

ieS

However, the disadvantage of all PCore approaches is that the does not exist any general
solution algorithm yet, so that only particular problems can be analyzed in a structured
way. Hence, in general it is not possible to state the complexity class of calculating a
PCore. Only if it is specified in a way that the calculability is assured, complexity does
not exceed NP-completeness.

The AD-value implements a Shapley-value like calculation within a “productive”
(2-agents’) subcoalition. In a coalition structure with 3 agents where A and B are pro-
ductive CS = {{A;B} {C}} , the profit is distributed component-Pareto-efficiently and in
a balanced way (in this case equally) between A and B. That means that for {4; B} as
the productive component:

>, AD; (v({4:B}))=v({4:B})
ie{A;B}
is valid. Thus, the subcoalition profit is distributed as follows:

AD:(V({A;B}),v({A;B}),OJz(l,l,oj .

2 2 2°2

The AD-value is a generalization of the Shapley-value because in the case that the pro-
ductive subcoalition is the grand coalition, both allocation values are identical.

In the following example with 3 characteristic functions (i.e. dynamic setting) the grand
coalition is forbidden. With this restriction the problem is calculable. The bargaining
set M is similar in this case with the edge-core of figure 9c. Figure 10a shows the
characteristic function:

v, =(0; 0; 0; 20; 15; 0; 0) .

If the partition {{A; C} {B}} is formed, firstly all payoffs that fulfil ({A; C}; (xA ,0,15-x, ))
with x4 € [0;15 ] , are candidates for an agreement between A and C. However the agents
A and B can bring the objection (that cannot be countered):

({A;B};(xA,2O—xA,o)) with x, € [0;20]. Therefore no coalition between A and C
is stable in the sense of the bargaining set. If the partition {{A;B}{C }} is formed, the
candidates for an agreement between A and B are:

({A;B};(xA,ZO—xA,o)) with x, €[0;20].

The agents A and C can only bring the objection (that cannot be countered):
({4:C}s(3 4,015 x,0)) with x, €[0;15].

Thus the remaining JM-bargaining set is:

({A;B};(xA,ZO—xA,o)) with x , €[15;20].
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Figure 10b shows the characteristic function

v, =(0; 0; 0; 20; 20; 0; 0), and figure 10c shows

vy =(0; 0; 0; 20; 40; 0; 0).

In the case of v,, B and C give A the same proposal. B and C bid against each other till

A gains the complete profit. In v, C has the better proposal, but the possible outcomes
are influenced by B.

Coalition Values

AB 20

AC 15

il BC 0

ABC 0

No grand coalition
AD-value

AD-value 10

A B B 10
M-bargaining-set

gaining (X3, X5...) 0

Fig. 10a. Bargaining set MM (grand coalition prohibited), AD-value
not stable against blocking by {B; C}-coalition

Coalition Values
AB 20
X .. AC 20
BC 0
AD-value ABC 0
No grand coalition
2 AD-value
A AD-value 10 A 10
B B 10 B 0
M-bargaining-set (point) (X, X5...) 0 I 10

Fig. 10b. Bargaining set J (grand coalition prohibited), B and C of equal power,
2 AD-values that are both not stable

Coalition Values
AB 20
AC 40
Xy, ...
BC 0
AD-value -
No grand coalition AB 0
AD-value
M-bargaining-set 0
A B B 20
Xy, Xg...
(A! B ) 20

Fig. 10c. Bargaining set J (grand coalition prohibited), with stable AD-value
78



Journal of Business Economics and Management, 2010, 11(1): 56-96

The bargaining set with prohibited grand coalition considers the outside option because
it 1s influenced by the excluded agent. Allocations inside the bargaining set also are
stable in the sense of CPNE. Due to the fact that the AD-value generally is not part
of the bargaining set M, it does not fulfil the notion of stability that is claimed in this
paper for models with dynamic setting. The proposed allocation rule is a modification
of the AD-value.

6. Network games

In coalition games it is the classical hypothesis that all coalitions of agents are possible
without restrictions and the intensities of the connections are identical. However, that is a
simplification that often is not justifiable. The formation of coalitions might be restricted
due to structural issues, laws, culture ideology, etc. For instance one agent can be a busi-
ness partner of two agents. However these two other agents are not connected among
each other. This generalization leads to the field of “restricted cooperative game theory”
or “network games”, introduced by Myerson (1976), Aumann and Myerson (1988).

Network games NG = (N, v, g) are based on non-directed graphs where bilateral links
between the agents are united to networks. In the dynamic setting it is:

NG! :(N,vl,g),..., NGT :(N,VT,g).

As shown in Table 2 the number of possible subnetworks g (excluding the empty net-
work) for N agents is 2V"!. Therefore it is identical with the number of possible sub-
coalitions.

Table 2. All possible networks with 3 agents based on bilateral links

Agents (Sub-) networks g
3 {{AB}{AC}{BC}} (coalition game)
{{aBHacy) {{4B}{BC}) {lact{scl)
2 {4B} {4C} {BC}

Coalition games are the special case where all agents are connected with each other,
i.e. coalitions are networks with % links for N agents (in Table 2: 3 bilateral

links with 3 agents). Restrictions are the crucial feature of network games. In order to
describe a network, it is necessary to define

* the characteristic (network) function and

* the restrictions

The information about the restriction is usually given by the maximally formable net-
work (here: max-network). For instance, if the connection between B and C is forbid-
den, the “max-network” is: g ={A4B, AC}.

The matriod in figure 11 depicts that such a restriction has tremendous impact on the
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possibilities of network formation. The rows of the matroid represent the numbers of
bilateral links. In the
* 1. row: there are 3 links, all agents are connected with each other, grand coalition
(S = N), corresponds to a typical coalition game.
+ 2. Row: only the 2-link network {{AB} {AC}} is possible, if all agents are involved.
* 3. row: {AB} and {AC} are possible, corresponds to subcoalitions.
* 4. row: empty network, the game is purely non-cooperative.

Graphs in the restricted game with the network: {AB, AC}
c

Links allowed i\ Link forbidden
A\
\\
A B

Shapley value relevant Grand coalition (forbidden)

3-link network 1. row

S=N

Myerson value relevant
{4 BY{A Ch

2-link network 2. row
K S=N

Link-forbidden

1-link network {A B} ; 3. row

Empty network
Value = 0 W

Fig. 11. Impact of restriction on possible networks with g = {AB,AC }

Thus, network games have the possibility of depicting the interaction between 3 agents
much more precisely than the (traditional) coalition games. However this precision is
bought by tremendously higher computational complexity. Many concepts of network
games are deep in the complexity class “NP-hard” (Pin 2005).

Basically, all concepts of coalition games can be generalized to network games. How-
ever, that field is in its pioneer phase, literature is still sparse and fragmentary. Recent
development has been triggered by Jackson (2003a, b), Bilbao (2000), Jackson and
Nouweland (2003), Demange and Wooders (2005). Just in 2008, a generalization of the
concept of the core (Zhao 2008) has been proposed. Such contemporary contributions
can be regarded as introductory and exemplify the immaturity of network games.

Figure 12 shows the approaches of network games classified by the property of balanc-
edness of the characteristic network function. Therefore it is furthermore assumed that
utility is transferable.
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Network: aggregation of bilateral coalitions (Ch.6.1)
Characteristic network (Myerson) functions:
« values of all allowed subnetworks

« Dynamic setting: problem of instability
of agreements due to time-inconsistency

Stability notions of networks and axiomatic allocation rules

Not balanced characteristic network function: (Ch.6.3)
« Properties: restricted grand coalition not stable,

network-core does not exist (empty), stable

subnetworks exist, outside option

« Allocation rule: Myerson-valuefor coalition structures
(Properties: link-PE, balanced contributions,
no outside option)

Balanced characteristic network function: (Ch.6.2)
« Properties: stable restricted grand coalition possible
« Allocation set; network-core (Properties: IR, link-PE,
subnetworks influence but cannot block)
« Allocation rule: Myerson-value
(Properties: Component-PE, balanced links)

Fig. 12. Approaches of network games as generalization of coalition games
(with transferable utility)

6.1. Characteristic network functions (Myerson functions)

The characteristic network functions (Myerson functions) define the values of all pos-
sible networks and are determined by the single bilateral links with g and an arbitrary
network with § & N agents:

vEs = Z v(link).

linkeg

In a characteristic network function, each possible (sub-) network obtains a value. Due
to the enormous amount of possibilities and the tremendous complexity, this paper re-
stricts on the example of characteristic network functions with 3 agents and 1 forbidden

link (here between the agents B and C). This is an example of a balanced characteristic
network function:

0;8]<1
& _|sg={4B]
80;¢ = { 4B, AC)

6.2. Restricted grand coalitions: balancedness
and Myerson-value as allocation rule

As in the coalition games, balancedness is the precondition for the stability of the big-
gest possible network with restrictions, the restricted grand coalition. The referring
stability approach is the “network-core” (Zhao 2008) that is a core with restrictions,
(very similar alternative: “pairwise stable network”, Jackson and Nouweland 2003). An
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allocation in the network-core is stable because it cannot be blocked by subnetworks
(or single bilateral links). The network-core is a generalization of the core in ordinary
coalition games and has the properties (not an axiom system):

* Individual rationality.

» Component-Pareto-efficiency.

* Influence by all players.

Whether the characteristic network function is balanced, depends on the value of
Zmax ={AB,AC} . The question is: What is the minimal value of g, . so that there
exists an allocation that is not blockable by 2 agents through a single link? In the case
of 3 agents and 2 links, Bondavera/Shapley’s formula is valid:

oy [y vt
v(N)z| T

Figure 13 shows, how in the case of vi4iB} =60 and v4C) = 40, the balancedness is
asserted with vUABHACH > 50,

(0 0; 20) Restricted grand coalition:
{AB; AC}
Subnetwork values
A8 | 60 | Ac | 40
Balancedness (existence Just balanced 50
of network-co

, pairwise
stability) with: =

Myerson-value for
{{AB}{AC}} = 80

A B A B c
0. 60 . an.
(50; 0; 0) 0:30:00 [ 509 | 31.25% | 18.75%

Fig. 13. Bilateral links and pairwise stability of the network with number example

The allocation rule for restricted grand coalitions is the Myerson-value (Navarro and
Perea 2005; Pin 2005; Kajii ef al. 2008) that is a generalization of the Shapley-value.
Instead of subcoalitions that form the grand coalition stepwise, subnetworks form the
restricted grand coalition stepwise. In figure 13, there are 2 paths that lead to the “max-
network™”:

g8 _y GllABYACY), glac) _, Gi{aB)iacy)

The Myerson-value is the expected value of the contribution, which the single agent

gives, if it is not known yet, in which order the restricted grand coalition is going to
be formed:

My;(v)= 2 St |,S| _1)![V(gsU{i} ) —v(gs )} :

ScN\{i} n:

Myerson’s original axiom system is:
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» Component-Pareto-efficiency for each link:

Z My;(N,v,g)=v(C) for each link,
ieC

+ axiom of pairwise balanced contributions:

My;(N,v,g)— My, (N,v,g\{j}) =My;(N,v,g)- My, (N,v,g\{i}).

These two axioms can only be fulfilled by the given formula for the Myerson-value.
For the characteristic network function v, , | the Myerson-value for the 3 agents is:
My 4. 40 =(50%,31.25%,18.25%) .

6.3. Non-balanced characteristic network functions

Non-balanced characteristic networks functions lead to a generalization of the idea of
coalition structures to restricted cooperative games. The restricted grand coalition
can be blocked by subnetworks that are restricted subcoalitions. However due to the
fact that

* individual rationality and

» component-Pareto-efficiency
are the preconditions for stability on the subnetworks, a generalization of the PCore
(i.e. bargaining sets) to network games is possible. However this problem is not solved
yet. The approach of pairwise stability (Jackson and Nouweland 2003) leads into this
direction.

The allocation rule is the Myerson-value for the coalition structures. In order to
distinguish it from the Myerson-value for restricted grand coalitions, it is called in this
paper Myerson-CS-value (It must not be confused with the CS-value for a-priori unions
by Owen (Holler and Owen 2001) that is not relevant in the paper). If the subcoalition is
unrestricted, it coincides with the AD-value. Taking the characteristic network function
of chapter 6.1, the both Myerson-CS-values are:

MyersonCS 5 = AD ;5 = (30,30,0)
MyersonCS ;- = AD ,~ = (20, 0, 20).

Non-balancedness requires: WABHACH 5

Figure 14 depicts the relevance of the allocation rules for particular networks. The pre-
ceding chapters have shown that the Shapley-value refers to the network without restric-
tions and the Myerson-value refers to a network, where all agents participate, but there
is a restriction. In opposite, the AD-value that equals to the Myerson-CS-value (with
3 agents), refers to a situation where there is only one link, and one agent is excluded.
However the excluded agent does not have any influence on the allocation. Therefore
the AD-value and the Myerson-CS-value neglect the outside option.
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Relevant allocatioq Possible networks with 3 agents
rules / number of links
C

Shapley i E

A B
Links: 3/3 g ={AB; BC; AC}

c C c
Myerson / \ /\
A ~B| A< B| AL------- B
Links: 2/3 9={AB; AC} | 9={AB; BC} | g={AC; BC}
c c (%
AD = Myerson-CS A . .
(outside-option N o
neglected) ," AN AN ,’/
A—3)|| Ai======= SB| As======= B
Links: 1 /3 g ={AB} g={AC} g ={BC}
C

No rule A
(no binding /
agreements) \

Ac---=--- *B
Links: 0 9={c}

Fig. 14. Relevant allocation rules and number of links of all possible networks with 3 agents

7. Development of an allocation rule for coalition
structures with outside option

Due to the problem of time-inconsistency, the applicability of the Myerson-CS-value /
AD-value is restricted to cases where the cooperation is determined and stable over the
complete duration. Due to high switching costs, no agent has the possibility to break the
agreement advantageously. In order to consider the opposite case of low switching costs,
an allocation rule is developed that considers the outside option. Table 3 depicts all sets
of stable allocations (based on the core) and allocation rules that were introduced in this
paper regarding the question of the outside option. It shows that the outside option is
only relevant for non-balanced games.

An outside-option-modified allocation rule for coalition structures (here: OOCS-val-
ue) with the consideration of the outside option is proposed with the following axioms:
* Component-efficiency:
> 00CS(N,v,g)=v(C) for the productive component
ieC
* Modified axiom of balanced contributions
The modification of the axiom of balanced contributions consists of a pre-stage, where
the winning cooperation partner transfers the value of the loosing cooperation partner
to the main agent. This coincides with the second-bid-auction of Vickrey (1961). After-
wards the balanced contributions axiom is used in the usual way. Thus:
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Table 3. Relationship of sets of stable allocations, allocation rules, outside option

Sets of stable allocations Allocation rules (values)

Grand coalition Core Shapley-value

Influence of all agents

Coalition structure PCore Aumann-Dreze-v.

outside option no outside option

Restricted grand coalition  Restricted core (“Network-Core”) Myerson-value

Influence of all agents

Restricted coalition Restricted PCore Myerson-v. for coalition
structure structures
outside option no outside-option

1. For the agents A4, B, C € N: if 4 has to select the cooperation partner and v(4B) >
v(AC), then A selects B and first demands the amount: v(4AC) by agent B.

2. Afterwards the contributions are balanced:
00CS ,(N,v,g)-00CS ,(N,v,g\{B}) =
0O0CS (N,v,g) - 00CS (N,v,g \{4}).
So that A and B divide the difference of B’s and C’s offer equally.

For three agents the outside-option-modified allocation rule for coalition structures
is as follows:

For v(AB) > v(40),

0OCS — vl - (V(AB) ; v(AC) ; v(4B) ; v(AC) ;Oj |

In comparison:

v(AB) V(AB)
AD — MySC —value = 5 ; 5 ;0 1.

In Table 4 the proposed OOCS-value is compared with the AD-value (=Myerson-CS-
value) in dynamic setting where {AC} increases continuously.

The figures 15a, 15b and 15¢ depict a process where at the beginning the offer of A
is better than that of B. However B continuously improves his offer. In 15b they are
identical and afterwards (15¢) B’s offer is better. The figures show the respective PCores
(here: equal to the cores) the AD-values (=Myerson-CS-values) and in comparison the
OOCS-values.

In these figures it is visible that the OOCS-value is always in the middle of that edge-
PCore (here equal to the core). In opposite the AD-value/Myerson-CS-value does not
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Table 4. Comparison of the AD-value (=Myerson-CS-value) with the proposed OOCS-value
for non-balanced characteristic functions

4B} SAAC) Non-bal. if: AD-value = proposed value

v{{AB}{Ac}} < MyCS-value (00CS)
60 0 30 (30, 30, 0) (30, 30, 0)
60 10 35 (30, 30, 0) (35, 25, 0)
60 20 40 (30, 30, 0) (40, 20, 0)
60 30 45 (30, 30, 0) (45,15, 0)
60 40 50 (30, 30, 0) (50, 10, 0)
60 50 55 (30, 30, 0) (55,5, 0)
60 60 60 (30, 30, 0) or (30, 0, 30) (60, 0, 0)
60 70 65 (35,0, 35) (65,0,5)
60 80 70 (40, 0, 40) (70, 0, 10)
60 90 75 (45, 0, 45) (75, 0, 15)
60 100 80 (50, 0, 50) (80, 0, 20)

Coalition Values

AB 20

AC 15

BC 0

ABC 0

00CS-value AD-value

AD-value = Myerson-CS-value 0

A B B 10

Core = PCore 0

Fig. 15a. Core, PCore, AD-value/MyCS-value and OOCS-value

if B’s proposal is higher than C’s

AD-value = Myerson-CS-value

Coalition Values

AB 20

AC 20

BC 0
ABC 0

OOCS-vaIue\\

Core = PCore

2 AD-value
\ A 10 A 10
B B 10 B 0
c

0 c 10

Fig. 15b. Core, PCore, AD-value/MyCS-value and OOCS-value
if B’s and C’s proposals are equal
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Coalition Values
AB 20
Core = PCore AC 40
AD-value = Myerson-CS-value
BC 0
ABC 0
AD-value
00CS-value 0
A B B 20
20

Fig. 15¢. Core, PCore, AD-value/MyCS-value and OOCS-value
after C has exceeded B’s proposal

fulfil this property. This has the following implications (valid if the costs of switching
or breaking the agreement are sufficiently low):

* An allocation in accordance with the OOCS-value does not depend on the bind-
ingness of the agreement as it is a strong equilibrium and hence a CPNE.

* While an allocation agreement in accordance with the AD-value possibly (if it is not
in the PCore or core) is broken immediately in dynamic setting, and OOCS-value
based agreement remains stable as long as it remains in the PCore or core.

* Being a CPNE, and agreement based on the OOCS-value does not require the
mutual assumption of others’ rationality.

8. Application of the introduced “OOCS-value”
for enterprise cooperation in supply chains

Finally the importance of the introduced allocation rule is demonstrated by the means of
an application in a supply chain, where an enterprise (the demander A4) is looking for the
supplement of a certain good and has the choice between two or more candidates (the
agents B and C). Each relationship with a supplier is connected with transaction costs
(e.g. administration cost). After “new institutional economics” each transaction is
connected with costs and the transaction costs determine industrial structure (Wil-
liamson 1985). Here it assumed that the transaction costs increase with each additional
supplier in a way that it is not worth to have more than one.

In game theory it can be depicted as a non-balanced restricted coalition game with
3 agents, where there is no link between the suppliers. The demander has to select a
supplier. The other one is excluded and represents the outside option. The 2 cases are
compared whether

* the switching costs for the demander are high (the agreement is binding) or

* the switching costs for the demander are sufficiently low (the agreement is not

binding).

In the example, the (unbalanced) characteristic network function at the outset is (4 is
demander, B is the stronger supplier and C is the weaker supplier):
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0;
60;g ={4; B}
& |40,g={4;C}
45;,¢ ={4B, AC}.

agents| <1

After the supply chain cooperation has started, the supplier C stepwise improves his
offer so that the value of g = {A; C } increases from 40 to 120. It is the 5-step sequence:

NGl(N,vl,g), ..., NG? (N,v5,g).

Figure 16 shows the process for the 2 cases of “high switching costs” and “low switch-
ing costs”.

Change of v(4; C)

AB AC1 AC2
60 0 30
AC3 AC4 AC5
60 90 120
40-120 O ]
Switching costs high:

AD-value = AD/MyCS-values

Myerson-CS-value
t=2..,5

A B c
t1-t2 | 30 30
t2-t5| 30 0 30

AD-value =

Myerson-CS-value Switching costs low:

A t=1.,2 00CS-values
Series of Pcores . 60 ° A| B | ¢C
(here = cores) = over time H 30 20 0

t2 45 15 0
t3 60 0 0
t4 75 0 15
t5 90 0 30

Fig. 16. Stability in dynamic supply chain cooperation, comparison
of high and low switching costs

High switching costs (agreement binding):

The demander 4 becomes unsatisfied with the agreement with B due to the improved
offers of agent C (time-inconsistency). Nevertheless he cannot break the agreement
advantageously. As C leaves the bargaining table immediately, 4 and B share the profit
equally due to Myerson’s axiom of balanced contributions. Thus, the Aumann-Dréze-
value or the Myerson-value for coalition structures is deployed.

Sufficiently low switching costs (agreement not binding):

Each agreement that is not the PCore (here equal to the core), can be blocked by an
alternative subgroup. The excluded agent C remains at the bargaining table as the “out-
side option”. Time-inconsistency steadily endangers the agreement. However “small
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changes” to not lead to a breach of contract as the allocation that is proposed by the
OOCS-value in is the middle of the PCore (core). Thus, an agreement that follows the
OOCS-value is not necessarily stable over the whole time of the cooperation. However
being a coalition-proof Nash-equilibrium neither the bindingness of the agreement is
required, nor that the agents mutually impute rationality.

Conclusions

1. Fields of game theory:

Basically, each game is strategic (non-cooperative), also the network and coalition
games despite of a very different formalization. The network and coalition games (as
a special case where the bilateral links are not restricted) investigate the stability of
binding agreements. However the results of an underlying strategic game are implicit
in the values of the characteristic functions. Thus, the relations between the fields of
game theory are:

Strategic games D network games O coalition games

2. Ubiquity of time-inconsistency of agreements:

In dynamic models the preferences, the knowledge of the agents and the environ-
mental parameters steadily change. Even if an agent intends to behave rationally,
this is not perfectly achievable due to bounded rationality. Additionally the ability
of contemplation can improve and new information can become available (learning
process), or the opposite possibly takes place (obliviousness). All these aspects have
the consequence that among the agents that have made an agreement there is at least
one that becomes dissatisfied. This engangers the stability of the agreements but does
not neccesarily lead to a breach as long as there is no better alternative.

3. Coalition-proof Nash-equilibrium (CPNE):

CPNE is a stability notion for coalition and network formation with 3 or more agents,
if the bindingness of agreements is not required. The CPNE is more plausible and has
less existence problems than Aumann’s “strong equilibrium”, due to the fact that it
claims that a subgroup that wants to block the coalition/network formation, must not
be blocked by another group (internal consistency). Additionally the CPNE is the sum
of Pareto-efficiency and the “dominant equilibrium” (does not require the assumption
of rationality of other agents). The investigation shows that (beyond the statement of
Bernheim/Peleg) the CPNE is qualified as a standard criterion for stability in dynamic
models with time-inconsistency.

4. Peculiarity of core at the imputation set edge:
The situation occurs that it does not matter whether a certain “third agent” (the agent
of the opposite corner) participates in the agreement or not. This agent neither takes
part in the profit division, nor he can block. An inofficial 2-agents-coalition forms,
despite of the fact that the grand coalition “officially” exists and is stable. The ex-
cluded agent restricts the set of stable allocations and therefore is an outside option.
Thus, for an allocation that is both in the core and at the edge of the imputation set,
the grand coalition and the refering 2-agents-coalitions are equivalent. All stable
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2-agents-coalitions yield the PCore (generalization of the bargaining-set M) at the
edge of the imputation set.

. Advantages and disadvantages of network games:

Advantages:

* Possibility to depict the relationships between the agents more precisely, restrictions
in communication can be considered.

* Each bilateral link can be specified separately, a coalition game with N agents

 N(N-1)

consists of ——= links.

Disadvantages:

* Drastic increase of complexity (however still moderate with 3 agents).

* Limited applicability under consideration of bounds of human and maschine com-
putability (complexity class NP-hard).

. Allocation rule with outside option:

The Aumann-Dreéze-value and the “Myerson-value for coalition structures” neglect
the outside option. The outside option becomes relevant when an agent that is par-
ticipating in the agreement, obtains the possibility to break the agreement and make

a new agreement with an originally excluded agent advantagously. The proposed

allocation rule considers:

* Component/Link-Pareto-efficiency.

* A modified Myerson-axiom of balanced contributions, where an auction is assumed
where the winning bidder firstly pays the bid of the losing bidder, and the difference
of the bids is shared after the balanced-contributions-axiom. Though it is compara-
ble with the Vickrey-auction, it is assumed for simplicity that the auction giver is
informed about the reservation prices of the bidders.

The allocation is stable against the deviations of subgroups of agents as it always lies

in the PCore (e.g. bargaining set M) and is a CPNE (no assumption of other agents’

rationality).

. Balancedness of the characteristic function as determinant of industrial structure:

The balancedness of the characteristic function in games with transferable utility
(TU-games) determines, whether a grand coalition or restricted grand coalition is
stable against the blocking by subcoalitions/subnetworks. I.e. with 3 agents, the bal-
ancedness is the condition that a demander cooperates with both suppliers. In a non-
balanced characteristic function (that is investigated in the paper) he cooperates with
maximally one. Non-balancedness is the prerequisite for the existence of excluded
agents that are an outside option.

. Applicability in industrial cooperation relationships:

In a dynamic model, in which a demander has the choice between two suppliers, and

the characteristic function is non-balanced (demander selects exactly 1 supplier), it

can be distinguished between:

* High costs of switching the cooperation partner: Aumann-Dreze-value and Myer-
son-value for coalition structures have the right properties and are stable.

* Low costs of switching the cooperation partner: proposed allocoation rule under
consideration of outside option has the right properties and is stable.
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AGENTU SUSITARIMAI ZAIDIMU TEORIJOJE ESANT PAPILDOMU
ALTERNATYVU GALIMYBEI NESUDERINTAME LAIKE

H. D. Stein

Santrauka

Zaidimy teorijoje agentai turi galimybe sudaryti jsipareigojan&ius susitarimus. Agentai, kaip yra mano-
ma, numato savo strategijas riboto racionalumo salygomis. Strateginiy Zaidimy sritis sudaro galimybe
agentui suvokti optimalios elgsenos krypti. Straipsnyje tyrinéjamas rySys tarp skirtingy zaidimy teo-
rijos sri¢iy tuo atveju, kai susitarimuose dalyvauja trys agentai. Atskleidziamas nei§vengiamas agenty
elgsenos nesuderinamumas dél riboto racionalumo, apgavysciy bei aplinkos pokyciy. Straipsnyje ais-
kinama, kad Zaidimy teorijos numatomos agenty susitarimy taisyklés turéty biiti modifikuotos siekiant
ivertinti papildomy susitarimy alternatyvy galimybe.

ReikSminiai ZodZiai: susitarimai zaidimy teorijoje, tinkly zaidimai, susitarimy taisyklés, nesuderintas
laikas, papildoma alternatyva.
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