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Abstract. Value-at-risk (VaR) is a widely used measure for evaluating the market risk of 
a trading portfolio. This article presents the g-and-h method for estimating the VaR of a 
portfolio with non-normal returns, and adds to the usefulness of VaR as a risk manage-
ment tool by decomposing the portfolio into individual VaRs to estimate the contribution 
of the individual components toward the overall VaR. While the VaR decomposition is 
algebraically simple under the assumption of normality, that is not the case under non-
normality which is the property exhibited by most financial returns. We show that, by 
using the g-and-h VaR method, the decomposition analysis under non-normality can be 
performed with the same degree of intuitiveness and ease as for the analytical methods 
based on the assumption of normality.
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Introduction

The Basel Committee on Banking Supervision’s new Basel Capital Accord (Basel II) 
definition of market risk is unchanged from Basel I1. Market risks are those most com-
monly associated with the trading books for debt and equity securities, foreign ex-
change, and commodity risks. Market risk is typically measured by value-at-risk (VaR). 
Our focus in this article is to improve the accuracy of VaR estimation by addressing the 
non-normality of financial asset or portfolio returns. Then, how individual assets con-
tribute to the overall VaR of a portfolio can be estimated by decomposing the portfolio 
VaR into individual VaRs, which is a key step for effective risk management. 

1 For additional details on the Basel Committee on Banking Supervision’s capital requirements and 
risk measures, see the Bank for International Settlements, www.bis.org
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For a portfolio exhibiting the non-normality in its returns, Glasserman, Heidelberger 
and Shahabuddin (2002) and Albanese, Jackson and Wiberg (2004) suggest the methods 
to address the fat-tail problem in the estimation of portfolio VaR. Gordon and Tse 
(2003) show that in a real estate portfolio, the incremental risk analysis based on VaR 
provides a more accurate result than the approach based on the Sharpe ratio, and it is 
a better tool for measuring incremental risk for different levels of leverage. Alexander 
and Baptista (2003) examine VaR as a portfolio performance measure, and conclude 
that it produces different rankings than a traditional measure being used under the non-
normality of portfolio returns. The decomposition of portfolio VaR is not a difficult task 
under normality. 
The main contribution of this article is that we show how the decomposition analysis 
under non-normality can be performed with the same degree of intuitiveness and ease 
as for simple analytical methods based on the assumption of normality. 
The remainder of the paper is organized as follows. Section 1 discusses the estimation 
of VaR based on the g-and-h distribution, which is called the g-and-h VaR method. Sec-
tion 2 examines the decomposition of portfolio VaR under the assumption of normality 
into individual VaRs, and proposes the procedures for decomposing portfolio VaR under 
the g-and-h VaR methodology, while Section 3 presents empirical results by applying 
the g-and-h VaR method and the decomposition techniques to the data. The last section  
concludes the paper. 

1. The g-and-h VaR methodology

It is suggested that the g-and-h VaR method improves the accuracy of VaR estimation 
for financial assets exhibiting non-normal return distributions and financial instruments 
with non-linear payoffs like options (Nam, Gup 2002, 2003)2. The g-and-h method is 
based on a linear transformation of the g-and-h distribution, which is a product of non-
linear transformations of the standard normal distribution: 

  
2

,
exp( ) 1( ) exp ,

2
  −

= + = +   
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where X is a random variable, A, B, g and h are the parameters for location, scale, skew-
ness and kurtosis, respectively, and

 

2
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is the g-and-h distribution and Z is a standard normal random variable. Note that equa-
tion (1) has four parameters (location, scale, skewness and kurtosis) that must be es-
timated. As an estimate of location parameter A, the median of random variable X is 

2 In the study of VaR estimation for options by Nam and Gup (2003), it is shown that the g-and-h 
method improves the accuracy by comparing the delta, delta-gamma, and Monte Carlo simulation 
methods.
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used. In the g-and-h distribution, the first term, exp( ) 1−gZ
g

, addresses skewness and 

the second term, 
2

exp
2

 
 
 

hZ , accommodates kurtosis. 

The procedure for estimating the parameters of skewness (g) and kurtosis (h) is as 
follows. The skewness parameter g is estimated as the median of values of gp, which 
can be calculated as: 

 

1 0.5

0.5

1 ln − −
= −   − 

p
p

p p

x x
g

z x x
,

for 0 < p < 0.5. For selecting the values of p or percentiles, the use of letter values is rec-
ommended, starting from M for the median, and halving the areas results in the fourths 
(F), and doing once more gives the eighths (E) (Hoaglin 1985). In this manner, further 
halving the tail areas produces letter values of D, C, B, A, and so on. Specifically, set-
ting the median (the 0.5th percentile) of a distribution as a reference point, the letter 
values of F through W for the lower half and the upper half represent the corresponding 
percentiles as shown below:

Letter Values Lower Half Upper Half
F = 1/4 0.25 0.75
E = 1/8 0.125 0.875
D = 1/16 0.0625 0.9375
C = 1/32 0.0313 0.9687
B = 1/64 0.0156 0.9844
A = 1/128 0.0078 0.9922
Z = 1/256 0.0039 0.9961
Y = 1/512 0.00195 0.99805
X = 1/1024 0.00098 0.99902
W = 1/2048 0.0005 0.9995

A distance between the pth quantile and the median is referred to as the pth half-spread, 
which can be divided into two cases: for p < 0.5, the distance between the median and 
the pth quantile (i.e., x0.5 – xp) is called the pth lower half-spread (LHS), and the distance 
between the (1 – p)th quantile and the median (i.e., x1–p – x0.5) is called the pth upper 
half-spread (UHS). 
Given the estimate of the skewness parameter g, note that the pth letter spread (x1–p – xp) 
of the g-and-h distribution is given by:

 
( )

2

1 exp 1 exp
2−

 
 − = − −     
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p
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.

Multiplying the above equation by 
( )exp 1− −p

g
gz

 would abstract skewness from con-
sideration: 
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where the term on the left-hand side is called the corrected full spread (CFS). Taking 
the logarithm of both sides, the equation now becomes: 
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It can be seen from the equation that an estimate of h is obtained as the slope coefficient 

in a regression of 1( )
ln

exp( ) 1
− −

  − − 
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gz

 against 
2

2
pz

, and the intercept gives the logarithm 

of an estimate of the scale parameter B. 

A positive (negative) value for skewness parameter g of a distribution indicates that it is 
positively (negatively) skewed, while a positive (negative) value for kurtosis parameter 
h implies that it has fatter (thinner) tails than the normal distribution. Depending on a 
combination of the values of parameters g and h, the g-and-h distribution enables us 
to replicate various theoretical distributions. For example, when g = 0 and h = 0, the 
standard normal distribution is obtained. Furthermore, for g = 1 and h = 0 we have the 
lognormal distribution, a skewed distribution, and for g = 0 and h = 0.97 we get the 
Cauchy distribution, a very fat-tailed distribution (Martinez, Iglewicz 1984). For further 
details of the statistical properties of the g-and-h distribution, see Hoaglin (1983, 1985), 
Martinez and Iglewicz (1984), MacGillivray and Balanda (1988), and MacGillivray 
(1992).

A particularly useful feature of the g-and-h distribution in VaR estimation is that we can 
obtain its quantiles by simply plugging the quantiles of the standard normal distribution 
once the four parameters are estimated. Let zp be the pth quantile of the standard normal 
distribution, then the pth quantile of the random variable X is obtained by plugging zp 
into equation (1): 

 

2

,
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( ) exp
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g
, (2)

where x0.5 is the median, an estimate of the location parameter A. 

Equation (2) suggests that a VaR estimate at a specified confidence level in the g-and-h 
method is given by:

 

2
1 1exp( ) 1 exp

2
− −

   −
= − +          

CL CL
CL

zgzVaR A B h
g

, (3)

where CL is a confidence level. To calculate 95% and 99% VaRs, the confidence level 
(CL) is set to 0.95 and 0.99, respectively, in equation (3). 
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The g-and-h VaR method can effectively work in the estimation of VaR for higher con-
fidence levels than 99%, which can be regarded as an important advantage over other 
methods constrained by the size of data. For example, the historical simulation method 
is not feasible for very high confidence levels unless the size of estimation window is 
very large. 

2. Decomposition of portfolio VaR

2.1. Decomposing portfolio VaR under normality
Decomposing the VaR of a portfolio into its constituents’ VaRs enhances its efficiency 
for managing overall portfolio risk. The decomposition of VaR provides valuable infor-
mation about the contribution of individual assets to the portfolio VaR. For this purpose, 
marginal VaR (MVaR) plays a key role, which is defined as the change in the portfolio 
VaR when the relative position in asset i in the portfolio is altered: 

  VaRMVaR ∂
≡

∂

P
i

iw
, (4)

where MVaRi refers to a marginal VaR of asset i. Hallerbach (2003) derives MVaR 
under the assumption of multivariate normality with zero mean returns, and extends the 
concept to the non-normal case. 
For the case of multivariate normality, the derivation of MVaR starts with differentiat-
ing the portfolio’s standard deviation (ρP) with respect to the relative weight of asset i 
(wi), where the standard deviation of the portfolio consisting of k assets is given by3:

 

1
2

1 1= =

 
 σ = σ
 
 
∑∑
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P i j ij
i j
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where ρij is the covariance between assets i and j. The differentiation yields:
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=

∂ σ

∑
k

i i j ij
j j iP
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w
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where 
( )= − + γF

t t t tD c F P

 is the variance of asset i. Note that the numerator of the right-hand side of 
equation (6) is equivalent to the covariance between the returns on asset i and on the 
portfolio denoted by σiP (Jorion 1997), as shown in Appendix: 

 

2

1,= ≠
σ + σ = σ∑

k

i i j ij iP
j j i

w w . (7)

Substituting equation (7) into equation (6) results in:

 
2

σ σ∂σ
= = σ = β σ

∂ σ σ
iP iPP

P i P
i P Pw

, (8)

3 We do not assume zero mean returns here to get more general results.
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where 2
σ

β =
σ

iP
i

P
. Therefore, MVaR of asset i will be:

 
( )VaRMVaR VaR∂

≡ = −µ + β + µ
∂

P
P

i i i P
iw

. (9)

(The derivation of equation (9) is provided in Appendix.)  
With the assumption of zero mean returns of all assets in the portfolio, the terms mi and 
mP will vanish, and thus the last expression in equation (9) will be MVaR VaR ,= β P

i i
which is identical to that derived by Hallerbach (2003).

Since 
1 1

1 1(1 )
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− −− →

− −
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, the portfolio VaR can be expressed as:
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                           VaR VaR
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∑
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P P
k k

w

w w

, (10)

which corresponds to the decomposition of portfolio VaR shown in Jorion (1997). Each 
term of the right-hand side of the last equality in equation (10) is called the component 
VaR (CVaR) of the corresponding asset (Hallerbach 2003). Manipulating equation (10) 
by utilizing 

 1
1

=
β =∑

k

i i
i

w ,

and 

 1=
µ = µ∑

k

i i P
i

w ,

the relationship between MVaR and CVaR of an asset can be obtained:

 1 1
VaR CVaR MVaR

= =
≡ =∑ ∑

k k
P

i i i
i i

w . (11)

The proof of equation (11) is provided in Appendix. Equation (11) also implies: 

 CVaR MVaR=i i iw .  (11)′

Assuming zero mean returns does not alter the results in equations (11) and (11)′ while 
only easing the algebraic complexity.

2.2. Decomposing portfolio VaR under non-normality
Next, we consider the derivation of MVaR and CVaR under the g-and-h VaR approach 
where the normality assumption is not valid. To derive MVaR for the g-and-h method, 
note first that the relationship between the variance of the portfolio returns ( 2σP ) and 
its scale parameter (B) can be obtained using XP = A + BY:

 2 2 2σ = σP YB , (12)
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which suggests that the scale parameter B is:

 

σ
=
σ

P

Y
B , (12)′

where ρP and ρY are the standard deviations of the portfolio and the g-and-h distribu-
tion, respectively. In addition, taking the expectation operators on XP = A + BY yields 
the simple relationship between the location parameter A and the mean of the portfolio: 

 

E( ) E( )
  
= − ×
= µ − µ

P

P Y

A X B Y
B

, (13)

where mP and mY are the means of the portfolio and the g-and-h distribution, respec-
tively. 
Substituting equations (12)′ and (13) into equation (3) will result in an alternative rep-
resentation of the portfolio VaR formula for the g-and-h method: 
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,  
  (14)

which will be used to decompose the g-and-h VaR. 
The MVaR of component i is obtained by differentiating equation (14) with respect to 
its relative weight wi:

 

VaRMVaR (VaR )∂
≡ = −µ + β + µ

∂

P
P

i i i P
iw

, (15)

which is the same result as in the normal case without the assumption of zero mean 
returns. The proof of equation (15) is provided in Appendix. 
Furthermore, the relationship between CVaR and MVaR in equations (11) and (11)′ 
under the assumption of normality is still valid, which can be proven using Euler’s 
theorem (Hallerbach 2003). Noting that the portfolio VaR is a point along the portfolio 
return distribution at a specified level, and that the portfolio return is linear in individual 
component returns, which is equivalent to say that the portfolio return distribution is 
homogeneous of degree one, applying Euler’s theorem yields: 

 1 1

VaRVaR MVaR .
= =

∂
= =

∂∑ ∑
k kP

P
i i i

ii i
w w

w
 (16)

The proof of equation (16) starts with the definition of homogeneity of degree one 
in the context of portfolio VaR, and involves differentiating both sides of the defini-
tion with respect to a scale t. Recall that 1 1VaR − −= −P P

CL CLX , and denote a portfo-
lio VaR, dropping the subscript for confidence levels, in such a functional form as 

1
1

1
VaR ( , )

=
= − = − =∑

k
P P i k

i k
i

X w X f w X w X . The proof is provided in Appendix. 
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Equation (16) again implies: 

 CVaR MVaR=i i iw , (16)′

for the general setting, which demonstrates that the relationship between MVaR and 
CVaR in the g-and-h method is identical to that in the normal method. 
Therefore, for the g-and-h VaR method the MVaR and CVaR of an individual compo-
nent can be obtained in the same fashion as for the normal VaR method. That is, all that 
matters in VaR decomposition resolves into the estimation of βis, and thus the estimation 
of the covariances of an individual component with the portfolio being held. This is a 
very powerful result because the computationally simple and intuitive decomposition 
procedure under the normality assumption can be still applied to the decomposition of 
portfolio VaR calculated using the g-and-h method, which can effectively accommodate 
the non-normality of distributions. 

3. Empirical analysis

In this section, we consider an application for using the g-and-h VaR approach in the 
VaR estimation for a portfolio and decomposing the portfolio VaR estimate into its 
constituents, compared to the normal VaR method based on the normality assumption.

3.1. Estimating portfolio VaR under the g-and-h VaR method
The estimation of portfolio VaR using the g-and-h method starts from constructing the 
return distribution of a portfolio. First, the weights for assets in a portfolio are applied 
to each asset’s historical return series, and then the series are summed up to form the 
historical return distribution of the portfolio. For a portfolio consisting of k assets, its 

return distribution (XP) is 
1=

= ∑
k

P i
i

i
X w X  where wi is the weight of asset i and 

1
1

=
=∑

k

i
i

w
 
, 

and Xi is the return distribution of asset i. Next, the g-and-h methodology is used to 
obtain a VaR estimate for the portfolio in the same manner as in equation (3):

 

2
1 1exp( ) 1VaR exp

2
− −

   −
= − +          

CL CLP
CL

ZgZA B h
g

,

  
where VaRP

CL  represents a VaR of the portfolio for a specified confidence level.
Consider a simple, two-asset portfolio case, consisting of two foreign currencies – the 
British pound and the Japanese Yen. Among the group of G-10, these two countries 
are selected to look at the impacts of two major events in financial markets over the 
last decade, which are the 1992 European Rate Mechanism (ERM) crisis and the 1997 
Asian financial crisis. Therefore, the data set contains the historical daily changes in the 
foreign exchange rates of the British pound and the Japanese yen expressed in the price 
notation with the base currency of the U.S. dollar for the period of 1991–1998. The data 
window is divided into two sub-periods: the data for the period of 1991–1996 are used 
for VaR estimation, and the data for 1997 and 1998 are used to backtesting. The data are 
collected from the database of the PACIFIC Exchange Rate Service. Table 1 provides 
the descriptive statistics of the return distributions of the two foreign exchange rates. 
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Table 1. Summary statistics for foreign exchange return distributions

Period Mean (%) Standard
Deviation (%) Skewness Kurtosis AD

Statistic

Japanese Yen

1991–1996 0.0104 0.6428 0.2621 3.4625 12.805 (0.00)

1991–1998 0.0090 0.7355 0.6792 5.3534 22.948 (0.00)

British Pound

1991–1996 –0.0077 0.6369 –0.3508 2.9973 16.941 (0.00)

1991–1998 –0.0073 0.6052 –0.3160 3.0325 19.322 (0.00)

Note: The p-values from the Anderson-Darling normality test are reported in parentheses.

The descriptive statistics for the return distributions in Table 1 demonstrate the non-
normality for the foreign exchange data examined. The Anderson-Darling test – a 
normality test based on the empirical cumulative distribution function (ECDF) – is 
used to examine whether the data series follow a normal distribution. The test shows 
that the two data series are far from normal. 
For a hypothetical portfolio with arbitrarily chosen weights, which consists of 20% of 
the British pound and 80% of the Japanese yen, we estimate the four parameters, A, B, 
g and h, for the random variable XP, and calculate a quantile for the specified confidence 
level. Table 2 presents VaR estimates for this hypothetical, non-normal portfolio. In ad-
dition, the results from in-sample and out-of sample backtesting are provided. 

Table 2. Estimation of portfolio VaR and performance evaluation

Panel A. Portfolio VaR 

VaR (%) CL Normal VaR g-and-h VaR

Foreign 
Exchange 
Portfolio

95%
99%

99.9%

0.94
1.34
1.78

0.95
1.63
2.50

Panel B. In-sample and out-of-sample evaluation of accuracy

Number of
Exceptions CL

In Sample Out of Sample

 Normal VaR g-and-h VaR  Normal VaR g-and-hVaR

Foreign 
Exchange 
Portfolio

95%
99%

99.9%

68 (4.4%)
25 (1.6%)*
8 (0.5%)*

66 (4.3%)
12 (0.8%)
1 (0.1%)

41 (8.2%)*
14 (2.8%)*
6 (1.2%)*

39 (7.8%)*
7 (1.4%)
1 (0.2%)

Notes: In Panel A, the estimation period ranges from January 2, 1991 through December 31, 1996 
(1,537 observations). VaR figures are expressed in terms of a % of a position. In Panel B, the in-sample 
backtesting is performed for 1,537 observations of the period of 1991–1996, and the out-of-sample 
backtesting for 500 observations of 1997–1998. The significance of backtesting results are evaluated 
through the likelihood ratio (LR) and Z-score tests* denote the rejection of a method at the 95% level. 
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The percentages in parentheses are exception rates.
The accuracy of competing models from backtesting can be verified through statistical 
tests of significance. Given that either VaR overestimation or underestimation is equally 
undesirable, two-sided tests should be performed. For this purpose, the likelihood ratio 
(LR) test is widely used (Van den Goorbergh, Vlaar 1999). In addition, we perform the 
Z-score test, which takes a positive statistic for underestimation and a negative statistic 
for overestimation. The LR and Z-score statistics are given as follows:

 
( )2 ln 1 ln (1 )

−
−

     = − − −   
     

E N E
E N EE ELR CL CL

N N
,

 

(1 )-score
(1 )
− −

=
−

E N CLZ
N CL CL

, 

where E represents the number of exceptions and N is the evaluation sample size. In 
general, the LR statistic has the chi-square distribution with degrees of freedom equal 
to the number of restrictions, which is 1 in our case4, and the Z-score statistic has the 
standard normal distribution. As can be seen in Panel B of the table, the evaluation of 
in-sample performance proves that the g-and-h method is accurate at all confidence 
levels, in particular, for the 99% and 99.9% confidence levels where the normal method 
fails. Also, the out-of-sample backtesting results show that the g-and-h approach is a 
superior method over the normal approach. 
Like the historical simulation method, the g-and-h method does not require the estima-
tion of the covariances or the correlations among assets in a portfolio. The procedure 
consists of three steps: first, constructing the historical distribution of the portfolio by 
means of applying the weights of the portfolio to the data; second, estimating the pa-
rameters of the g-and-h distribution for the portfolio; and finally, calculating the quantile 
for a specified confidence level. As always with single asset cases, the g-and-h method 
produces results similar to the normal method at the 95% confidence level, for which 
the normal method has proven to be appropriate, but at the 99% or higher levels it 
outperforms the normal method.

3.2. Decomposing portfolio VaR
Table 3 presents the decomposition of the VaRs of the portfolio considered earlier at 
the 99% confidence level. For both the normal method and the g-and-h method, the 
following variance-covariance matrix is used to estimate βis:

 

0.3338
0.3638 0.4132
0.2139 0.1660 0.4057

 
 
 
 
 
 

Portfolio Yen Pound
Portfolio

Yen
Pound

,

4 The only restriction is that the exception rate equals 1 minus the specified confidence level, that is, 
(1 )= −

E
CL

N
, which is the null hypothesis for testing.
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which results in 

 

,
2

0.3638 1.09
0.3338

Yen Portfolio
Yen

Portfolio

σ
β = = =

σ
,  

and

 

,
2

0.2139 0.64
0.3338

Pound Portfolio
Pound

Portfolio

σ
β = = =

σ
,

which indicates that the sensitivity of the Japanese yen is nearly twice that of the Brit-
ish pound. 
The marginal VaRs of individual components are obtained by multiplying the portfolio 
VaR by βis found above. The component VaRs are calculated as the product of the 
marginal VaRs and the weights of the components, and it should be noted that the sum 
of the component VaRs is equal to the total portfolio VaR. 

Table 3. Decomposition of portfolio VaR

Unit (%) Normal VaR g-and-h VaR

Total VaR
(99% Confidence level) 1.34 1.63

Marginal VaR 
Japanese Yen
U.K. Pound

0.014606
0.008576

0.017767
0.010432

Component VaR 
Japanese Yen
U.K. Pound

1.16848
0.17152

1.42136
0.20864

 
It can be seen from the table that in the case of the g-and-h VaR, the total portfolio VaR 
of 1.63% is decomposed into 1.42136% VaR for the Japanese yen and 0.20864% VaR 
for the British pound, and in the same manner, the normal VaR of 1.34% is decom-
posed into 1.16848% for the Japanese yen and 0.17152% for the British pound. Given 
that more accurate VaR can be estimated using the g-and-h VaR method, particularly 
for non-normal asset returns, this paper suggests that the decomposition of total VaR, 
which is derived from the g-and-h method, can be achieved as conveniently as in the 
VaR methods based on normality. 

Conclusions

Value-at-risk (VaR) is a measure of market risk that is receiving increased attention 
because bank regulators are demanding better risk management techniques. The non-
normality of financial asset returns limits the usefulness of VaR models that are based on 
the assumption of normality. As shown in Nam and Gup (2002, 2003), the g-and-h VaR 
method resolves the issue of non-normality in VaR estimation. Equally important, in this 
article we present the results that the decomposition analysis under the g-and-h method 
can be conducted with the same degree of intuitiveness and easiness as under simple 
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analytical methods based on the assumption of normality. Thus, the g-and-h VaR method 
would not only provide practitioners with a better risk measurement tool, but also enable 
them to manage the risks more effectively through the decomposition analysis. 
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APPENDIX

Proofs of VaR Decomposition Formulas

1. Proof of equation (7)

2 2 2

1, 1,

2 2

1, 1,

2 2

1,

E( ) E( )

                        E( ) E( )

                        E

= ≠ = ≠

= ≠ = ≠

= ≠

  σ + σ = − µ + − µ µ   

= − µ + − µ µ

 
= + − µ 

  

∑ ∑

∑ ∑

∑

k k

i i j ij i i i j i j i j
j j i j j i

k k

i i i i j i j j i j
j j i j j i

k

i i j i j i i
j j i

w w w X w X X

w X w w X X w

w X w X X w
1,

                        E( )
                                                                              Q.E.D.

= ≠

 
 + µ µ
 
 

= − µ µ
= σ

∑
k

j i j
j j i

i P i P

iP

w

X X

2. Proof of equation (9)

1

1

1

1

( )VaRMVaR

                           

                           
                           ( )
                           

−

−

−

−

∂ −µ − σ∂
≡ =

∂ ∂
∂σ

= −µ −
∂

= −µ − β σ
= −µ + β −µ − σ + µ
= −µ + β

P P CL p
i

i i

P
i CL

i

i CL i P

i i P CL P P

i i

z
w w

z
w

z
z

(VaR )            Q.E.D.+ µP
P

3. Proof of equation (11)

( )

1 1

1

1 1 1

1

VaR CVaR VaR

                           VaR

                           VaR

                           VaR

            

= =

=

= = =

=

≡ = β

= β − µ + µ

= β − µ + β µ

= β − µ + β µ

∑ ∑

∑
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∑

k k
P P

i i i
i i

k
P

i i P P
i
k k k

P
i i i i i i P

i i i
k

P
i i i i P

i

w

w

w w w

w

( )
1

1

               (VaR )

                           MVaR                                  Q.E.D.

=

=

= −µ + β + µ

=

∑

∑

k
P

i i i P
i
k

i i
i

w

w
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4. Proof of equation (15)

1

1

1

1

VaRMVaR

                           

                           

                           
 

−

−

−

−

 σ σ
∂ −µ + µ − σ σ∂  ≡ =

∂ ∂
∂σ µ ∂σ
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∂ σ ∂ σ

µ
= −µ + β σ −β σ

σ σ
= −µ + β µ −β

P P
P Y CLP Y Y

i
i i

CLP Y P
i

i Y i Y

CLY
i i P i P

Y Y

i i Y i CL

y

w w
y

w w
y

B By
( )

( )
( )

1

1

                          
                           

                                                   Q.E.D.

−

−

= −µ + β µ − − µ + µ

 = −µ + β − µ − µ + + µ 
= −µ + β + µ

i i Y CL P P

i i P Y CL P
P

i i P
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5. Proof of equation (16)
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