
Journal of Business Economics and Management
ISSN 1611-1699 print / ISSN 2029-4433 online

2013 Volume 14(5): 940–956
doi:10.3846/16111699.2013.837244

Copyright © 2013 Vilnius Gediminas Technical University (VGTU) Press Technika
http://www.tandfonline.com/TBEM

HOW TO INVEST IN BELGIAN SHARES  
BY MULTIMOORA OPTIMIZATION 

Willem K. M. Brauers1, Romualdas Ginevičius2

1Faculty of Business Management, Vilnius Gediminas Technical University,  
Saulėtekio al. 11, 10223 Vilnius, Lithuania

Faculty of Applied Economics, University of Antwerpen, F. Birontlaan 97,  
B2600 Antwerpen, Belgium

2Faculty of Business Management, Departmen of Economics and Management of Enterprises,
Vilnius Gediminas Technical University, Saulėtekio al. 11, 10223 Vilnius, Lithuania

E-mails: 1willem.brauers@ua.ac.be (corresponding author); 2Romualdas.Ginevicius@vgtu.lt 

Received 29 January 2013; accepted 12 August 2013

Abstract. Different multiple objectives expressed in different units make optimization 
difficult. Therefore, the internal mechanical solution of a Ratio System, producing dimen-
sionless numbers, is preferred to weights, which are most of the time used to compare the 
different units. In addition, the ratio system creates the opportunity to use a second ap-
proach: a non-subjective Reference Point Theory. Therefore, the Reference Point Theory 
uses the ratios found in the ratio system as co-ordinates for the alternative solutions, which 
are then compared to a Maximal Objective Reference Point. The two approaches form a 
control on each other. This overall theory is called MOORA (Multi-Objective Optimiza-
tion by Ratio Analysis). The results are still more convincing if a Full Multiplicative Form 
is added, three methods assembled under the name of MULTIMOORA. At that moment, 
the control by three different approaches forms a guaranty for a solution being as non-
subjective as possible. As to calculate the sum of three obtained ranks is not allowed, a 
theory of Ordinal Dominance is developed in order to remain in the ordinal sphere. 
MULTIMOORA is used to decide upon an investment in Belgian shares on basis of a 
ranking in the BEL20 Index.

Keywords: Ratio System, Reference Point Theory, MOORA, Full Multiplicative Form, 
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1. Introduction

Shareholders participate in the capital of a company. In a company quoted on a Stock 
Exchange, this ownership is rather passive by excluding the shareholders, with excep-
tion for the reference shareholders, from any form of management. The shareholders 
have only voting rights in a yearly or in an extraordinary general assembly of these 
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shareholders. In this way, their investment looks as speculative. This risky situation can 
even play for shareholders dispersed all over the world with the main Stock Exchanges 
not only in London and New York but also in Hong Kong, Singapore and Tokyo.
Investments in stocks from a selection of companies with a different activity or a differ-
ent location will diminish the risk after the saying: “you must not put all your eggs in 
one basket”. In addition, the advices of experts will help too. These advices may have 
different forms, coming from:

– The Credit Rating Agencies like Moody, Standard&Poor’s and Fitch. In 1909, John 
Moody published his first bond ratings on railroad bonds. If the agencies rate bonds 
of companies, this rating can also help for rating the economic safety of these 
companies. It is not very clear which methods the agencies use and there was also 
a growing criticism on their recent errors (White 2010).

– A general theory about investment in stocks such as the Buffet philosophy from his 
publications and his yearly speech to his shareholders.

– The advice of one or different experts based on: their personal experience, company 
balance analyses, interviews with managers or sampling concerning for instance:
a) one or different shares quoted at the moment,
b) share selections for the coming year,
c) a geographic choice like no European or American shares but shares from BRIC – 

countries (Brazil, Russia, India, China) or from raw material producing countries.
– After the author’s opinion up until now no advices on share selection exists based 

on a ranking in leading World Indices such as: AEX Amsterdam, CAC40 Paris, 
DAX30 Frankfurt, Dow Jones-Industrial New York, FTSE100 London, or Nik-
kei225 Tokyo. The BEL20 Index assembles the most important Belgian shares on 
NYSE-EURONEXT. These 20 shares form rather a defensive investment. More 
speculative would be to take a selection of the Brussels Mid Cap shares. 

The authors decided not to include bank shares, namely KBC and Dexia. Their book 
value was very uncertain not only given the still existing consequences of the Sub Prime 
Crisis but also given their very important investments in countries in financial difficul-
ties like Ireland, Portugal and Greece. Also Ageas, though an insurance company, is 
excluded as Ageas is the heritor from Fortis, now Paribas BNP, for parts of a Bad Bank. 
In this way, the BEL 20-index is reduced to 17 shares. Moreover, GDF Suez, though a 
French share, is included as being the successor of Electrabel, dominating the electricity 
market in Belgium. In addition, Belgian Electrabel is one of the most important crown 
jewels of GDF Suez, if not the most important.
Of course, Belgian shares could also be subject for Credit Rating Agencies, for a gen-
eral theory about investment in stocks or for all kind of expert’s judgments as indicated 
above. Nevertheless, no study is known which compare together all main Belgian shares 
of the BEL 20 or of the Brussels Mid Cap.

2. The objectives chosen for selection of shares
Different multiple objectives expressed in different units characterize Multi-Objective 
Optimization (MOO), a method followed in this study. Therefore, MOO has not to be 
mixed up with Cost-Benefit Analysis where all objectives are translated in money terms. 
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A matrix assembles the data with vertically different objectives to be optimized and 
horizontally the 17 shares. The objectives concern the activity of the Belgian Stock 
Exchange on the last full day of 2010, namely Thursday December 30, 2010. 
The best share will be the outcome of the following objectives:

1. Minimization of the last notation in EURO. The 20 shares of the Bell20-index are 
the most important Belgian shares. Above a certain bottom price, the cheaper they 
are the more attractive they are. 

2. Minimization of the percentage deviation of this notation during the whole year 
2010. Too much deviation would falsify the previous figure.

3. Maximization of the average day volume of trading during the last week divided 
by the average day volume of last year. A figure larger than one indicates more 
trading than normal. 

4. Minimization of the notation divided by the earnings before interests, taxes, de-
preciation and amortization (EBITDA or Cash Flows).

5. Minimization of the notation to profit.
6.  Maximization of the dividend to the notation.
7. Minimization of the notation to the book value.
8. Minimization of the PEG-ratio being the last notation of the share to profit divided 

by the profit growth being the cumulated profit growth between 2008 and 2009 
translated on a yearly basis. A figure smaller than one indicates a relative cheap 
share.

9. Importance has still to be given to the different objectives. Until now all objectives 
were based on an equal importance. The introduction of the opinions of the ana-
lysts under the form of ratios will give more importance or not to some objectives 
on basis of their individual preferences. Minimization of the opinion ratio of the 
analysts is therefore the ninth objective. The analysts gave their opinion over the 
last 75 days. The opinions of the analysts lead to the following advices:
– 1 – 1.49 buy
– 1.5 – 2.49 increase your stock
– 2.5 – 3.49 hold
– 3.5 – 4.49 decrease your stock
– 4.5 – 5 sell.

Information from financial newspapers will assist to fill in a table of data. This table is 
composed of 17 shares with 9 objectives or a total of 153 elements. At that moment, a 
method for optimization has to be chosen.

3. The data assembled in a matrix

A table (a matrix) assembles the data with vertically numerous objectives, criteria (a 
weaker form of objectives) or indicators and horizontally alternative solutions, repre-
sented in this application by different companies (Table 1).
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Table 1. Matrix of Responses

obj.1 obj.2 … obj.i ….. obj.n 

Alternative solution 1 X X X X X X

Alternative solution 2 X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

……………

Alternative solution j

…………….

Alternative solution m

Once agreement reached about alternatives and objectives, a decision has to be taken 
how to read the Response Matrix, either horizontally or vertically.
The Additive Weighting Procedure (MacCrimmon 1968: 29–33), which was called SAW, 
Simple Additive Weighting Method, by Hwang and Yoon (1981: 99) and Usual Refer-
ence Point Methods read the response matrix in a horizontal way. As the weights add 
to one, a new super-objective is created and consequently it is difficult to speak of 
multiple objectives. Usual Reference Point Theory is non-linear, whereas non-additive 
scores replace the weights. The non-additive scores take care of normalization, but be-
ing non-additive the comments on the weights adding to one and consequently creating 
a super-objective is absent here. 
With weights and scores normalization of different units is mixed with the importance 
of objectives. Consequently, the proportion between normalization and importance is 
unknown. Nevertheless many methods for multi-objective optimization use weights 
like AHP (Saaty 1988) or methods of the French School (starting with ELECTRE, Roy 
et al. 1966). 
Vertical reading of the Response Matrix means that normalization is not needed as 
each column is expressed in the same unit. TOPSIS (Hwang, Yoon 1981) and VIKOR 
(Opricovic, Tzeng 2004) read the Response Metric vertically, based on Euclidean or 
Rectangular Metrics1. In addition, Chakraborty (2011) checked the six famous methods 
of Multi-Objective Decision Making for decision making in manufacturing. Next Table 
2 shows the results.
We have to mention that none of these methods was involved in a ranking of shares in 
one or another country as has been done here for the Belgian shares.
In Table 1 if each column is translated into ratios, dimensionless measures are created 
and the columns become comparable to each other. Different kinds of ratio are possible 
but Brauers and Zavadskas (2006) proved that the best one is based on the square root 
in the denominator. In conformity with this reasoning, the Ratio System, which forms 
the basis of the MOORA method, follows the vertical reading of the matrix. Figure 1 
shows the exact relation between the two methods of MOORA and in addition to MUL-
TIMOORA, MOORA plus the Full Multiplicative Form. 

1 Brauers (2008) maintains that Euclidean and Rectangular Metrics violate Consumer Surplus.
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Table 2. Comparative performance of some Multi-Objective Methods

MOO Computational 
time Simplicity Mathematical 

calculations Stability Information 
type

MOORA Very less Very simple Minimum Good Quantitative

AHP Very high Very critical Maximum Poor Mixed 

TOPSIS Moderate Moderately 
critical Moderate Medium Quantitative 

VIKOR Less Simple Moderate Medium Quantitative 

ELECTRE High Moderately 
critical Moderate Medium Mixed 

PROMETHEE (a) High Moderately 
critical Moderate Medium Mixed 

Note: (a) PROMETHEE since 1984–1986, Brans et al. (1984, 1986).

4. Multi-Objective Optimization by Ratio Analysis (MOORA) 

4.1. The two parts of MOORA
The method starts with a matrix of responses of different alternatives on different ob-
jectives: 
 (xij),

with: xij as the response of alternative j on objective i; i = 1, 2, …, n as the objectives; 
j = 1, 2, …, m as the alternatives.
MOORA goes for a ratio system in which each response of an alternative on an objec-
tive is compared to a denominator, which is representative for all alternatives concern-
ing that objective. For this denominator the square root of the sum of squares of each 
alternative per objective is chosen. Brauers, Zavadskas (2006) proved that this is the 
most robust choice:
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 (1)

with: xij = response of alternative j on objective i; j = 1, 2, ..., m; m the number of 
alternatives; i = 1, 2, …, n; n the number of objectives; xij* = a dimensionless number 
representing the response of alternative j on objective i, meaning that the number is no 
more expressed in money, weights, length, volume etc.
Dimensionless Numbers, having no specific unit of measurement, are obtained for in-
stance by deduction, multiplication or division. The normalized responses of the alter-
natives on the objectives belong to the interval [0; 1]. However, sometimes the interval 
could be [–1; 1]. Indeed, for instance in the case of productivity growth some sectors, 
regions or countries may show a decrease instead of an increase in productivity i.e. a 
negative dimensionless number.
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For optimization, these responses are added in case of maximization and subtracted in 
case of minimization: 

 1 1
* * * ,

= =

= = +
= −∑ ∑

i g i n

j ij ij
i i g

y x x   (2)

with: i = 1, 2, …, g as the objectives to be maximized; i = g +1, g +2, …, n as the ob-
jectives to be minimized; yj* = the total assessment of alternative j with respect to all 
objectives.
An ordinal ranking in a descending order of the yj* shows the final preference. 
For the second part of MOORA the Reference Point Theory is chosen with the Min–
Max Metric of Tchebycheff as given by the following formula (Karlin; Studden 1966: 
280):

 ( ) ( )
*Min max ,

 
− 

 
i ij

j i
r x

 
(3)

with: ri as the reference point and | ri – xij
*| the absolute value if xij* is larger than ri 

for instance by minimization.
This reference point theory starts from the already normalized ratios as defined in the 
MOORA method, namely formula (1). A reference point possessing as co-ordinates the 
dominating co-ordinates per attribute of the candidate alternatives and which is desig-
nated as the Maximal Objective Reference Point is preferred. This approach is realistic 
and non-subjective as the co-ordinates, which are selected for the reference point, are 
realized in one of the candidate alternatives. The alternatives A (10;100), B (100;20) and 
C (50;50) will result in the Maximal Objective Reference Point Rm (100;100).
Given the composition of equation (3) the results are ranked in an ascending order.

4.2. The importance given to an objective by the Attribution Method in MOORA
It may look that one objective cannot be much more important than another one as 
all their ratios are smaller than one (see formula 1) Nevertheless it may turn out to be 
necessary to stress that some objectives are more important than others. In order to 
give more importance to an objective its ratios could be multiplied with a Significance 
Coefficient. 

Fig. 1. Diagram of MULTIMOORA 
Note: The figures between brackets refer to the formulas on next page
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In the Ratio System in order to give more importance to an objective, its response on an 
alternative under the form of a dimensionless number is multiplied with a Significance 
Coefficient:

 1 1
* * *,

= =

= = +
= −∑ ∑

i g i n

j i ij i ij
i i g

ÿ s x s x
 

(2 bis)

with: i = 1, 2, …, g as the objectives to be maximized; i = g + 1, g + 2, …, n as the 
objectives to be minimized; si = the significance coefficient of objective i; ÿj* = the total 
assessment with significance coefficients of alternative j with respect to all objectives.
In the Reference Point Approach, importance is a consequence of formula (2 bis) of 
the Ratio System.

5. MULTIMOORA

In his book of 2004, Brauers (2004c) described the three parts of MULTIMOORA: 1) 
the Ratio System Approach, producing dimensionless ratios, 2) the Reference Point 
Approach, but still based on scores, 3) the Full Multiplicative Form. Some time later 
(2004b and 2004a) he switched over to a Reference Point Approach which uses for 
coordinates of each alternative the ratios found in the ratio system. These coordinates 
are then compared to the coordinates of the Maximal Objective Reference Point (see 
therefore 4.1). In this way, dimensionless measures were obtained again. The synthesis 
of these two approaches was called later: MOORA (Brauers, Zavadskas 2006). In 2010, 
a third approach was added and MULTIMOORA was born (Brauers, Zavadskas 2010a). 
Indeed, MULTIMOORA is composed of MOORA and of the Full Multiplicative Form 
of Multiple Objectives. In this way as up till now no other approach is known satisfying 
all conditions of robustness towards multi-objective optimization and including three 
or more methods, MULTIMOORA becomes the most robust system of multiple objec-
tives optimization (for the conditions of robustness in multi-objective optimization, see: 
Brauers, Zavadskas 2010b: 70–71, 2010c).

Point 4 above explained MOORA (Multi-Objective Optimization by Ratio Analysis). 
The Full Multiplicative Form of Multiple Objectives of MULTIMOORA remains to be 
explained.

5.1. The Full Multiplicative Form of Multiple Objectives

Mathematical economics is familiar with the multiplicative models like in production 
functions (e.g. Cobb-Douglas and Input-Output formulas) and demand functions (Teek-
ens, Koerts 1972).

Allen (1957: 473) launched the “bilinear and quadratic form” as:∑ ∑ rs r sr s a x y , for us 
concerning weights and objectives but with interrelations only examined two by two.

For Keeney and Raiffa (1993: 234) besides additive utilities, a utility function may 
also include a multiplication of the attributes. The two dimensional u(y,z) can then be 
expressed as a multilinear utility function. This representation mixes additive and mul-
tiplicative parts (Brauers 2004c: 228).
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For Keeney (1973: 110) the additive form is rather a limiting case of the multiplicative 
utility function, for us the SAW method as explained earlier in section 3.
The danger exists that the multiplicative part becomes explosive. The multiplicative part 
of the equation would then dominate the additive part and finally would bias the results. 
Considering these shortcomings, preference is given to a method that is non-linear, non-
additive, does not use weights and does not require normalization. Such multiplicative 
form for multi-objectives was introduced by Miller and Starr in 1964 (Miller, Starr 
1969: 237–239) and further developed by Brauers (2004c: 227–245).
The following n-power form for multi-objectives is called from now on a Full-Multipli-
cative Form in order to distinguish it from the above-mentioned mixed forms:

 1
,=

=
∑
n

j ij
i

U x
 

(4)

with: j = 1, 2, ..., m; m the number of alternatives; i = 1, 2, …, n; n being the number 
of objectives; xij = response of alternative j on objective i; Uj = overall utility of alter-
native j. 
The overall utilities (Uj), obtained by multiplication of different units of measurement, 
become dimensionless. The outcome of this presentation is nonlinear, which presents 
an advantage, as the utility function of human behavior toward several objectives has 
to be considered as nonlinear. 

5.2. The description of the importance of an objective  
in the Full Multiplicative Form
Stressing the importance of an objective could be done by allocating a coefficient β (a 
Significance Coefficient) on condition that this is done with unanimity or at least with 
a strong convergence in opinion of all the stakeholders concerned. 
Formula (4) has then to run as follows:

 1
,=

=
β∑

n

j i ij
i

U x
 

(5)

with: j = 1, 2, ..., m; m the number of alternatives; i = 1, 2, …, n; n being the number of 
attributes or objectives; xij = response of alternative j on attribute i of objective i; the β 
are measures of importance (significance coefficients); Uj = overall utility of alternative 
j. Uj is a dimensionless indicator.
Several situations may occur, related to the β-coefficients. All β-coefficients are as-
sumed larger than zero.
Supposing three attributes and two alternatives: n = 3, m = 2
a) in general: 
U1 = β1 β2 β3 x11 x21 x31;
U2 = β1 β2 β3 x12 x22 x32.
b) the β-coefficients have the form of weights:
 0 ≤ β1 ≤ 1; 0 ≤ β2 ≤ 1; β3 = 1 – β1 – β2. 
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with the following outcome: 
U1 = β1 β2 (1 – β1 – β2) x11 x21 x31;
U2 =β1 β2 (1 – β1 – β2) x12 x22 x32.
c) the β-coefficients have the form of ratios:
β1 = 1/g1; β2 = 1/g2; β3 = 1/g3 (these ratios have the form of weights if they satisfy the 
same conditions as under b).
U1 = (1/g 1/g2 1/g3 ) x11 x21 x31;
U2 = (1/g1 1/g2 1/g3 ) x12 x22 x32.

Conclusion 
In the three cases, the relation between the two overall utili ties remains the same:

 
1 11 21 31

2 12 22 32
.=U x x x

U x x x

The following conclusions arise from the invariance between the overall utilities.
Rule I
In the full-multiplicative form, the relation between the utilities does not change if more 
importance is given to an objective by multiplying it by a factor. Indeed, at that moment 
all alternatives are multiplied with that factor. 
Consequence 1 
In the full-multiplicative form, the introduction of weights is meaningless. Indeed 
weights are here in fact multiplying coefficients.
Rule II
Rule II implies that in the full-multiplicative form an attrib ute of an objective can be 
divided by a constant without chang ing the relation between the overall utilities of the 
alterna tives. 
Consequence 2 
In the full-multiplicative form an attribute of the size 10, 102, 103, 106, 109 etc. can be 
replaced by the unit size without changing the relationship between the utilities of the 
alternatives.
This consequence is extremely important for attributes expressed in monetary units. 
Instead of expressing an attribute in tens, hundreds, thousands, millions, billions for 
instance of dollars, the use of one digit in the integer part is sufficient.
General Conclusion
Designating a Beta Coefficient as a significance coefficient is senseless. How we can 
give then importance to an objective?
Allocating an exponent to an attribute of an objective, used as a significance coefficient, 
signifies stressing the importance of this attribute (see Miller, Star 1969: 237–239).
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5.3. Objectives moving in a different direction in the Full Multiplicative Form
How is it possible to combine a minimization of objectives with the maximization of 
other objectives? 
Mathematically, ratio analysis shows the harmony between addition and subtraction. 
Here the Full Multiplicative Form shows the harmony between multiplication and divi-
sion.
Therefore, the objectives to be minimized are denominators in the formula:

 
,′ = j

j
j

A
U

B
  (6)

with:
1

,
=

=∏
g

j ij
i

A x  j = 1, 2, ..., m; m the number of alternatives; i = 1, 2, …, n; n the 

number of objectives; g = the number of objectives to be maximized, 

with:
1

,
= +

= ∏
n

j ij
i g

B x  n – g = the number of objectives to be minimized Uj′: the utility of 

alternative j with objectives to be maximized and objectives to be minimized.

It is true that the Full Multiplicative Form reads horizontally in the Response Matrix of 
Table 1. Nevertheless, with the full-multiplicative form, the overall utilities, obtained by 
multiplication of different units of measurement, become dimensionless measures. This 
situation would not bias the outcomes amidst the several alternatives as the last ones are 
represented by dimensionally homogeneous equations, being: “formally independent of 
the choice of units” (De Jong 1967: 28).
In the Full Multiplicative Form, a problem may arise for zero and negative values. In 
formulas 4 and 6 a zero for one alternative would make the outcome equal to zero. A 
negative number would make the outcome negative. Even worse, in formula 6 a zero 
in the denominator with a non-zero numerator will make the outcome non-defined, with 
once again a negative denominator making the outcome negative.
Therefore, the index number 100 replaces the zero number. At that moment for instance 
96.6 substitutes the negative number of minus 3.4. Consequently, 103.4 represents the 
positive number of 3.4. Is this solution acceptable? The answer is yes if this change is 
logically applied for an entire column of table 1. At that moment, the results of the mul-
tiplication will change, anyway of no importance as these results are senseless as being 
dimensionless measurements. However, the overall ranking will become meaningful.
The fact that MULTIMOORA assembles all existing methods expressed in dimension-
less measures for multi-objective optimization presents a unique feature for this multi-
objective optimization.

6. The Theory of Ordinal Dominance

First, in the not too complicated cases, a summary of the ranking of the three MULTI-
MOORA methods was done on view. Later, for very large matrices a Theory of Ordinal 
Dominance was developed (Brauers, Zavadskas 2011a; Brauers et al. 2011).
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6.1. Axioms on Ordinal and Cardinal Scales
1. A deduction of an Ordinal Scale, a ranking, from cardinal data is always possible 

(Arrow 1974).
2. An Ordinal Scale can never produce a series of cardinal numbers (Arrow 1974).
3. An Ordinal Scale of a certain kind, a ranking, can be translated in an ordinal scale 

of another kind.
In application of axiom 3, we shall translate the ordinal scales of the three methods of 
MULTIMOORA in other ordinal scales. 

6.2. Ordinal Dominance, being dominated, transitiveness and equability
Stakeholders or their representatives may give a different importance to objectives in a 
multi-objective problem but this is not the case with the three methods of MULTIMOO-
RA. These three methods represent all possible methods with dimensionless measures 
in multi-objective optimization and one can not argue that one method is better than or 
more important than the others.

Ordinal Dominance
Absolute Dominance means that an alternative, solution or project is dominating ab-
solutely in ranking all other alternatives, solutions or projects, which are all being ab-
solutely dominated. This absolute dominance shows as rankings for MULTIMOORA: 
(1-1-1).
General Dominance in two of the three methods with a P b P c Pd (P preferred to) is 
for instance of the form:
(d-a-a) is generally dominating (c-b-b) 
(a-d-a) is generally dominating (b-c-b)
(a-a-d) is generally dominating (b-b-c)
and further on, transitiveness plays fully.

Transitiveness
If a dominates b and b dominates c than a will dominate c.

Overall Dominance of one alternative on another
For instance (a-a-a) is overall dominating (b-b-b) which is overall being dominated by 
(a-a-a).

Equability
Absolute Equability has the form: for instance (e-e-e) for 2 alternatives. 
Partial Equability of 2 on 3 exists e. g. (5-e-7) and (6-e-3).
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Circular Reasoning 
Despite all distinctions in classification, some contradictions remain possible in a kind 
of Circular Reasoning. 
We can cite the case of: 
object A (11-20-14) dominates generally object B (14-16-15)
object B (14-16-15) dominates generally object C (15-19-12)
but object C (15-19-12) dominates generally object A (11-20-14).
In such a case, the three objects receive the same ranking.
Similar rules apply for the three methods of MULTIMOORA with no significance coef-
ficients proposed, as the three methods are assumed to have the same importance.

7. Previous applications of MOORA and MULTIMOORA

MOORA and MULTIMOORA made many applications in the micro-economic as well 
as in the macro-economic field. 
In the micro-economic field can be mentioned for instance: privatization (Brauers 2004b; 
Brauers, Zavadskas 2006), facilities management (Brauers 2004a), redevelopment alter-
natives for buildings (Brauers et al. 2006), location theory (Brauers, Zavadskas 2008), 
highway construction in Thüringen, Germany (Brauers et al. 2008b), Contractor’s rank-
ing (Brauers et al. 2008a), heating losses in a building (Kracka et al. 2010), bank loans 
(Brauers, Zavadskas 2011a) and manufacturing (Chakraborty 2011).
In the macro-economic field can be mentioned for instance: Poland and Lithuania facing 
the European Union (Brauers et al. 2007), the Well-Being Economy (Brauers 2008), 
the Industrialization of Tanzania (Brauers, Zavadskas 2010b), the development of the 
regions in Lithuania (Brauers, Ginevicius 2009; Brauers et al. 2010), the economy of 
the Belgian Regions tested with MULTIMOORA (Brauers, Ginevicius 2010), Lithuania 
in the European Union (Balezentis et al. 2010), Strategy Europe 2020 (Balezentis et al. 
2011) and Project Optimization for China (Brauers, Zavadskas 2011b).

8. Application on the Belgian shares

Following table 3 brings the ranking of the shares of the BEL20 Index2. The first figure 
between brackets represents the outcome of the Ratio System, the 2nd of the Reference 
Point Method and the 3rd of the Full Multiplicative Form. In Table 3, bold figures show 
a dominating effect.
Suez is Absolute Dominating (three ranks on three) and Omega Pharma is General 
Dominating (two ranks on three) Delhaize. By Transitiveness as Suez is dominating 
Omega Pharma it also dominates Delhaize etc.

2 The detailed mathematical operations concerning this table are available on demand from the authors.
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9. Shortcomings of the application

9.1. General remarks

1. The application concerns the past. Pure extrapolation has no sense for such a fluc-
tuating market. Many other factors have to be taken into consideration. An effort 
is made here to add some more reflections. 

2. Regularly revisions are needed. The objectives concern here the situation of the 
Belgian Stock Exchange on December 30, 2010, which means that the General 
Assemblies of 2010 are included with the dividend payments for the book year 
2009 or 2009–2010. At least revisions are necessary after later yearly Dividend 
Payments and after the end of each calendar year.

3. Companies with an effective management are assumed. A thorough study work on 
each company is necessary, for instance on the behavior of the managers, the real 
book value of the company. Eventually Strategic Management, Crisis Manage-
ment, Project Risk Management or Scenario Planning have to be foreseen.

4. Finally, there are the Unknown Unknowns or may we say the Economics of Un-
certainty? For instance, a combination of Earthquake, Tsunami and Atomic Plants 
disasters is certainly fatal for insurance companies. 

Table 3. Ranking of Preference for the Shares of the BEL20 Index (banks excluded)

RANKING SHARES

1 Suez (1-1-1)

2 Omega Pharma (2-6-2)

3 Delhaize (4-3-4)

4 Ackermans-VH(3-4-6)

5 Cofimmo (5-2-9)

6 NPM (11-5-3)

7 Belgacom (7-10-7)

8 Telenet (8-7-8)

9 Befimmo (6-10-11)

10 AB-Inbev (9-8-12)

11 Mobistar (12-15-5)

12 Colruyt (14-9-14)

13 UCB (10-10-15)

14 Solvay (13-10-16)

15 GBL (15-16-10)

16 Umicore (16-14-17)

17 Bekaert (17-17-13)
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9.2. Some special remarks around the BEL20 Index
Certainly, the BEL20 Index is not at the level of the London FTSE100, the German 
DAX30 or the French CAC40.
The Belgian BEL20 Index dates only from after the Second World War. The index was 
always characterized by changes. Changes in composition are typical for the BEL20 
Index, due to severe regulations and the rather small size of the Belgian companies. For 
instance after December 31, 2010, the date of this investigation, NPM was dissolved. 
Since 2011 the following other changes took place. The owners took Omega Pharma 
from the Belgian Stock Exchange and the bad bank Dexia and the telecom operator 
Mobistar were replaced. The newcomers were D’Ieteren, car dealers, Elia, the owner 
of the high Voltage lines in Belgium, Thrombogenics, a pharmaceutical firm, and Delta 
Lloyd, a Dutch bank. In fact, the BEL20 counts two foreign firms: Suez (French) and 
Delta Lloyd (Dutch).
In addition, since the birth of NYSE-EURONEXT, grouping the places of New York, 
Brussels, Paris, Amsterdam and Lisbon, the importance of the place of Brussels di-
minished considerably. Therefore, this investigation is just an exercise how to operate 
similar studies. Perhaps a study on London, New York, Paris, Frankfurt or Amsterdam 
would be more useful. 
The study concerns an optimal way to study the behavior of shares on a Stock Exchange 
in the financial centers of the world.

10. Conclusions

Is it possible to classify shares of companies on the Stock Exchange thanks to a quan-
titative method? Therefore, the MULTIMOORA, a method for multi-objective opti-
mization was chosen. The internal mechanical solution of a Ratio System, producing 
dimensionless numbers, is preferred to weights. In addition, the ratio system creates 
the opportunity to use a second approach: a non-subjective Reference Point Theory. 
For that purpose, the Reference Point Theory uses the ratios found in the ratio system 
as co-ordinates for the alternative solutions, which are then compared to a Maximal 
Objective Reference Point. The results are still more convincing if a Full Multiplicative 
Form joined MOORA, three methods assembled under the name of MULTIMOORA. 
At that moment, the control by three different approaches forms a guaranty for a solu-
tion being as non-subjective as possible. As it is not allowed to calculate the sum of the 
three obtained ranks, a theory of Ordinal Dominance is developed in order to remain 
in the ordinal sphere.
The Belgian BEL20 Index was used as a test case. Certainly, the BEL20-Index is not at 
the level of the London FTSE100, the German DAX30 or the French CAC40. Moreo-
ver, it lost much of its importance when the Stock Exchange of Brussels was incorpo-
rated into NYSE-EURONEXT. 
If the MULTIMOORA method is used for share evaluation, the evaluation would have 
to be reconsidered regularly, perhaps with including more objectives. Until now, eight 
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objectives were considered, with the importance of the objectives measured by the 
opinion of a selection of analysts assumed as a ninth objective. With these changes, 
MULTIMOORA could become a favorable instrument to follow the evolution of share 
quotations all over the world. Therefore, the author hopes that similar studies on the 
most famous share indices of the major countries would be made one day. In order to 
see similarities and dissimilarities it may be preferable to use the same objectives and 
the same method for comparing these most famous share indices.
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