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Abstract. This paper provides general framework for handling time-varying cost of capi-
tal, leverage, tax rates, and capital values in a dynamic free cash flow theory of capital 
structure. That enables efficient analysis of the recent competing theories of capital struc-
ture. After including the costs of financial distress and risk premium of debt in the cash 
flow model, this paper provides a new look at cost of tax shield from the point of view 
of risk-return relationship. Cost of tax shield is not constant, but depends on leverage and 
is mostly between cost of assets and cost of debt. Moreover the simulation of firm value 
and capital structure in presence of taxes, risk, and growth shows that unique optimal 
leverages exist for each combination of the above factors. The risk-enhanced cash flow 
theory can explain both the observations, which support pecking order theory, free cash 
flow theory and tradeoff theory of capital structure. Moreover it fits some evidence, which 
resists these theories: highly leveraged low growth companies and moderately leveraged 
large profitable companies. 

Keywords: capital structure, cash flow, cost of capital, tax shield, leverage, business valu-
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Introduction

Free cash flow (FCF) theories of capital structure suffer from circularity, static nature 
and inability to account properly for growth and risk. Use of dynamic FCF model of 
capital structure in this paper provides generalized formulas for WACC and cost of 
equity, and allows us to account for growth while assessing the cost of capital (COC) 
and to analyze the preceding FCF theories of capital structure. Addition of risk analy-
sis, especially cost of financial distress (CFD), free of disputable assumptions, helps to  
determine general relationships between COC. Results of this paper provide link be-
tween the main groups of capital structure theories: static tradeoff, FCF, and pecking 
order theories despite some remaining problems, which are inherent to FCF theories of 
capital structure in general.
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The preceding FCF models, as described or developed by Ruback (2002), Fernández 
(2004), Qi (2010), or Barbi (2012) result in cost of tax shield equal to either cost of un-
levered equity (assets) or cost of debt. They also either imply the irrelevance of capital 
structure policy or corner solution. However capital structure matters in different ways 
at different types of companies. The missing links between different capital structure 
theories are risk and growth. Frank and Goyal (2003) show that pecking order theory 
cannot explain the high share of equity at small and young companies, but it performs 
well at large firms. On the other hand tradeoff theory works well in some cases ac-
cording to Frank and Goyal (2009), but cannot explain the low leverage at blue chip 
companies. The pecking order theory states that companies regulate debt level by mix 
of internal financing and debt, and issue shares at the last. The presented model shows 
that additional dollar of debt increases leverage more rapidly at higher-than-optimum 
leverages than at below-optimum leverages. Then the capital value shrinks very fast 
after reaching the optimal leverage, except for the low-growth-low-risk-low-tax com-
panies (e.g. REITs). That fits the observation that companies use the expensive equity 
financing as the last option. 

1. Time-varying cost of capital and capital structure

This paper builds on a capital structure CF theory, which enables time-varying COC, 
CF and leverage. After developing the mathematical apparatus used in this paper I made 
thorough inspection of English-written literature. Qi (2010: 172) states, “Finally we 
note that the choice of the discount rate… in determining VTS (value of tax shields, note 
by author) …. is largely based on arguments for certain special cases, i.e., fixed debt 
and constant leverage ratio. So far, there has been no rigorous theoretical framework 
for how to handle VTS, especially for more complicated cases.” The same findings can 
be done by inspection of the theories of tax shield value cited in Fernández (2004). 
Some signs of treating time-variant CF start to emerge in English-written capital theory 
literature recently at Barbi (2012), but Barbi (2012) keeps still the other variables (esp. 
COC) constant. 
Let X be the value of any of the appropriate types of capital: equity E (leveraged), debt 
D, assets (total capital at debt-free firm) U, tax shield T or total capital (value of firm) 
C, and

  (1)

(i.e. X ∈ {E, D, T, U, C}). At the expense of number of variables I introduce and treat 
the tax shield and its cost to show 1) that there is interdependence between variables, 
and 2) how different assumptions (often hidden) have influenced the results of the 
previous papers. 
Let eX be the CF paid to owners of capital X and rX the rate of return required by them, 
before personal income tax, and after corporate income tax. For any kind of capital the 
sum of income eX,t in period t ∈  (natural number) and the value of capital at the end 
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of that period Xt  +1 is equal to the value of capital at the beginning of that period Xt 
plus the required return Xt rX ,t :

  (2)

Based on (2) we can express eX,t :

  (3)

As equations (2) and (3) are recurrence (or in other words difference) equations, they 
are valid not only for one period t, but for any row of subsequent periods. We can rear-
range (2) for K; K ∈  subsequent periods and X ∈ {E, D, T, U, C}:

  (4)

COC can vary, i.e. , as well as for constant CF i.e. ,  

thus also . If e.g. 90% of yearly CF comes in January, it is not the same 
situation as if company gets those 90% of CF in December. Therefore I do not define 
the length of period t, which can be short enough to marginalize the problem of changes 
of CF intensity, capital values, required return rate changes, and tax rate changes during 
any of the periods 1 … K. Meaning of (3) can be illustrated on debt. Product Dt rD,t is 
interest accrued. If no interest is paid (eD,t = 0) and all is added to the principal, then 
Dt+1 = Dt (1 + rD,t ). Similarly if eD,t > Dt rD,t , then, Dt +1 < Dt . Similar cases can be 
illustrated on equity. 
The sum of values of all types of capital equals the value of firm (⊕ means exclusive 
or):

  (5)

The same has to hold in the case of CF:

  (6)

After substitution of (3) into (6) for X ∈ {E, D ⊕ T, U} we get:

  (7)

Then let us subtract (5) at time t from (7) and add (5) at time t + 1 to get:

  (8)
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Now divide (8) by Ct to get weighted average cost of capital (WACC) rC,t :

  (9)

which can be rewritten with respect to the composition of capital (1):

  (10)

Equation (10) does not tax the return to debt, compared to the textbook WACC formula. 
In fact the taxation of return to debt is artificial – in practice the interest tax shield 
manifests itself by CF increase, not by COC decrease. Because of X ∈ {E, D ⊕ T, U } 
and (9), also:

  (11)

Substituting X ∈ {E, D ⊕ T, U} instead of general Xt in (5) and rearranging, we get:

  (12)

Substituting (12) for Ut in (11) and rearranging yields:

  (13)

The same applies to additive risk premiums in rX,t ; X ∈ {E, D ⊕ T, U }. In the Sharpe  
(1964) or Ross (1976) mean-variance risk-reward world the equation (13) would  
result in:

  (14)

with non-zero bD,t worth mentioning (Davis 2005).
We can also see in (13), what are the necessary assumptions to reach the “standard” or 
“textbook” WACC formula, applicable to FCFF. For definition of FCFF see Bucher et al.  
(2002). Respecting the definition of FCFF (denoted ), in contrast to capital cash 
flows (CCF, see Ruback 2002):

  (15)

it is possible to reach the WACC equation:

  
(16)
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using the above algorithm if and only if  and  

tt = tt +1 (note that growth rate g is the same for X ∈ {E, D, C }). This is in concert with  
Massari et al. (2007), who find the standard WACC formula valid even in steady growth 
cases (constant capital structure). The use of interest tax shield variables Tt and rT,t , 
enables analysis of assumptions used by different FCF theories of capital structure. Tt is 
the present value of future tax savings realized due to interest accrued to debt (4). Inter-
est payable, not interest paid, reduces the tax base in many jurisdictions (incl. Europe, 
US). By its nature Tt ≥ 0, and eE,t ≥ 0 for every t. 
Let us examine the nature of eT,t . Tax shield cannot be pre-paid, drawn or repaid, contrary  
to other types of capital, as the tax laws in most countries limit the tax-deductibility of 
the cots to the period, when the costs accrued. At the same time EBIT can be below 
zero, so that it is not possible to realize any interest tax shield. Moreover the tax deduct-
ibility of the past losses is limited in some jurisdictions. To be simple, no carry-forward 
of tax losses is assumed, thus 

  (17)

Otherwise we would need a separate (probably option-based) model for assessment of 
the value of the interest-payable-part of losses and its carry-forward capacity. With pos-
sibility to carry forward losses, (17) would be more complicated, but there would still 
be two limiting factors: EBIT and interest accrued.

2. Financial distress and risk-return framework

The most important limiting factor of up-to-date CF theories of capital structure is 
fact that the more risky equity (the more levered equity), the higher rate of return, but 
debt is assumed to be riskless, or at least having leverage-independent rate of return. 
If the rU,t is higher than the rD,t  at low leverages, then the risk of Ut and risk of Dt at 
100% debt financing would have to differ to obey the no-cost-of-bankruptcy assumption  
(Modigliani, Miller 1958). Of course rD,t  is not constant with respect to leverage (Carlson,  
Larzak 2011), i.e. risk of Ut would have to depend on financing. Up-to-date CF theories 
of capital structure do not handle rT,t well. We see mostly leverage-independent rT,t or 
regime-switching models like Ruback (2002). We need to introduce cost of financial 
distress (CFD) in the above mathematical apparatus.
CFD can be related partly to the value of capital alone, and partly to the value of assets 
(cp. Almeida, Philippon (2007) extensive literature review). But how to distinguish the 
financial distress cost from the loss of value of assets? When assets start to lose their 
earnings capacity, CFD is not usually observable in the form of sales decrease yet. But 
CFD become observable even at low leverages in other forms – credit spreads grow 
with growing leverage, as Collin-Dufresne et al. (2001) show, and also closely corre-
late with equity premium, cp. (Chen et al. 2009). CFD make the rD,t strictly increasing 
function of leverage, as observed by e.g. Almeida and Philippon (2007). They report 
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risk-adjusted CFD as a fraction of assets value, besides the credit spreads. CFD probably 
practically apply by trimming the CF, as well as by use of risk premium in COC, as evi-
dent from Andrade, Kaplan (1998) or Korteweg (2010). Moreover, if one re-leverages or 
de-leverages rE,t , then either rE,t  or rU,t do not match the risk profile of rD,t  if one does 
not adjust rD,t alongside the leverage. Cost of debt rD,t is known, but just for the particu-
lar leverage. Is it correct to count for rU,t estimation with rD,t of indebted or debt free  
company? Estimate of rU,t from leveraged firm (Dt /Et >> 0) data yields rU,t inconsistent 
with rD,t observed at Dt/Et → 0. Estimate of rE,t at leveraged firm from debt-free firm 
(Dt/Et → 0+) rU,t yields rE,t inconsistent with rD,t observed at Dt /Et >> 0+. 
To reflect CFD consistently let us replace Ut, rU,t and eU,t by capital less interest tax 
shield (CLTt ), cost of CLTt (i.e. rCLT,t ) and by CF to CLTt (i.e. eCLT,t ). The rCLT,t is a 
growing function of Dt /Et and rU,t . Another reason for introduction of CLTt and rCLT,t 
is the influence of financial distress on both the risk perception and expectations of future  
sales and profits, cp. Andrade, and Kaplan (1998) or Korteweg (2010). Moreover  
rCLT,t and CLTt , are easier to derive than rU,t and Ut, if CFD exist. Dt and Et are ob-
servable, and evaluation of Tt with CLTt is as possible as with Ut . CLTt , eCLT,t , and 
rCLT,t are endogenous. Thus (11), (12), and (14) yield:

  (18)

  (19)

  (20)

The same applies to additive risk premiums in rX,t ; X ∈ {E, D ⊕ T, U }. Return rate 
rX,t  in (20) can be replaced by bX,t in the Sharpe (1964) or Ross (1976) mean-variance 
risk-reward world.
In most CF capital structure models rX,t , Xt , eX,t ; X ∈ {E, D ⊕ T, U} are expected val-
ues, or averages, if it comes to maximum likelihood estimators (MLE). When I further 
treat rX,t , Xt , eX,t ; X ∈ {E, D ⊕ T, U}  as stochastic, I denote the MLE  
I cannot avoid mixing sections of stochastic and deterministic rX,t , Xt , eX,t , because 
I need to introduce risk in the otherwise (usually) deterministic model. Without risk 
any solution of deterministic FCF capital structure model is possible due to too many 
unknowns. The subsequent part of this section treats all variables as stochastic.
Staying in Sharpe (1964) or Ross (1976) mean-variance risk-reward world and as-
suming that there is a common source of risk for any kind of capital in a company –  
risk of assets – therefore correlation of market portfolio with returns to E, D, T, U is 
the same, we get

  (21)

where rf,t is risk-free rate of return and naturally σ 2(rf,t) = 0. What is the source of risk? 
From the point of view of time t, Xt is known. Expressing rX,t from (2), it emerges that   

rX,t , Xt , eX,t
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  (22)

where Xt +1 + eX,t - Xt  is net income in the case X ≡ E, and interest accrued if X ≡ D. Let 
us assume usual σ 

2(eX,t) = σ 
2(eX,t +1), cov(eX,t , eX,t +n ) = 0. If K = ∞ in (4), then it is also  

easy to see that cov(eX,t , rX,t) = 0 . In long term company cannot distribute more profit 
than is the net income. All together eX,t is the only source of risk in our model. If eX,t  
is deflated, so that we can denote its generating process as stationary, then (22) yields:

  (23)

The tax shield is a special case, because it depends on interest accrued(not paid) and 
its upper bound is tax from EBIT, i.e. tt (Ut +1 + eU,t - Ut ). If σ (α) / α- ≡ V(α), then

  (24)

contrary to very commonly stated V (rT,t ) = V (rD,t ), which we would yield if we forgot 
about the upper limit of the tax shield.
Equation (23) can be used to derive risk of CLT, assets, and tax shield in a FCF capital 
structure model, because V (rX,t ) is not directly observable at these kinds of capital, as 
they are not traded publicly. However V (rE,t ) and V (rD,t ) are observable at the capital 
market. 
What is the relation between rD,t , rU,t, and rE,t then? Recall that eE,t is residual item as 
eE,t = eC,t - eD,t , because payments to creditors have priority. To show the consequences,  
let us demonstrate two cases of indebted company, i.e. eD,t > 0:
1) company has sufficient earning capacity to satisfy creditors: credit spreads are neg-
ligible, V (rD,t ) → 0+ and change of CCF (i.e. eC,t) shifts almost entirely onto equity:

  (25)

nevertheless

  (26)

Then from (22) it emerges that:

  (27)

2):  and company does not have earning capacity to fully satisfy creditors. 
Then (approximate equalities are used in the case that something is left to share holders):

  (28)
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hence 

  (29)

however

  (30)

Note that  (shareholders usually do not make capital contributions to financially 
distressed company) so that eE,t can be described by Pareto distribution. Then V(rE,t) > 1  
due to σ (eE,t) < , if eE,t follows Pareto distribution type I, III or IV. Then again:

  (31)

Inequalities (27) and (31) hold for any level of debt, as creditors have priority to share-
holders. Because eCLT,t is influenced by both risk of assets and of debt, we can sum up 
that: 

  (32)

Inequality (32) seems to be obvious, but many capital theories used in practice, as 
reviewed by Fernández (2004), produce rE,t < rU,t < rD,t for high leverages and risky 
debt. One could complain about bond yields as high as 20%. Well, Dt < Ut always. 
Credit spreads do not represent the true risk premium in rD,t, because credit spreads 
are estimated using contractual, not really achievable installments and interest pay-
ments. However, eD,t ≤ eU,t , otherwise owners (equity holders) would have unlimited 
liability.

3. Recent cash flow theories of capital structure

The above derived framework lets us review selected FCF theories of capital structure. 
The subsequent section treats all variables in the nature, the reviewed papers do, i.e. 
mostly in deterministic nature.
Ruback (2002) provides two marginal cases: the Dt = Dt +1, and Dt /Et = Dt +1/Et +1. In 
the first case he finds rT,t = rD,t , in the latter one rT,t = rU,t, based on analysis of bD,t 
and bU,t . Ruback (2002) uses variables constant in time, thus the lower indexes used 
here for description of his theory have limited validity only to necessary cases. Firstly 
to the case Dt = Dt +1: Ruback (2002: 97) provides equation of bE,t for Dt = Dt +1  
and finds that rT,t = rD,t . He however assumes rT,t = rD,t in his equation (19), and im-
plicitly Dt = Dt +1, tt = tt +1 and rT,t = rD,t +1, all deterministic. Risk is borne purely by 
beta in his framework, i.e. rX,t = rf,t + bX,t RP; X ∈ {E, D ⊕ T, U}, where RP is market 
risk premium. Ruback starts with rT,t = rD,t . It is inevitable to reach bT,t = bD,t then, 
thus bT,t = bD,t cannot be used for justification of rT,t = rD,t , which he unfortunately 
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does. The second case examined in (Ruback 2002: 98) is Dt/Et = Dt +1/Et +1. Dt /Et is  
deterministic again, as well as tt and tt = tt +1. Otherwise Ruback (2002) treats RP and Tt 
like stochastic, as he bases his proofs on betas. If one considers Tt stochastic, he/she has 
to allow for stochastic tt , rD,t , Dt , and Dt /Et . Moreover Ruback (2002) assumes Dt = 
δUt , where δ is fixed ratio. Because of rX,t = rf,t + bX,t RP and Dt = δUt , thus implicitly 
rT,t = rU,t , inevitable conclusion is bT,t = bU,t . Due to his (often implicit) assumptions he 
reaches his conclusions regardless of the true risk profile of tax shields. Moreover, under 
his assumptions of bT,t = bU,t , deterministic Dt = δUt , tt = tt +1, and due to D + E =  
U + T we would find that rX,t = rU,t ; X ∈ {E, D ⊕ T, U}!
Fernández (2004) wrote beneficial paper, which reviews important COC theories. His 
theory, keeping my notation of variables, represents equation:

  (33)

for the constant perpetuities or constantly growing perpetuities in world without bank-
ruptcy costs (or CFD). Further he finds Tt = tt rU,t Dt/(rU,t - g) (but uses variables con-
stant in time). Cooper, Nyborg (2006) write that Fernández (2004) mixes Miles-Ezzell 
and Modigliani-Miller debt policies. Fernández (2004) assumptions contradict his con-
clusions. Equation (33) needs rT,t = rD,t and Tt = tt Dt , cp. eq.(13) in this paper. So there 
is another objection to his conclusions: Consider rT,t = 6% equal to interest rate, while 
growth rate of assets (and debt) g = 5% p.a. The interest accrued increases by 5% each 
period due to 5% increase of Dt . However growth does not increase the value of debt: the 
higher growth rate, the lower part of interest is paid (or the higher is drawn). With g = 5%  
and rD,t = 6% one sixth of interest is paid, i.e. eD,t = 1%Dt . Obviously  
Dt = 1%Dt /(6% - 5%). Let rT,t = rD,t (necessary for (33)). Then Tt = (rD,t  Dt tt  / 
(rD,t - 5%), thus Tt = 1,5Dt , but not Tt = tt Dt . Value of debt is ceteris paribus the 
same regardless the growth rate, while value of tax shields increases with growth rate, 
contrary to Fernández (2004) assumptions.
Arzac and Glosten (2005) find that Tt < tt Dt if all variables are stable in time, especially 
Dt = Dt +1 and tt = tt +1. As they assumed rT,t = rU,t , and Dt = Dt +1, their finding is natural. 
Their incorrect rT,t = rU,t stems from their use of “pricing kernel”, about which they “need 
not worry” (ibid: 454). Using not “pricing kernel”, but COC, they would find in their equa-
tion (12) that by use of the principal repayment both as a part of eT,t and as a DEt , they 
have to assign rU,t to this bi-directional and bi-risky CF. Principal repayment has its own 
risk profile (inherent to debt), no matter of expressing it as part of DEt , contrary to their 
assumption. Interestingly the first part of their equation (12) – before the risk-return flaw –  
properly shows that if Dt decreases, then Tt < Dt tt , and if Dt increases, then Tt > tt  Dt.  
The above problem of (Arzac, Glosten 2005) approach is evident in their equation (13), 
where the discount rate for debt (and/or equity) valuation is both rD,t and rU,t in the same 
submultiple – that flaws the both the general and special case derivation of Tt (ibid). 
Farber et al. (2006) provide an interesting expression of WACC applicable to FCFF. 
The assumptions, under which such WACC formula is derivable (constant amounts of 
capital or constant growth rate implying constant share of debt on capital structure) are 
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discussed above. The conclusions derived by Farber et al. (2006) are in line with their 
assumptions about rT,t (ibid: 216, 217). They still provide neither convincing proof nor 
evidence for rT,t = rU,t or rT,t = rD,t. Fernández (2007) further examines their conclu-
sions, but builds on findings of Arzac and Glosten (2005). Therefore the same objection 
can be raised to Fernández (2007) as to Farber et al. (2006).
Qi (2010) provides results similar to (Ruback 2002), although based on compari-
son of personal and corporate lending and borrowing rates. Qi (2010) concludes that  
Tt = tt  Dt if individual could lend/borrow at the same rate as a corporation borrows. 
Furthermore he assumes Dt = Dt +1. However the personal and corporate lending and 
borrowing rates have no influence on risk profiles of different kinds of capital. Therefore 
Qi’s (2010) conclusions miss the main driver of risk premium – the risk.  However I 
have to agree with him on criticism of Liu (2009), who splits tax shields into earned 
and unearned. All tax shields are unearned from the ex-ante point of view, and those, 
which are earned, were already distributed either as CF or as capital value increase. 
Oded et al. (2011) base their reasoning of rT,t = rU,t for company, which rebalances 
its debt share on assets, on the perfect correlation between Tt and Ut. As the company 
rebalances debt share, it implicitly creates a fluctuation of debt, thus rT,t = rU,t. Accept-
ing the logic of Oded et al. (2011), what would be the risk inherent to equity? If debt 
fluctuates the same way as assets and tax shield value do, then equity has to do so too, 
because its share on assets is fixed (cp. their equations (3) and (4)). Then their conclu-
sions (8) and (9) contradict their assumptions. We can also object that for non-constant 
perpetuities with rebalanced debt Tt ≠ tt  Dt rT,t  /rU,t. (contrary to their (7)).
Barbi (2012) also implicitly assumes that rT,t = rU,t (but with constant COC), because 
he starts derivation of tax shield value as a part of value of unlevered equity, to which 
rU,t is naturally the appropriate rate of return (cp. his equations (13), (14)). The con-
tradiction included in his analysis (p. 254) is that by mixing risk-neutral approach and 
the classical one he comes to conclusion that tax shield yields risk-free rate of return, 
but its profile equals risk profile of assets (ibid). There is circularity between tax shield, 
unlevered capital and total capital (or their cost, respectively), therefore his experimental 
test show good results despite contradictory assumptions. If one keeps the correct alge-
bra, the (Modigliani, Miller 1963) capital structure framework works in spite of results 
contradicting assumptions in terms of risk handling. It is worth noting that equation (14) 
in Barbi (2012) very closely resembles the equation (13) in Arzac, Glosten (2005) and 
(2) in Fernández (2007), with one little exception: Barbi (2012) found risk-free rate of 
return more appropriate than cost of debt for the tax shield.
Qi et al. (2012) come very close to the answer of the crucial question: what is the risk 
profile of tax shields, thus also what is rT,t . They present findings similar to (17), but they 
compare EBT (earnings before tax) and total tax deductibles sum. However, the ques-
tion of interest tax shield usability lies upon comparison of EBIT and interest accrued! 
Therefore (interest) tax shield usability does not depend on σ (eE,t ), but on σ (eCLT,t ), 
resp. σ (eU,t ), and on σ (eD,t ). Qi et al. (2012) provide analysis of the probability of reali-
zation of tax deductibles (deductible from EBT), not probability of realization of interest  
(or debt) tax shield. Although it enables them to address the crowding-out of  
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non-interest tax shields, it precludes use of their findings for interest tax shield. Further-
more their analysis relies upon assumption rT,t = rD,t in case of Dt = Dt+1 and rT,t = rU,t 
in case of Dt  /Et = Dt +1/Et +1. That requires deterministic debt in otherwise stochastic 
environment. So a step to understanding tax shields risk and return has been done by 
Qi et al. (2012), but a way is still ahead.
The above review of the most recent substantial contributions to the CF theories of-
capital structure shows the need for closer examination of rT,t and influence of CFD. 
Thorough review of earlier papers (a comprehensive review provides Fernández 2004)
would require separate study. There is no way to examine the conclusions about rT,t 
without examination of its risk. As we can see in (13) any rate of return can be at the 
place of rT,t , and the whole apparatus will work, but sometimes with weird or extreme 
results. The reason is mutual dependence between rE,t , rU,t and rT,t. 

4. Value of tax shields

The subsequent section treats all variables as stochastic, if not stated otherwise.
Risk of tax shields can differ from the risk of debt. The eT,t is described by (17) and 
equals difference between the CCF (eC,t) and FCFF ( ), as shown in (15). Thus 3 fac-
tors determine the tax shield: tax rate, interest accrued, EBIT. Let us consider the case 
tt is deterministic, eC,t = EBITt and tax losses cannot be carried forward. With respect 
to (17), the expected eT,t (i.e. ) is:

  (34)

where N[⋅] is density function of distribution of EBITt (let us consider normal distribu-
tion). The difference between (17) and (34) is that (17) is deterministic, but (34) consid-
ers stochastic eT,t . Because higher eC,t decreases rD,t through credit spread decrease, but 
usually increases Dt due to debt policy, we can assume cov(eC,t , Dt rD,t ) ≃ 0. Thus we 
can express σ 

2(rT,t) utilizing the law of total variance and (22) as:

  

(35)

Abandonment of the assumption that tt is deterministic would require estimation 
of the product of independent variables (see Goodman (1960)). The last summand 
of (35) is variance between conditional expectations  and .
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If  then  and 
 As  as well as  and variance between  and 

 determines cost of tax shield at together with the variance of tt . Then 
 and if variance of tt and variance between conditional expectations 

 and  were high enough, even  could occur.

If  then  and , but  
due to priority of creditors to shareholders. Nevertheless  observations, which 
influence , are limited from below (by zero) and from above (by ),  
thus we miss the tails, which create the significant part of variance. As 

 due to  most 
probably , thus also  at this leverage. That also turns 
into .
In spite of the possibility of σ (rC,t ) ≤ σ (rT,t ) at low leverages, it holds that rCLT,t < rT,t in 
most cases (usual leverages) because of (20), as the influence of present value of tax shields 
on cost of equity (leveraged) has been empirically observed to be negative. Dhaliwal  
et al. (2006: 714) find, that there is decrease of cost of equity by 46 basis points for each 
15% increase of debt/capital ratio at US stocks in 1982–2004. Period of 1982 – 2004  
was period of rapid growth rates on the US stock markets, and Dhaliwal et al. (2006) 
report long term growth forecasts 1st quartile 7.6% and 3rd quartile 20%! Negative ef-
fect of tax rate, or tax rate increase, on cost of equity report also Ahmad et al. (2011), or 
Mnzava (2009). Another empirical paper wrote Fosberg (2010), who also finds negative 
reaction of cost of equity to tax shield value increase (ibid: 26). Because Fosberg (2010) 
estimates value of tax shields as product of tax rate and amount of debt, he underes-
timates strongly the size of tax shield, which leads to otherwise unexplainably large 
regression coefficient of present value of interest tax shields (PVITS as he denotes it).
A question remains: what is the value of tax shield? The relative value of tax shield (relative 
to debt) is decreased by high leverage in two ways: low EBIT compared to interest, and risk 
of tax shield CF. The first reason is analyzed by Qi et al. (2012), who report the tax shield 
CF being cranked in similar way as equation (17) would suggest (but they base their analy-
sis on tax deductibles). The second reason, the CF risk, is analyzed above. Due to many 
parameters, which can influence σ (rT,t), the only way to truly examine it is a simulation.

5. Simulation of capital structure with risky debt and tax shields

Capital value and COC are simulated based on equations (18), (19), (20), (23) and (34) 
with a discrete time to assess the effect of cost of financial distress (CFD) on capital 
structure. The option form of tax shield CF (34) provides similar values of rT,t as (17) 
for the same leverage.
Parameters and assumptions of simulation are: Dt /Et = Dt +1/Et +1, i.e. steady growth g ∈  
{1%; 4%} is deterministic,  
tt ∈ {10%; 35%} with σ(tt) = 3% in both cases, rf,t = 5%, rU,t = rf,t + 15% × σ 

2(eC,t).  
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Equation rCLT,t = ru,t (1 - pt b), where pt is probability that eC,t < Dt rD,t  reflects CFD  
b ∈ {10%; 30%}. Cost of debt rD,t = rf,t +(rCLT,t - rf,t)Dt /Ct.. I have tested the whole 
model also with (17) instead of (34) and rCLT,t = rU,t (1 + bDt /Ct) with generally the same 
results as below. To reflect tax rate variance in tax shield risk, I utilize Goodman’s (1960) 
conclusions. Investors are mean-variance optimizers in the meaning of Sharpe (1964) or 
Ross (1976), which means that price of systematic risk is constant. Because:

  (36)

and correlation between capital X and market portfolio (ρX,M), as well as risk of market 
portfolio σ (rX,M) are not dependent on leverage, simulation also respects equation (21).
The simulation includes:

1. low-growth-low-risk companies, some of which skillfully use tax optimiza-
tion, e.g. real estate developers, or airlines (g = 1%,  t = 10%, or  
tt = 35%, b = 10%), simulation results are at Figures 1 and 2.

2. high-growth-high-risk companies, which also have high CFD, e.g. dotcoms, bio-
techs (g = 4%,  tt = 35%, b = 30%), simulation results are at Figure 3;

3. low-risk-high-growth companies with relatively stable profits, but good growth 
prospects, e.g. transnational FMCG (consumer goods), utilities, Google (g = 4%,

 tt = 35%, b = 10%), simulation results are at Figure 4;

4. high-risk-low-growth companies with unstable profits, e.g. those in shrinking indus-
tries (g = 1%,  tt = 35%, b = 10%), simulation results are at Figure 5.

That allows us to examine some of the anomalies to the traditional capital structure 
theory: why the most profitable and healthy companies keep so much cash (or use so 
little net debt, as only debt less excessive cash counts), why the young companies tend 
to issue shares instead of borrowing, or why all of the theories: CF theories of capital 
structure, pecking order theory, and static tradeoff theory are confirmed by empirical 
tests (Harris, Raviv 1999; or Myers 2001).
Use of debt can increase company value by only small amount at the low-growth-low-risk 
companies. The rT,t is very close to rD,t in the whole domain of leverage. Due to ability 
to provide security, the CFD is low and such companies use high leverage to increase the 
return to equity (rE,t ). These companies seldom go public because of high rE,t . It is worth 
noting that each point (triangle, cross) on the curves of the value of CLTt , Ct or rD,t means 
increase of debt face value by one unit. Increase of the debt by one unit changes leverage 
at these companies at low and high leverages similarly, which makes low-growth-low-risk 
companies, which use tax optimization, flexible even at high leverages. 
In case the tax rate becomes high (tt = 35%), behavior of COC changes at low-growth-
low-risk companies. Tax shield brings still quite low advantage due to low growth, but 
rE,t becomes flat until very high leverages. The rT,t is very close to rD,t again. Such 
companies still like to use debt, but not as much, as observed at real estate developers 
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Fig. 1. Low-growth-low-risk companies with tax optimization

g = 1%,  tt = 10%,  b = 10%

(and similar) companies (Fig. 1). Quite flat rE,t curve makes it more attractive to go 
public than it was at e.g. real estate developers. The crosses and triangles on the curves 
of CLT or capital value become less dense after capital value maximum. As each cross 
or triangle means one unit of debt face value, that means fast decrease of capital value 
in these areas, and makes such companies unlikely to draw additional debt. Then such 
a company would like to issue equity to get back to optimal debt levels (Fig. 2).
The high-growth-high-risk companies with high CFD, like dotcoms or biotechs (Fig. 3) 
cannot gain substantial advantage from debt use, because all COC increase since quite 
low leverages. There is high Tt /Ct ratio at high leverages at these companies. If that 
is lost due to unfulfilled expectations of EBIT, then indebtedness grows very quickly 
and equity value drops (Fig. 3). That might be why these companies avoid using debt 
or use low leverages. High risk and high CFD make the use of debt disadvantageous 
to these companies. 
My model predicts that growth blue chips regulate leverage closely within the optimal 
territory. The optimal market debt (less cash)/capital ratio is moderate, which can be 
achieved by low debt and/or high cash. The static tradeoff theory predicts these com-
panies to have high leverages due to high earnings capacity. But our analysis shows 
that the low difference between rT,t and g makes the low leverage optimal. The distance 
between marks on the curves increases at higher-than optimal leverages (see Fig. 4), 
but not so strongly as with biotechs and dotcoms (Fig. 3). Flat rE,t curve is remarkable 
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Fig. 2. Low-growth-low-risk companies without tax optimization 

g = 1%,  tt = 35%,  b = 10%

Fig. 3. High-growth-high-risk companies with high CFD

g = 4%,  tt = 35%, b = 30%
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too. The rE,t could even decrease (Dhaliwal et al. 2006: 714) with increasing leverage 
due to high g. This case can also explain why some companies accumulate cash while 
drawing debt. If debtor keeps high cash, then risk is low and rD,t stays low too. Yet the 
equity financing is still affordable even for blue chip companies even after reaching the 
downward sloping part of Ct curve.
Finally the high-risk-low-growth companies’ case (Fig. 5) shows in the same way as 
low-growth-low-risk companies did, what drives the shareholders of these companies 
to high leverage. The high leverage enables to increase return to equity mainly by 
exploitation of the tax shields. It also shows why they easily become bankrupt. In the 
simulation it took 3 units of debt face value to get from 40 % to 60 % debt face value/
capital. Just 3 more units of debt are enough to get bankrupt. 
The model explains why some companies chose moderate debt levels, thus they fit 
the static tradeoff theory, as Myers (2001: 88) writes. At the same time it is also able 
to explain variance of leverages among different industries (see e.g. Harris, Raviv 
1991: 334):

1. why companies with valuable assets use high debt levels, 
2. why increase of profitability increases leverage (cp. the above results for high-

risk-low-growth companies and results for low-risk-low-growth; risk is multiple 
of EBIT mean so the results can be viewed in a relative way to each other), 

3. why lack of growth opportunities increases leverage and high CF decreases it.

Fig. 4. Growth blue chips

g = 1%,  tt = 35%, b = 10%
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Theory and evidence on the above relations provides e.g. Harris and Raviv (1991: 
343–349). From the point of view of company life cycle my results imply that young 
companies would prefer internal financing or equity. They would like to issue debt and 
regulate its level by equity issues as they grow mature and less risky. Finally, the mature 
companies or those in shrinking industries like debt, and issue shares only as a defense 
against bankruptcy. 
A look at the above model in a dynamic way shows that distressed companies issue 
equity to get back to optimal capital structure. The last financial turmoil in 2008 and 
2009 provides the evidence. Moreover simulations show that rT,t does not depend on fi-
nancing policy, but depends on rD,t , rCLT,t , while the share of these costs in rT,t changes 
with growth and risk. 

6. Discussion

The simulation of capital value and COC can explain many observed capital structures, 
and implies that equity issue is rather safety brake at companies with non-corner op-
timal capital structure. CF theory of capital structure in this paper can explain some 
observations, which resist tradeoff theory or pecking order theory. Nevertheless this 
paper needs improvement:

1. The model does not incorporate the option nature of all sorts of capital, although 
theory moves towards option structure of firm, despite unresolved basic CF model 
of capital structure. 

Fig. 5. High-risk-low-growth companies with unstable profits

g = 1%,  tt = 35%, b = 10%
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2. The shape of capital value curves (as a function of leverage) and rT,t are endog-
enous with respect to Et , Dt , and their costs (by the mean-variance framework). 
The presented theory needs examination in the light of empirically observed costs 
of equity and debt.

3. The most worrisome problem is that there are two exogenous variables in the 
simulation, which do not necessarily satisfy the theoretical conditions CAPM 
(Sharpe 1964) or APT (Ross 1976) variance-mean risk-reward world. In fact 
standard deviations and normality assumptions could be fine for theoretical proofs 
and they could also hold in practice due to central limit theorem. Nevertheless it 
is impossible to simulate all the possible influences (monetary and fiscal policy, 
interest rates, debt drawing and repayment policies, etc.). If I just assumed that  
eD,t = min(Dt rD,t ,Ut rU,t ), then σ (rCLT,t )/σ (rD,t ) becomes meaninglessly high at low  
leverages because of extremely low σ(rD,t ) despite proven normal distribution of 
cash flows (Emery 1981), due to my model’s inability to capture variance of rD,t 
caused by other factors, than company’s earning capacity volatility. I find no better 
solution except for the option model of capital structure, which would allow us to 
examine the risks inherent to different classes of capital even more thoroughly. But 
that is theme for another paper – we would need to find a consistent risk measure 
applicable to the option model of a firm.

Contrary to classical CF theories of capital structure, the option theory can imply some 
benefits of debt even above the value of assets as there is still possibility that something 
will be left to shareholders (thus shares still have some positive value). In spite of that 
the basic equations (2), (5), (6) with CLTt instead of Ut , (18), (19), (20) have to hold 
in such case. 
A more interesting implication of this paper results, both theoretically and empirically, 
is the size of tax shield. Within the literature referenced we find even evidence that high 
growth expectations let the tax shield overweigh the risks, which emerge with higher 
leverage. Kemsley and Nissim (2002) report the tax shield to be approx. 40% of debt bal-
ance, which is similar to the corporate income tax rates in their data sample (ibid: 2067). 
That would be too low (they use data for the 1963–1993 period) if the debt is to keep 
its share on balance sheet and listed companies do not lose their share on U.S. economy, 
or in other words if interest is supposed to grow by the same rate as GDP. Contrary to 
that Dhaliwal et al. (2006), Ahmad et al. (2011), Mnzava (2009) or Fosberg (2010) bring 
evidence that tax shield could possibly overweigh the influence of leverage on COC.
Despite the above objections to my model I hope that it is beneficial in several ways: 

1. in promoting the dynamic capital cash flow models, which allow the examination 
of influence of growth on capital structure, COC and firm value,

2. in showing the circularities, which baffle the effort for finding the correct risk-
return relationship in the CF models of capital structure,

3. in incorporation of cost of financial distress in the CF model of capital structure.
My results resemble paper by Bradley et al. (1984), who address the option-like nature 
of most of the types of capital and show the impact of risk on optimal capital structure. 
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Increase of risk (earnings standard deviation) as well as increase of cost of financial 
distress mostly leads to decrease of optimal debt level in both systems (Bradley et al. 
1984 vs. this paper). The difference is however in mathematical apparatus and its prac-
tical usability. Bradley et al. (1984) do not consider growth and do not provide simple 
system of equations, which would describe cost of capital and capital values. The review 
of literature on FCF theories of capital structure documents quite well the popularity 
of Modigliani and Miller (1958)-like models, which this paper also tries to satisfy. By 
incorporating the risk and growth and by departure from the fixed capital structure and 
fixed rCLT,t (rU,t ) FCF theory of capital structure, this paper becomes able to analyze 
the influence of leverage in more realistic way, compared to the most significant FCF 
theories of capital structure (for overview see Fernández 2004).

Conclusions

The dynamic CF model of capital structure described in this paper allows us to exam-
ine most of the recent CF theories of capital structure. Most of them have troublesome 
circularities or implicit assumptions, which either do not fit reality or contradict other 
assumptions of those models. Therefore I provide an analysis of riskiness of different 
types of capital as well as adjustment of the dynamic CF model of capital structure to 
cost of financial distress. The analysis of risk inherent to tax shields done via simulation 
in this paper shows that tax shield cost, as well as the optimal financing policy, depends  
on risk and growth opportunities. Cost of tax shield is mostly between the cost of debt 
and cost of unlevered equity (or cost of “capital less tax shield”, because unlevered 
equity is observable only at company with zero leverage). Combinations of risk (in a 
form of CF variance), growth, and tax rate provide suitable explanation for puzzling ob-
servations: low-leverage blue chips, quite general applicability of pecking order theory, 
or use of high leverage at low-growth companies.
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