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1. Introduction

Ever since the “dual carbon goal” was announced, concerted efforts have been devoted to 
reducing carbon emissions, prompting extensive academic research. Scholars have employed 
bibliometric methods to achieve a thorough analysis and summary of China’s carbon emis-
sions issues, yielding significant findings. Regarding carbon emissions trading in China, re-
searchers have conducted comprehensive studies using methods such as difference-in-differ-
ences (Sun et al., 2021; Yang et al., 2020), quota sampling (Wu et al., 2019), and documentary 
research (Wang et al., 2019). Studies on carbon emissions have primarily focused on provincial 
and municipal levels. Tian et al. (2016) investigated the carbon output of the agricultural sec-
tor in Hunan Province using multiple regression and decoupling analysis (Tian et al., 2016), 
while Tseng (2019) analyzed carbon emission influencing factors in Inner Mongolia using the 
LMDI (Tseng, 2019). At the municipal level, Wang et al. (2013) measured Shanghai’s carbon 
emissions using the emission factor method, and Yang et al. (2017) assessed Xi'an's carbon 
emissions from an urban transportation development perspective. Luo et al. (2019) analyzed 
Wuhan’s carbon emissions using the carbon emission decomposition method. Researchers 
have also explored factors affecting carbon emissions, focusing on energy structure changes 
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(Wang et al., 2016), population mobility (Wu et al., 2021), and higher education development 
(Zhu et al., 2021).

The digital economy, being a novel economic form, effectively encourages high-quality 
urban development. It also demonstrates some environmental benefits (Yin & Yu, 2022). For 
instance, Yu and Zhu (2022) incorporated their mediation model with the geographically 
weighted regression, found that the digital economy helps reduce energy intensity, thereby 
lowering CO2 output (Yu & Zhu, 2022). However, there are also divergent academic opinions 
on this issue. Wu et al. (2021) suggested that digital technology elevates carbon emission 
efficiency, whereas Islam et  al. (2024) argued that it may not lead to a reduction in total 
carbon emissions. Results can vary even when studies are conducted in the same location 
(Chen et al., 2020; Zhang et al., 2021). 

To offer theoretical backing for the effects of carbon emissions brought about by the 
digital economy, extensive academic discussions have been carried out on factors affecting 
carbon emissions. Besides, great attention has also been given to the environmental benefits 
associated with the digital economy. However, existing studies still provide insufficient reli-
able evidence. On the one hand, existing research mostly focuses on a single region or city, 
lacking a systematic analysis of the heterogeneity of different regions across the country. 
On the other hand, existing research lacks multidimensional examination of the interactions 
between cities. This study aims to fill these research gaps by addressing the following ques-
tions: How are carbon emissions in the relevant cities affected by establishing big data pilot 
zones? Does this relationship hold when spatial effects are considered? What spatial spillover 
effects can be identified? 

This article may provide three marginal contributions: First, in the field of carbon emis-
sion accounting, it distinguishes urban carbon emissions into four categories – total, direct, 
indirect, and other carbon emissions – rather than relying solely on traditional accounting 
methods based on fossil fuel consumption or energy activities. Second, the study leverages 
external shocks – such as “smart cities”, “Broadband China”, “clean energy demonstration 
provinces” to rigorously verify the digital economy’s impact. Third, the article examines spatial 
spillover boundary effects by constructing spatial threshold matrices. It analyzes how pilot 
zone policies affect local carbon emissions and evaluates their broader impact on other cities 
at varying distances. In summary, this study provides new perspectives and practical pathways 
for achieving carbon neutrality.

Following this introduction, Section 2 establishes the theoretical foundation by reviewing 
policy backgrounds and formulating research hypotheses. Section 3 elaborates on the meth-
odology, and data processing procedures. Section 4 visualizes the spatial distribution patterns 
of urban carbon emission. Section 5 further spatial analyses using the Spatial Durbin Model. 
Finally, Section 6 concludes with policy recommendations tailored to spatial governance and 
proposes future research directions.

2. Policy background and research hypothesis

2.1. Policy background

As information technology becomes increasingly integrated into society and the economy, 
data has become the most dynamic innovation element in the new industrial revolution. Data 
is not only a fundamental and strategic resource but also a new boost to economy in the 
modern era. The role of big data in national governance, economic development, and social 
life has grown increasingly significant. To develop the digital economy at a faster pace, big 
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data development strategies have been rolled out in major industrialized countries around 
the world. 

For instance, in 2012, the “Big Data Research and Strategic Plan”1 was announced in the 
United States, vigorously promoting the development of cutting-edge core technologies in 
big data. In 2013, the United Kingdom and France released strategic plans such as “Seizing 
the Data Opportunity: A Strategy for UK Data Capability”2 and the “Digital Roadmap ”.3 In 
December 2019, the U.S. White House released the “Federal Data Strategy 2020 Action Plan,”4 
aimed at strategically exploiting data. In 2020, the EU published the “European Data Strate-
gy,”5 aspiring to become the world’s most dynamic, data-agile economy.

China’s big data development strategy has been steadily advancing. In 2014, the Gov-
ernment Work Report mentioned “big data” for the first time. In 2015, the State Council re-
leased the “Outline of Actions for Promoting the Development of Big Data” and the “Guiding 
Opinions on Actively Promoting the ‘Internet Plus’ Campaign,” emphasizing the urgency of 
accelerating big data deployment. Currently, the big data pilot zone construction has been 
authorized in two batches. 2015 saw the designation of Guizhou Province as the first batch. 
The second group was declared in 2016, including Inner Mongolia, Shenyang, Chongqing, 
Henan, Shanghai, the Pearl River Delta, and Beijing-Tianjin-Hebei. Today, China has a total 
of eight such pilot zones, advancing big data industries in the northeastern, western, central, 
and eastern regions. These zones facilitate industrial transformation, regional collaborative 
development, and data sharing. This approach aims to demonstrate and drive innovation in 
big data, foster industry growth, and enhance data sharing and utilization, thereby elevating 
China’s big data capabilities.

2.2. Research hypothesis
2.2.1. Direct impacts

First, the digital economy, as it garnered greater importance, has improved the urban digital 
infrastructure, particularly through the construction of cloud computing data centers and 5G 
base stations. These advancements have increased the speed of information transmission, 
facilitated the widespread adoption of remote work, and effectively reduced carbon emissions 
associated with commuting (Huang et al., 2023). Second, the digital economy has elevated 
data to an ever more important factor of production, transforming the structure of tradition-
al production factors (Wang & Shao, 2023). This shift has decreased reliance on labor and 
energy (Gan et al., 2023), positioning data as the most critical production factor in the digital 
era (Farboodi et al., 2019). Consequently, the allocation of production factors has become 
more optimized, improving resource efficiency and contributing to lower emissions. Finally, 
the structure of urban energy consumption has improved with the rise of the digital econ-
omy. By lowering the cost of renewable resources and boosting their market share, digital 
technologies have contributed to this optimization (Lyu & Liu, 2021). 

H1: The development of the digital economy positively contributes to the reduction of urban 
carbon emissions.

1	https://obamawhitehouse.archives.gov/blog/2012/03/29/big-data-big-deal?
2	https://assets.publishing.service.gov.uk/media/5a7bac0d40f0b638d61be312/bis-13-1250-strategy-for-uk-data-capa-

bility-v4.pdf
3	https://www.slideshare.net/slideshow/feuille-route-numrique-du-gouvernement-2013/43984125?
4	https://strategy.data.gov/assets/docs/2020-federal-data-strategy-action-plan.pdf
5	https://www.docin.com/p-2322519105.html
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2.2.2. Spatial spillover effects

There is a spatial correlation between any occurrences, according to the first law of geogra-
phy. The digital economy strengthens interregional economic interactions by reducing the 
time and space required for information transmission (Banalieva & Dhanaraj, 2019). These 
interactions not only promote regional economic growth and technological innovations (Hao 
et al., 2023), but also improve resource allocation (Ma & Zhu, 2022), which in turn impacts 
emission in neighboring regions. New economic geography theory upholds that in regional 
development, environmental spillover and knowledge spillover exhibit dual characteristics, 
reflecting both positive and negative spillover effects. This duality is evident in the digital 
economy’s spillover effects on emission reduction (Zhang et al., 2022). Meanwhile, increased 
energy consumption has been spotted due to growing digital infrastructure in neighboring 
areas driven, potentially leading to resource depletion in those areas and adversely affecting 
their carbon emission reduction efforts.

H2: The digital economy’s impact on carbon emissions exhibits a spatial spillover effect.

2.2.3. Spatial and temporal heterogeneity

According to Spatial Economics, the digital economy, through leveraging advanced technolo-
gies, say, the IoT and big data, can overcome traditional geographic and temporal restrictions, 
thereby altering the temporal and spatial layout of production activities. This progress can 
lead to new forms of spatial agglomeration of economic activities (Lange et al., 2020). How-
ever, achieving this requires continuous improvement in regional digital infrastructure and 
Internet technology, along with a robust economic and developmental environment (Liang 
& Li, 2023). In China, no city fully meets the ideal conditions for the progress of the digital 
economy, leading to spatial imbalances in its growth across different cities. Given the distinct 
variations in economic development levels, natural resources, and geographic environments 
across various regions of China (Manne & Richels, 1999), the geographical disparities in the 
emissions impact have been largely overlooked (Zhong et al., 2021). 

H3: Regions with uneven digital economy development exhibit varying effects on lowering 
carbon output.

3. Research design

3.1. Model setting
3.1.1. Static panel modeling

If the carbon emissions in the treatment group decline significantly following the establish-
ment of the experimental zone – and this reduction surpasses the changes in the control 
group over the same period – it suggests that the big data pilot zones have contributed to 
urban carbon reduction. Therefore, this study adopts the DID method to examine the impact 
of establishing big data pilot zones on urban carbon emissions.

	 = α + β × + + σ + τ + εl ;n it i t it i t itco bigdata post Control  	 (1)

	 = α + β × + + σ + τ + εl ;n 1it i t it i t itco bigdata post Control 	 (2)

	 = α + β × + + σ + τ + εl ;n 2it i t it i t itco bigdata post Control  	 (3)

	 = α + β × + + σ + τ + εl .n 3it i t it i t itco bigdata post Control  	 (4)
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Subscripts i  and t  respectively represent city and year. The dependent variable ln  itco
represents the total CO2 and GHG output level of city i  in year t . The variables ln 1itco , 
ln 2itco , and ln 3itco  represent the direct carbon emission level, indirect carbon emission lev-
el, and other emission levels of city i  in year t , respectively. The dummy variable ibigdata  
shows if city i  belongs to a big data pilot zone, taking the value 1 if it does and 0 otherwise. 
The time frame before and after the big data experimental zone policy was in place is shown 
by the dummy variable tpost . The term itControl  represents city-level control variables that 
could influence the urban carbon emissions level over time. 

3.1.2. Spatial panel modeling

The release of the GHG, especially the CO2, affects the local environment as well as the 
neighboring areas, exhibiting obvious spatial correlation. In light of this premise, an econo-
metric model is constructed to analyze the impact on carbon emissions of digital economy 
development from a spatial perspective.

	 = =

= α + ρ + β + θ + µ + σ + ε∑ ∑0
1 1

l ;n ln
N N

it ij it it ij it i i it
j j

co W co X W X  	 (5)

	 =

ε = δ ε + ϑ∑
1

.
N

it ij it it
j

W 	 (6)

ijW  is the spatial panel weight matrix. The spatial adjacency weight matrix is applied to 
the spatial Durbin model in this study. In this model, δ  represents the spatial autocorrelation 
coefficient and ρ  denotes the spatial autoregressive coefficient. 

3.2. Settings of various variables
3.2.1. The explanatory variables

By dividing the scope of emission sources, Urban carbon accounting aims to avoid double 
counting, drawing on the guidelines from the World Resources Institute’s Inventory of GHG 
Emissions from Enterprises. These sources are categorized into three major scopes:

Scope 1: All direct emissions that fall under an urban area are included in this scope. 
Scope 2: Emissions connected to indirect energy use that take place outside of urban 

jurisdiction are referred to as scope 2.
Scope 3: Indirect emissions resulting from operations within the city but occurring outside 

its jurisdiction fall under Scope 3, which is separate from Scope 2. 
The categorization, proposed and systematically defined by Kennedy and Sgouridis (2011), 

provides a comprehensive framework for urban carbon accounting, ensuring accurate and 
consistent reporting of GHG emissions.

3.2.2. Core explanatory variables

The interaction term (big data) serves as the core explanatory variable. It indicates whether 
a sample city i  is assigned to a pilot zone at a given time t , coded as 1 if it is and 0 if it 
is not. The coefficient β associated with this variable represents the pilot zone policy’s net 
effect on the city’s carbon emissions. A negative coefficient suggests that the policy exerts 
restraining effects on carbon emission, with the coefficient’s magnitude reflecting the degree 
of this effect. To construct the core explanatory variable, the study collects and organizes the 
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names of the regions designated as pilot zones in 2015 and 2016 from the Chinese govern-
ment website. Specifically, the Pearl River Delta region and Shenyang City have a broader 
influence that extends beyond their core cities to other cities within Guangdong and Liaon-
ing provinces. Therefore, in the empirical analysis, all cities in Guangdong and Liaoning are 
treated as part of the treatment group.

3.2.3. Control variables

With deepening research in the academic field and relevant findings on factors affecting 
carbon emission intensity, this study introduces several control variables to ensure accurate 
results regarding the impact on emissions. Relevant variables are displayed as follows:

1.	 Resident Affluence extent (lnincom): Measured by the per capita income of urban 
residents.

2.	 Population Scale (lnpopu): This refers to the total sum of urban residents.
3.	 Environmental Pollution (poll): This variable includes industrial emissions from smoke 

(dust), sulfur dioxide, and wastewater. The index is calculated using the entropy meth-
od.

4.	 Energy Consumption Level (lnelec): This refers to the per capita consumption of elec-
tricity in the municipality.

5.	 Government Expenditure (gov): Measured as the ratio of general public budget ex-
penditure to GDP.

6.	 Industrial Structure Advancement (indust): Represented by the proportion of the ter-
tiary sector in GDP.

7.	 Fixed Asset Investment (lninvest): This variable measures the impact of per capita total 
fixed asset investment on carbon emission.

3.3. Data origins and processing

Based on data accessibility and completeness, this study selects 285 cities as the research 
subjects, covering the period from 2011 to 2021. The data are primarily from the 2012–2022 
China Energy Statistical Yearbook, China Urban Statistical Yearbook, statistical yearbooks of 
prefecture-level cities, and statistical bulletins of prefecture-level cities. For missing values, 
to guarantee data completeness, the ARIMA prediction method and linear interpolation ap-
proach are used. Descriptive statistics for the variables are shown in Table 1.

Table 1. Descriptive statistics 

Name Sign N Min Max Mean Sd

Total carbon emissions lnco 3,135 6.487 11.05 8.082 0.531
Scope 1 lnco1 3,135 6.042 10.62 7.651 0.534
Scope 2 lnco2 3,135 4.313 9.144 6.164 0.569
Scope 3 lnco3 3,135 4.447 9.389 6.451 0.567
The interaction term bigdata 3,135 0 1 0.159 0.366
Resident affluence extent lnincom 3,135 9.366 11.08 10.27 0.319
Population scale lnpopu 3,135 2.970 7.227 5.900 0.676
Environmental pollution index lnpoll 3,135 –8.587 –0.991 –2.720 0.905
Level of energy consumption lnelec 3,135 –2.558 7.431 5.607 0.763
Government expenditure gov 3,135 0.0439 0.613 0.203 0.0984
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Name Sign N Min Max Mean Sd

Industrial structure advancement indust 3,135 0.144 0.717 0.425 0.0990
Fixed asset investment lninvest 3,135 –4.061 3.049 1.321 0.841

4. Characteristics of spatial distribution of urban carbon emissions

With the aim to further examine the features of carbon output’s spatial distribution in Chinese 
prefecture-level cities, carbon emissions data from 2012 to 2020 are divided into five levels 
and visualized using ArcGIS 10.7 software. The results are plotted in Figure 1. There is a de-
creasing number of high-carbon emissions in cities and an increasing number of low-carbon 
emission areas. This shift indicates that carbon emission reduction measures are gradually 
taking effect nationwide. In terms of temporal changes, carbon emissions remained relatively 
stable between 2012 and 2016. However, from 2016 to 2020, there is a more apparent trend 
of reduction in carbon emissions. This trend is mostly associated with the adjustment of rele-
vant national policies and stricter environmental protection measures. In summary, the spatial 
distribution features of urban carbon output exhibit clear regional and temporal changes. The 
eastern coastal and economically developed central regions are the main sources of carbon 
emissions. In contrast, the western and northeastern regions exhibit relatively lower emissions.

End of Table 1

Note: This map is based on the standard map provided by the Map Technology Review Center (2022) of the MNR 
(Review No. GS (2022) 1873). No revisions or alterations have been made to the original map.

Figure 1. Characteristics of the spatial distribution of carbon emissions in Chinese cities in 2012, 
2016 and 2020
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5. Empirical results and analysis

5.1. Benchmark regression

Table 2 presents the results of the benchmark regression. Without controlling for other influ-
encing variables, the results in column (1) show that the digital economy significantly reduces 
total urban carbon emissions. When Scope 1 carbon emissions (direct emissions) are used 
as the explanatory variable, column (3) shows a regression coefficient of –0.021, significant 
at the 1% level. This signifies that the digital economy has a significantly negative impact on 
direct carbon emissions. 

By controlling for other variables affecting carbon emission levels, the regression model 
is re-validated for the four explanatory variables. Combining the results of column (2) and 
(4), when control variables are added, the regression coefficients of the interaction terms 
improve and remain significant at the 5% and 1% levels, respectively. This confirms the initial 
hypothesis 1.

Table 2. Benchmark regression results 

(1) (2) (3) (4) (5) (6) (7) (8)

Variables lnco lnco lnco1 lnco1 lnco2 lnco2 lnco3 lnco3

bigdata
–0.016** –0.018** –0.021*** –0.022*** –0.001 0.007 –0.008 –0.020
(0.007) (0.007) (0.007) (0.008) (0.017) (0.018) (0.018) (0.019)

Control × √ × √ × √ × √
Year fixed effect √ √ √ √ √ √ √ √
Id fixed effect √ √ √ √ √ √ √ √
N 3,135 3,135 3,135 3,135 3,135 3,135 3,135 3,135
R2 0.978 0.978 0.972 0.972 0.873 0.874 0.851 0.851

Note: * , **, and***mean significance levels at 10%, 5%, and 1%, respectively. Figures in parentheses represent robust 
standard errors.

5.2. Robustness tests
5.2.1. Parallel trends test

This study, drawing on methodologies of Louis (1993) (Jacobson et al., 1992) and Beck et al. 
(2010), observes the timing of adopting the Big Data Pilot Zone policy and examines the 
policy effect using event analysis, expressed in the model:

	 −

= ∂ + θ × + +ϕ + σ + τ + ε∑
3

3

l .n it t i t it i t itco bigdata post Control 	 (7)

The variable definitions in this equation are consistent with those in Equation (1). The 
coefficient θ ,t  representing the variation in carbon emissions between pilot and non-pilot 
cities in the t years following the establishment of the pilot zone, is the focus of this study. 
Figure 2 shows that before the pilot zone policy was adopted, the coefficient estimates for the 
experimental and control groups did not differ significantly from 0. This indicates no signifi-
cant change in urban carbon emissions occurred before the pilot zone approval, suggesting 
that the selected samples satisfy the parallel trend assumption prior to policy implementation.
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Since the adoption of the pilot zone policy, the initial year of implementation showed im-
mediate results due to the policy’s robustness. However, the first year’s impact was limited as 
the policy required an adaptation period. During this time, enterprises and local governments 
needed to adjust to the new requirements and changes.

Figure 2. Parallel trends test

5.2.2. PSM-DID estimation

The balance test determines the validity of the PSM, which ensures no substantial difference 
exists between the sample-matching characteristic variables of the control and treatment 
groups. Figure 3 illustrates that most variables’ standardized bias diminishes following match-
ing, indicating that the propensity score matching system successfully eliminates potential 
endogeneity and selection bias issues. This, in turn, affirms the conclusions’ robustness of 
this study.

a)	 b)
Figure 3. Balancing Trend Test: a – representing Kernel density distribution; b – representing 
Standardized deviation diagram of each variable
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5.2.3. Policy inference testing

During the sample period (2011–2021), other policies related to big data development and 
urban carbon emissions might also influence the results. For example, “Broadband China” 
demonstration cities, smart city construction, clean energy demonstration provinces and new 
energy demonstration cities. To address potential estimation bias introduced by these con-
current policies, this study includes in the benchmark regression model dummy variables for 
“Broadband China” demonstration cities (denoted as broadband), smart city construction 
(denoted as smart), clean energy demonstration provinces (denoted as clear) and new energy 
demonstration cities (denoted as new) to re-estimate Equation (1). 

This revised estimation’s results are displayed in Table 3, after simultaneously controlling 
for the four policies, the outcomes remain consistent with the baseline regression. Therefore, 
the core empirical findings are not affected by other relevant policies, confirming the robust-
ness of the positive effect of the digital economy on urban carbon reduction.

Table 3. Robustness test for excluding policy effects

(1) (2) (3) (4) (5)

Variables lnco lnco lnco lnco lnco

bigdata
–0.018** –0.018** –0.018** –0.018*** –0.017**
(0.007) (0.007) (0.007) (0.007) (0.007)

smart
0.002 0.002

(0.008) (0.008)

broadband
0.001 0.001

(0.006) (0.006)

clear
0.005 0.005

(0.010) (0.010)

new
-0.001 –0.001
(0.008) (0.008)

Control √ √ √ √ √
Year fixed effected √ √ √ √ √
Id fixed effected √ √ √ √ √
N 3,124 3,124 3,135 3,135 3,124
R2 0.978 0.978 0.978 0.978 0.978

Note: * , **, and*** mean significance levels at 10%, 5%, and 1%, respectively. Figures in parentheses represent robust 
standard errors.

5.3. Further analysis
5.3.1. Analysis of spatial Durbin model

When analyzing the impact of the digital economy on urban carbon reduction, it is important 
to recognize that cities are interconnected through economic, environmental, and other fac-
tors. This article is based on the adjacency weight matrix, and then applies the SDM model 
with spatial fixed effects and bidirectional fixed effects for regression analysis, aiming to 
further explore the spatial spillover effects of the digital economy on urban carbon emissions.

As shown in Table 4, the coefficients of bigdata are negative in models (1), (2), (5), and 
(6). Model (1) is significant at the 5% level, while models (2), (5), and (6) are significant at the 
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1% level. These results indicate that the development of the digital economy significantly 
reduces total and direct carbon emissions in local cities. The results for indirect and other 
carbon emissions are consistent with the baseline regression, showing a negative but insignif-
icant effect. This suggests that the digital economy does not significantly impact these types 
of emissions. The specific spatial spillover effects are further analyzed through spatial effect 
decomposition, as detailed in Table 5.

Table 4. Benchmark regression results for the SDM

VARI
ABLES

BOTH IND

(1) (2) (3) (4) (5) (6) (7) (8)

Lnco Lnco1 Lnco2 Lnco3 Lnco Lnco1 Lnco2 Lnco3
bigdata –0.0355** –0.0454*** –0.00959 –0.0186 –0.0401*** –0.0497*** –0.0145 –0.0242

(–3.02) (–3.39) (–0.31) (–0.55) (–3.36) (–3.67) (–0.47) (–0.72)
W&big
data

0.0255 0.0314 0.0288 –0.00622 0.0360* 0.0409* 0.0444 0.00562
(1.68) (1.82) (0.72) (–0.14) (2.37) (2.38) (1.12) (0.13)

rho 0.0447 0.0216 0.0337 0.00643 0.0956*** 0.0639* 0.0462 0.0186
(1.71) (0.82) (1.26) (0.24) (3.79) (2.49) (1.74) (0.70)

sigma2_e 0.00573*** 0.00740*** 0.0397*** 0.0462*** 0.00591*** 0.00759*** 0.0400*** 0.0466***
(39.58) (39.61) (39.60) (39.57) (39.56) (39.58) (39.58) (39.59)

r2 0.000375 0.0210 0.0173 4.21e-05 0.0989 0.0798 0.0438 0.128
N 3135 3135 3135 3135 3135 3135 3135 3135
Control √ √ √ √ √ √ √ √
yearfix √ √ √ √ × × × ×
idfix √ √ √ √ √ √ √ √

Note: *, ** and *** mean significance levels at 10%, 5%, and 1%, respectively. Figures in parentheses represent T value.

5.3.2. Decomposition effect analysis

As shown in Table 5, the coefficient for the direct effect of big data is negative. This indicates 
that the development of the digital economy significantly reduces both total and direct urban 
carbon emissions, even after accounting for spatial effects, the digital economy continues to 
exert a significant influence on carbon emissions. As for the indirect effects, the coefficient in 
models (5) and (6) is positive and statistically significant, indicating a notable spatial spillover 
effect of the digital economy in these models.

Table 5. Spatial Durbin model decomposition effects regression results 

VARI
ABLES

BOTH IND

(1) (2) (3) (4) (5) (6) (7) (8)

Lnco Lnco1 Lnco2 Lnco3 Lnco Lnco1 Lnco2 Lnco3

bigdata
–0.0355** –0.0454*** –0.00959 –0.0186 –0.0401*** –0.0497*** -0.0145 –0.0242

(–3.02) (–3.39) (–0.31) (–0.55) (–3.36) (–3.67) (-0.47) (–0.72)

W&big
data

0.0255 0.0314 0.0288 –0.00622 0.0360* 0.0409* 0.0444 0.00562

(1.68) (1.82) (0.72) (–0.14) (2.37) (2.38) (1.12) (0.13)
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VARI
ABLES

BOTH IND

(1) (2) (3) (4) (5) (6) (7) (8)

Lnco Lnco1 Lnco2 Lnco3 Lnco Lnco1 Lnco2 Lnco3

Direct
–0.0353** –0.0452*** –0.00922 –0.0184 –0.0394*** -0.0491*** –0.0139 –0.0240

(–3.01) (–3.38) (–0.30) (–0.55) (–3.36) (–3.67) (–0.45) (–0.72)

Indirect
0.0237 0.0296 0.0271 –0.00812 0.0337* 0.0385* 0.0432 0.00363

(1.50) (1.67) (0.65) (–0.18) (2.13) (2.16) (1.06) (0.08)

Total
–0.0116 –0.0155 0.0179 –0.0265 –0.00564 –0.0106 0.0293 –0.0204

(–1.30) (–1.57) (0.77) (–1.09) (–0.61) (–1.05) (1.28) (–0.86)

rho
0.0447 0.0216 0.0337 0.00643 0.0956*** 0.0639* 0.0462 0.0186

(1.71) (0.82) (1.26) (0.24) (3.79) (2.49) (1.74) (0.70)

sigma2 e
0.00573*** 0.00740*** 0.0397*** 0.0462*** 0.00591*** 0.00759*** 0.0400*** 0.0466***

(39.58) (39.61) (39.60) (39.57) (39.56) (39.58) (39.58) (39.59)

r2 0.000375 0.0210 0.0173 4.21e-05 0.0989 0.0798 0.0438 0.128

N 3135 3135 3135 3135 3135 3135 3135 3135

Control √ √ √ √ √ √ √ √

yearfix √ √ √ √ × × × ×

idfix √ √ √ √ √ √ √ √

Note: * , **, and *** mean significance levels at 10%, 5%, and 1%, respectively. Figures in parentheses represent T value.

5.3.3. Spatial spillover effect

This article constructs the following spatial threshold distance matrix to further analyze the 
spatial spillover effects of the digital economy on urban carbon emissions levels. 

	


> = …= 




1 ,  ,  100,200,300,  , 450
.

0, 

ijd
ij ij

d d d
w d

else
 	 (8)

In Equation (8), i  and j  respectively represent two cities, and ijd  represents the ge-
ographical distance between city i  and city j . Based on Equations (5) and (8), estimate 
sequentially with a step size of 50 km, a draw Figure 4. The results show that within a 
geographical threshold of 450 km, the digital economy significantly reduces urban carbon 
emissions and shows a clear trend of fluctuating upward. When the geographic threshold 
reaches its peak between 300 km and 450 km, it has extremely high significance. Cities with 
geographic thresholds within the range of 300 km to 450 km exhibit stronger digital econ-
omy carbon emission spillover effects. This is primarily attributed to the higher similarity 
in economic development levels and environmental conditions among these cities. Such 
similarities facilitate smoother transmission of digital economy agglomeration effects and 
more synchronized industrial optimization and upgrading, thereby strengthening the effect 
of reducing carbon emissions.

End of Table 5
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5.3.4. Regional heterogeneity

This article conducted heterogeneity grouping analysis on sample cities based on two dimen-
sions, The results are shown in Table 6: geographical location and urban population size. From 
the perspective of geographical regions, the implementation of digital economy policies has 
significantly reduced urban carbon emissions in eastern China. Conversely, while the western 
and central regions’ digital economies show potential positive effects on carbon emission 
reduction. This lack of significance is likely due to weaker development foundations, lower 
technological advancement, and insufficient policy support in these regions.

From the perspective of urban scale, reveals that digital economy policies greatly re-
duce emissions in cities with populations between 3 and 5 million. Conversely, small cities 
with populations under 3 million exhibit no significant carbon reduction effects. This lack of 
impact is attributed to a less developed digital economy and limited technology adoption. 
Large cities with populations exceeding 5 million, despite having active digital economies, 
face a diluted carbon reduction effect due to their complex urban structures and extensive 
economic systems. In these regions, the impact on emissions is less directly observable amid 
numerous influencing factors.

Table 6. Regional heterogeneity test

Variables
(1) (2) (3) (4) (5) (6)

East Middle West 300 300–500 500
lnco lnco lnco lnco lnco lnco

bigdata –0.017** –0.014 –0.016 –0.016 –0.029*** –0.002
(0.007) (0.013) (0.021) (0.017) (0.010) (0.009)

N 1,320 880 935 1,111 880 1,144
R2 0.988 0.916 0.973 0.965 0.956 0.990
Control √ √ √ √ √ √
Year fixed effect √ √ √ √ √ √
Id fixed effect √ √ √ √ √ √

Note: * , **, and *** mean significance levels at 10%, 5%, and 1%, respectively. Figures in parentheses represent robust 
standard errors.

Note: Due to the extremely similar spatial spillover effect maps of carbon emissions in the three ranges, in order to 
avoid further elaboration, only the spatial spillover effect map of total carbon emissions will be used as a demonstration 
for illustration.

Figure 4. Spatial distance spillover effect of digital economy
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6. Conclusions and policy recommendations

6.1. Conclusions

The main conclusions of this article are as follows:
(1) The advancing digital economy significantly reduces urban carbon emissions. This 

effect is especially pronounced in reducing direct urban carbon emissions. The robustness of 
this finding is confirmed through several tests, including the policy interference test, PSM-DID 
method, and parallel trend test.

(2) Heterogeneity studies indicate that the digital economy significantly reduces urban 
carbon emissions in the eastern region and medium-sized cities. 

(3) The SDM analysis found that the development of the digital economy significantly 
reduces both total and direct carbon emissions in local cities. From the perspective of effect 
decomposition, after controlling for time and spatial effects, the direct impact of the digital 
economy on carbon emissions is the primary factor. The results of spatial spillover effects 
indicate that there is a positive spatial spillover effect in carbon reduction between cities.

6.2. Policy recommendations

Based on the study’s findings, the following policy recommendations are suggested:
First, given the significant direct impact of the digital economy on carbon reduction, 

efforts should be made to encourage digital transformation in high-emission industries, lev-
eraging digital technologies to improve energy efficiency and green innovation.

Secondly, the government should implement region-specific policies due to regional het-
erogeneity.

1.	 Eastern Region: Continue to bolster digital economy development to strengthen and 
expand its existing advantages in emission reduction.

2.	 Central and Western Regions: Enhance the technical support and infrastructure con-
struction so as to boost the growth of digital economy and realize its potential for 
emission reduction.

3.	 Medium-Sized Cities: Provide targeted policy support, financial incentives, and tech-
nical assistance to enhance the digital transformation of medium-sized cities, thereby 
pursuing a more efficient reduction of carbon release.

4.	 Small Cities: Address the weak foundation of the digital economy in smaller cities 
by implementing targeted support measures to increase technology adoption and 
gradually achieve carbon emission reduction goals.

5.	 Large Cities: Develop comprehensive solutions for large cities by optimizing urban 
planning and management to improve resource utilization, promoting advanced digital 
technologies to pursue a more efficient utilization of energies, diminishing the intensity 
of carbon emission.

Thirdly, given the spatial spillover effects observed, the government should utilize the 
demonstration and leading roles of pilot regions. Strategically deploy pilot cities, encourage 
regional synergistic development, and enhance inter-regional cooperation and coordination. 

6.3. Research prospects

Despite the considerable effort invested in this study, limitations persist, providing oppor-
tunities for further research. Future research directions can be improved from the following 
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aspects: (1) Expanding the scope of research on spatial spillover effects and developing a 
multi-factor spatial weight matrix; (2) Conducting long-term tracking studies to examine the 
dynamic evolution of carbon reduction effects in the digital economy; (3) Exploring optimal 
pathways for the integration of the digital economy and traditional industries, providing a 
basis for differentiated carbon reduction policies.

The research results of this article indicate that formulating differentiated digital economy 
development strategies and strengthening inter-regional coordination are effective approach-
es to achieving carbon emission reduction goals. These findings not only enrich the literature 
on the digital economy and environmental governance but also offer valuable insights for 
policy formulation.
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