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address this issue, this paper constructs a meta-learning-based data price pre-
diction model: MLP-Reptile. The model introduces a meta-learning tuning mod-
ule to optimize the weight parameters of the base model, facilitating effective 
knowledge transfer learned from multiple tasks to enhance prediction accuracy 
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1. Introduction

In the era of the digital economy (Rong, 2022), data, as a new factor of production (Jia et al., 
2023; Hao et al., 2023a), is playing an increasingly important role in the production and distri-
bution of the digital economy (You et al., 2022; Ye et al., 2022). In recent years, data markets 
have been continuously emerging, aiming to fully empower data circulation and effectively 
solve data silo issues, thereby promoting the openness and sharing of global data resources 
(Miao et al., 2021). Pricing data will further enhance the development and utilization of data 
(Hao et al., 2023b). Establishing effective data pricing models is of great significance to the 
economy and society.

Currently, there is a common problem of small samples in the data pricing process. In 
the context of diverse data itself and the continuous emergence of new data types, accu-
rately pricing each type of data has become a pressing challenge. Data of specific types 
are generated in the early stages with relatively small volumes, and there are also some 
difficult-to-obtain data such as rare disease data (Li et al., 2023; Sun et al., 2024; Zhao et al., 
2024), natural disaster data (Du et al., 2022; Ge et al., 2023; Weng & Paal, 2024), and data 
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from specific scenarios (Li et al., 2024; Paeedeh et al., 2024). Although the available data for 
these types of information is limited, they are still valuable, and accurate pricing can promote 
the effective utilization of these data. Pricing models rely on a large number of data sam-
ples for modeling and analysis. However, in the field of data pricing, reliable deep learning 
models are still facing challenges due to the scarcity of existing transaction data. Therefore, 
it is urgent to find feasible methods that can make relatively accurate predictions even in the 
case of small samples.

In recent years, research on rapid learning with limited samples has continued to emerge. 
Among them, using meta-learning methods to train models has achieved significant learn-
ing effects. By learning shared features and knowledge across multiple tasks, meta-learning 
methods exhibit strong generalization capabilities on novel tasks and demonstrate significant 
potential in the development of deep learning-based regression models for small datasets 
(Lee & Yang, 2022).

This paper aims to analyze the primary factors influencing the pricing of data resources in 
small sample cases, with the establishment of a prediction model for accurately forecasting 
data resource prices in such scenarios as its objective. Firstly, employing Bayesian optimi-
zation to determine the optimal hyperparameters of the base Multilayer Perceptron (MLP) 
neural network, subsequently refining the model using the Reptile algorithm, and augmenting 
model performance through the incorporation of batch normalization layers and the addition 
of L2 regularization terms to the meta-objective of the Reptile algorithm.

The contributions of this study are summarized as follows:
1. The study comprehensively considers both intrinsic factors and market factors influ-

encing data prices, analyzing the main characteristics affecting data resource prices 
in specific industries. This provides valuable insights for decision-makers in various 
industries regarding data resource management.

2. A novel small sample learning method based on the meta-learning Reptile algorithm 
is proposed for predicting data resource prices in situations with limited data samples. 
This marks the first application of meta-learning methods to address the small sample 
problem in the data resource pricing process.

3. The proposed model not only better utilizes limited sample data but also achieves 
more accurate pricing results for resources.

The structure of this paper is as follows: First, the introduction presents the significance 
of data pricing and the challenges posed by small sample sizes. The literature review section 
discusses the current research status and existing methods for data pricing, particularly fo-
cusing on small sample learning and meta-learning. The methodology section describes the 
construction of the MLP-Reptile model, including the Bayesian optimization process and the 
design of the Reptile algorithm. The experimental results and analysis section evaluates the 
model’s performance using real-world data. Finally, the conclusion summarizes the findings, 
discusses the limitations of the study, and suggests directions for future research.

2. Research status 

2.1. Small sample issue in data resource pricing

The marketization of data is still in its developmental stage, with relatively low trading vol-
umes. From the perspective of the data itself, the continuous evolution of the social and 
economic environment has led to the emergence of new data types. For example, the rise 
of e-commerce has brought about online shopping data, while the widespread use of social 
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media has led to the generation of social network data. New data categories are triggered 
by new demands, and the corresponding data is often collected in limited quantities in the 
initial stages. Additionally, some data types, due to their special nature, such as rare event 
data, rare disease data, data from specific populations, etc., are limited in quantity and are 
not generated frequently. Although these data may have small volumes, their accurate pricing 
is crucial for promoting data trading and circulation, thereby maximizing the value of data.

From an objective perspective, the scarcity of data transactions is determined by various 
factors. Some data trading platforms have single functionality, leading to insufficient on-plat-
form trading volume, while transaction costs prompt data product supply and demand parties 
to seek off-platform transactions (Zhao et al., 2024). In the field of data trading, legal regula-
tions and institutional frameworks are not perfect, and many internet data cannot be supplied 
due to issues such as unclear property rights, failing to meet market demand (Liu, 2021; Liao 
& Li, 2023). Data privacy and security issues (Li et al., 2020) are also important obstacles in 
data trading (Lv et al., 2021; Hao et al., 2023a). Due to the lack of clear data property rules 
and legal protection, data owners have low trust in data transactions and adopt a cautious 
attitude towards data trading, resulting in a limited amount of tradable data on data trading 
platforms. Additionally, there is a lack of consistent standards and interoperability among 
current data trading platforms, leading to insufficient market supply in the data market (Liu, 
2021). These factors are summarized in Table 1, which outlines the key contributors to the 
low transaction volumes in data trading platforms.

Table 1. Factors contributing to low transaction volumes

Factor classification Impact factors

The intrinsic characteristics of 
the data

Limited data volume in the early stages of demand
Difficulty in obtaining some data

Objective environment Single functionality of data trading platforms (Zhao, 2022)
Imperfect legal regulations and institutional frameworks (Liu, 2021; 
Demetzou et al., 2023; Guo et al., 2024)
Need for strengthening data security and privacy protection (Yu & 
Zhao, 2019; Lv et al., 2021)
Lack of consistent standards and interoperability among data 
trading platforms (Liu, 2021)

2.2. Data pricing methods

Existing data pricing methods include traditional asset valuation methods, such as income 
approach, market approach, cost approach, property comprehensive evaluation method (a 
combination of subjective evaluation and objective quantification), economic methods (game 
theory, real options theory etc.), and other pricing methods. Among numerous pricing meth-
ods, intelligent algorithm evaluation has significant advantages over traditional algorithms in 
terms of nonlinear fitting capability, prediction accuracy, quantifiability, and computational 
efficiency. Machine learning methods have been proven to be well applied in the field of data 
pricing. Some scholars have proposed that the data pricing problem can be analogized to the 
multi-armed bandit problem in reinforcement learning, and applying the strategies proposed 
can bring good returns (Xu et al., 2016). The combination of machine learning methods and 
market models has been used to formulate optimal pricing schemes and has confirmed that 
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the proposed model can achieve profit maximization (Niyato et al., 2016). With intelligent 
pricing methods as the research object, static and dynamic pricing methods and their prac-
tices have been studied (Tian & Wu, 2023). Data science and machine learning methods 
have been used to evaluate data rights, data pricing, and data privacy technologies (Xu et al., 
2023). However, the above studies have not attempted to further improve the accuracy and 
applicability of predictions in the small sample problem.

2.3. Application of meta-learning methods in small sample problems

High-precision data models can improve decision efficiency and thus create greater economic 
value. Therefore, the accuracy of data models is closely related to the value of the models. 
Deep learning typically requires a large amount of labeled data to support it. However, many 
real-world applications face challenges such as difficulty in obtaining labeled data and high 
processing costs for model training (Yanik et al., 2022, 2024). Traditional model optimization 
methods are difficult to apply effectively when training samples are severely insufficient, 
leading to difficulties in model optimization. In the case of small samples, models are prone 
to overfitting, and updates of a small number of parameters may not enable the network to 
learn feature representations with strong generalization capabilities. Therefore, ensuring that 
machine learning models can quickly learn from small sample data and improve generaliza-
tion capabilities has become a practical problem that must be addressed.

To address this problem, research on small sample learning continues to emerge. Small 
sample learning aims to circumvent the serious performance degradation of traditional ma-
chine learning methods when sample data is insufficient, using fewer sample data to con-
struct machine learning models that can solve practical problems. Among them, the use 
of meta-learning methods for model training has achieved significant learning effects, and 
meta-learning can be used to improve performance in data scarce scenarios (Minot & Reddy, 
2024; Vo et al., 2024). Finn et al. (2017) proposed a model-agnostic meta-learning method 
called Model-agnostic Meta Learning (MAML). This method is both independent of the mod-
el’s structure and does not introduce new parameters, and it is compatible with any model 
trained using gradient descent. In 2018, Nichol et al. (2018) proposed simplifying computa-
tions in the Model-Agnostic Meta-Learning (MAML) framework by replacing the second-order 
parameter derivatives with first-order derivatives. They modified the initialization parameter 
update rules in the MAML algorithm and introduced the Reptile algorithm. This algorithm 
directly utilizes data from individual small-sample tasks for parameter updates, thereby en-
hancing network speed. The Reptile method has achieved good results in some small sample 
studies (Tian et al., 2021). This study adopts the Reptile algorithm to address the small sample 
data pricing problem.

3. MLP-Reptile small sample data pricing model

This paper first uses Bayesian optimization as part of the proposed model to optimize the 
hyperparameters of the MLP model, enabling more effective learning across different pric-
ing tasks. Subsequently, the Reptile algorithm is introduced. The model learns from multiple 
different pricing tasks to acquire prior knowledge, enabling more accurate interpretation of 
the variation of the dependent variable and capturing the intrinsic patterns and complex 
relationships of the data, thereby better utilizing limited samples for generalization (Zhang 
et al., 2022), and demonstrating superior performance in new tasks. The application of 



Journal of Business Economics and Management, 2025, 26(3), 555–575 559

meta-learning methods such as Reptile has demonstrated significant performance improve-
ments in small-sample tasks across various fields (Nichol et al., 2018), including spatiotempo-
ral prediction with limited data (Tian et al., 2021), few-shot short-term wind power forecasting 
(Chen et al., 2024). These findings align with our model’s design goals to address the data 
pricing challenges posed by limited training samples.

3.1. Basic neural network model based on Bayesian optimization

The value of hyperparameter directly affects the performance and prediction effect of MLP 
model. Bayesian algorithms can help find the optimal combination of hyperparameters for 
the model. Specifically, Bayesian optimization evaluates the most promising hyperparame-
ters in each iteration, taking into account the training results of previous tasks, thereby en-
abling the model to adapt more quickly to new tasks. We choose Gaussian Process (GP) as 
the surrogate model and employs Expected Improvement (EI) as the acquisition function to 
enhance the algorithm’s performance in terms of efficiency and accuracy. Taking the search 
for the maximum value as an example, the optimal combination of hyperparameters can be 
represented as:

 argmax ( )opt x X
x f x

∈
= . (1)

In the Equation:
x represents the combination of hyperparameters for the MLP neural network.
X denotes the set of hyperparameters.
f(x) represents the mapping from the combination of hyperparameters to the model’s 

generalization performance.
xopt represents the optimal combination of hyperparameters.

3.2. Design of the Reptile algorithm

The focus of parameter optimization-based strategies lies in learning a good optimizer pa-
rameter 0θ  to better optimize existing parameters θ . Using well-initialized parameters 0θ  can 
effectively reduce computational costs, allowing the model’s existing parameters to converge 
more quickly towards the target direction.

The MAML algorithm is used to implement update rules, and meta-learning optimizes 
deep neural network parameters based on the following objectives (Equations (1) and (2)) 
(Finn et al., 2017):

 argmin ( )
i ii

TT
L f ′θ

θ
∑ , (2)

where L is the loss function of the deep neural network, f representing a neural network 
with parameters θ. ′θ represents the parameters updated through gradient descent with an 
internal learning rate a. The update rule is as follows: ( )

i ii TL fθ θ′θ ← θ − a∇ .
Equation (1) involves the gradient update rule, which includes the double gradient step:

 θθ ← θ −b∇ ( )( )
i ti ii

T L fT
L f

θ θθ−a∇∑ , (3)

where b is the outer learning rate, The double gradient step enables the training steps of Ti 
to be applicable to other tasks.
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However, the computation cost and complexity associated with the second-order de-
rivatives in the double gradient step are considerable. To address these issues, Nichol et al. 
(2018) proposed the Reptile algorithm, which iteratively updates the parameter space of the 
base model. The Reptile algorithm enables rapid adjustment and adaptation across differ-
ent tasks. Specifically, it randomly samples a data pricing task and utilizes its training set to 
train the base pricing model. Then, using gradient descent, it iteratively adjusts the model 
parameters on this task. In this way, the model can learn features and knowledge relevant 
to the current task.

First, using the mean squared error loss function LMSE, the parameters θ of the deep neural 
network, and the gradient step size s for stochastic gradient descent, the following update 
rule U is adopted:

 : ( )MSEU W L← θ−η∇ θ , (4)

where W represents the intermediate weights of the deep neural network after the gradient 
step, η is the learning rate, and ∇ is the gradient operator. Then, multiple steps of stochastic 
gradient descent are performed, updating U′ for s times with stochastic gradients, where the 
gradient step size is determined by the batch training size BM and the number of training 
steps EM, balancing the accuracy and efficiency of the network by adjusting the step size.

After completing a single task, the model parameters are updated to reflect the outer 
learning rate b, as well as the difference between the previous weights and the SGD result 
corresponding to W − θ , as follows:

 ( ) ( ( ) )SW Uθ ← θ +b − θ = θ + b θ − θ , (5)

where US represents the updated parameters for s iteration according to Equation (3). A crucial 
point is that the training process described above needs to be repeated across multiple pric-
ing tasks. By iteratively performing training and parameter adjustments on different tasks, the 
model can learn shared information and patterns among tasks and apply them to new tasks.

3.3. Improved MLP-Reptile model 
3.3.1. Optimization of model structure

In small sample tasks, due to the limited number of training samples, models are more prone 
to overfitting. The model may memorize the details of the training samples but fail to gen-
eralize to the entire data distribution. Due to the unique nature of small sample tasks, the 
model needs to make multiple attempts and experiments from limited samples to quickly 
learn and determine suitable initialization strategies. Meta-learning algorithms may take a 
long time to converge to the optimal solution. The MLP model is capable of flexibly mode-
ling complex nonlinear relationships, adapting to the characteristics of different data struc-
tures, and capturing high-order dependencies, making it suitable for limited data points and 
high-dimensional feature spaces in small sample studies.

L2 regularization and Batch Normalization have been widely demonstrated in the liter-
ature to reduce overfitting and accelerate model convergence (Hoerl & Kennard, 1970; Ng, 
2004; Santurkar et al., 2018; Bjorck et al., 2018; Ioffe & Szegedy, 2015). In the architecture 
configuration of the MLP model, this paper adopts the method of integrating batch nor-
malization layers. Batch normalization is added after each fully connected layer to alleviate 
issues related to weight initialization sensitivity, find appropriate weight initialization faster, 
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promote a more stable optimization process, and reduce the trend of overfitting. By nor-
malizing the inputs of each batch, batch normalization reduces the problems of vanishing 
and exploding gradients, making the model easier to learn and converge in fewer iterations, 
thereby improving training speed. The detailed structure of the model is presented in Table 
2, which outlines the specific layer configuration of the MLP model used in this study.

Table 2. Layer configuration of the MLP model

Layer Name Type Input size Output size Activation function

fc1 Linear input_dim 10 ReLU
relu1 Activation – – ReLU
fc2 Linear 10 32 ReLU

relu2 Activation – – ReLU
fc3 Linear 32 output_dim –

3.3.2. Regularization constraint

The Reptile meta-learning algorithm achieves rapid learning on new tasks through training 
on a small number of samples. However, due to the limited training data, there is a risk of 
overfitting during the meta-training process, resulting in lower prediction accuracy of the 
model on new tasks. L2 regularization is a commonly used technique to prevent overfitting, 
which limits the model complexity by adding a penalty term to the model parameters.

To reduce overfitting of the network during meta-training and improve the model’s pre-
dictive ability on new tasks during meta-testing, this study adds an L2 regularization term to 
the meta-objective of the Reptile algorithm, resulting in a new meta-objective. Here, λ is a 
hyperparameter ranging from 0 to 1. According to the meta-objective, the update formula 
for θ is as shown in Equation (6):

 2( ) ( ( ) ) || ||
2

SW U λ
θ ← θ +b − θ = θ + b θ − θ + θ . (6)

3.3.3. MLP-Reptile

The MLP-Reptile model updates its parameters across multiple pricing tasks using the im-
proved Reptile algorithm, gradually approaching the parameters of each task through weight-
ed averaging. In the pre-training phase, Bayesian optimization is used for hyperparameter 
tuning. Subsequently, the MLP possesses model parameter states, exhibiting good overall 
performance across all tasks in the training set. Using this model for regression prediction 
on the dataset enables the model to learn general patterns and features, facilitating easier 
adaptation to new tasks in subsequent meta-learning phases.

During the fine-tuning phase, the model weights transferred from the pre-training phase 
are fine-tuned to the target small sample tasks. L2 regularization and a small sample loss 
function are integrated during this process to prevent overfitting during adaptation to small 
sample tasks. The desired output at this stage is an optimized MLP regressor capable of ac-
curately predicting pricing tasks. Specifically, the steps of the Reptile algorithm are as shown 
in Table 3.
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Table 3. Steps of the Reptile algorithm

Step Task

1 Randomly select a task from the training task set as the current task.
2 Perform multiple steps of stochastic gradient descent (SGD) on the current task s times to 

obtain temporary parameters.
3 Update the model parameters based on the difference between the previous model 

parameters and the results of multiple-step SGD.
4 Repeat the above steps iteratively to update the model parameters.

Figure 1 depicts the MLP-Reptile framework proposed in this paper. The Reptile algorithm 
aims to learn initial parameters that can adapt to any new task, achieving better performance 
on new pricing tasks by considering the similarities among multiple pricing tasks. Firstly, 
random task sampling is performed on the dataset to obtain n task sets, enabling the model 
to quickly adapt to new tasks by learning shared information and structures among different 
pricing tasks. Then, the MLP model is chosen as the base model, and the Reptile algorithm 
updates the parameters of the base model on each task. After training on n tasks is complet-
ed, the new parameters are updated, resulting in a new data pricing model.

Figure 1. Meta-learning optimization framework for prediction models

4. Experimental results and analysis 

4.1. Data source and preprocessing 
4.1.1. Data source 

The data for this study is sourced from Guoxin Youyi Data (n.d.). Guoxin Youyi Data Company, 
initiated by the National Information Center, is a technology platform-oriented enterprise 
focusing on next-generation information technologies such as big data, artificial intelligence, 
blockchain, and the Internet of Things. Youyi Data (n.d.) provides data trading resources 
across multiple industries through its data marketplace platform.
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The required data for this research is obtained from this platform using web crawling 
technology, considering both intrinsic factors and market dynamics influencing prices. Tak-
ing into account the quantifiability and availability of data, nine dimensions of intrinsic data 
factors are selected based on the current standard issued by the National Standards Com-
mittee (2018), “Data Trading Service Platform Transaction Data Description Standard” (GB/T 
36343-2018).

The evaluation algorithm not only reflects intrinsic data factors but also considers mar-
ket feedback factors. Additionally, it considers dimensions formed when data are traded as 
commodities and compared with similar types of goods, including scarcity score, applicability 
score, timeliness score, and sales volume. The platform manages each score based on both 
rule attributes and application scope dimensions to enhance matching accuracy.

By employing network analysis, a dynamic weight allocation scoring model is formed, 
ensuring reliability in the scoring process. These key factors influencing data prices are sum-
marized in Table 4.

Table 4. Factors influencing data prices

Factor classification Factors data type Corresponding dimensions from 
GB/T 36343—2018

Intrinsic factors Consistency integer Data quality
Structurization integer

Rating integer
Completeness integer
Data size numerical Data scale

Quantity integer
Information redundancy integer Data uniqueness

Data category character Industry classification
Data labels character

Market factors Scarcity integer –
Applicability integer
Timeliness integer
Sales volume integer

4.1.2. Preprocessing

4.1.2.1. Outlier handling

Machine learning models are typically constructed based on the statistical characteristics 
and distribution of data, and outliers may deviate from the normal distribution and trend of 
data, reducing the model’s fit to the data. According to the principle of box plot, the upper 
bound and lower bound of the column data are first calculated. The upper bound is the third 
quartile (75th percentile) plus 1.5 times the interquartile range (IQR), and the lower bound is 
the first quartile (25th percentile) minus 1.5 times the IQR. Then, data beyond the upper and 
lower bounds are removed to eliminate outliers.



564 J. Shen et al. Small sample data pricing research based on reptile algorithm

4.1.2.2. One-hot encoding

The dataset features include categorical fields such as “data category” and “data tags.” “Data 
category” includes 10 categories such as public opinion monitoring, industrial economy, sci-
entific research and technology, precision marketing, and traffic geography, while “data tags” 
include 56 data labels such as stocks, e-commerce, COVID-19, social, scientific research data, 
and comprehensive enterprises. One-Hot encoding transforms these categorical variables into 
numerical forms directly usable by machine learning algorithms. Each category is transformed 
into a new binary feature column, with each data entry assigned a 1 (belonging to that cat-
egory/tag) or 0 (not belonging to that category/tag), facilitating correct interpretation and 
use of these features by the model.

4.1.2.3. Target variable processing

The original dataset’s price ranges from 0 to 1,500,000 yuan, with 75% of prices at 889.5 yuan 
or below, showing a right-skewed distribution. However, many models assume that data are 
normally distributed, and they perform best when data follow a normal distribution. Box-Cox 
adjusts the form of transformation by introducing a parameter (lambda) to make the data 
distribution closer to a normal distribution, reducing or eliminating heteroscedasticity and 
improving the reliability of the model.

4.2. Evaluation metrics

In this paper, mean square error (MSE), root mean square error (RMSE), mean absolute error 
(MAE) and coefficient of determination (R²) are selected to evaluate the performance of the 
model on the test set. Smaller values of MSE, RMSE, and MAE indicate more accurate model 
predictions. The closer the value of R² is to 1, the closer the model’s prediction is to the actual 
result. The formulas for the above evaluation metrics are as follows:

 2
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1 ˆ( )
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i i
i
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4.3. MLP-Reptile model evaluation 
4.3.1. Local interpretation based on LIME

LIME (Local Interpretable Model-agnostic Explanations) is a method used to explain the 
prediction results of machine learning models. LIME works by using an interpretable mod-
el to generate localized explanations centered around a single prediction. This capability 
gives LIME a high degree of versatility and adaptability, allowing it to provide explanations 
not only for popular models such as deep learning neural networks, random forests, and 
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gradient boosting but also for any other credible machine learning model (Ali et al., 2023). 
Due to this characteristic, it is referred to as “model-agnostic.”

The primary advantage of LIME’s model-agnostic nature is its ability to integrate seam-
lessly with a wide range of models, even when dealing with complex predictions in high-
dimensional feature spaces. LIME produces locally faithful explanations that offer insights into 
how individual features influence model predictions (Ribeiro et al., 2016). This characteristic is 
particularly critical in small-sample scenarios, where traditional global interpretability methods 
may fail due to limited data variability.

In our study, LIME’s focus on predictions allows for a better understanding of data pricing 
in specific industries, ensuring that the model’s decisions are transparent and actionable. LIME 
focuses on the explanation of individual samples, which can be especially important in small 
sample datasets, as the dataset itself may be small and there may be significant differences 
between samples. LIME generates new data instances near the sample and interprets these 
instances to provide a local explanation of the model’s predictions.

In the context of small sample datasets, LIME’s local explanations help to reveal how the 
features of specific data points affect the prediction results, enabling us to better understand 
the model’s decision-making process at the individual level. LIME is used to explain the 
features that affect data prices in three representative industries. As shown in Figure 2, for 
the price of data resources in the three industries of sentiment analysis (Figure 2a), precision 
marketing (Figure 2b) and financial credit assessment (Figure 2c), the size, application value, 
quantity, consistency and sales volume of data resources are important factors affecting the 
model’s pricing of data resources. These factors not only reflect the attributes of the data 
resources themselves but also encompass comprehensive influences from industry demand, 
market conditions, and data quality.

Take the Sentiment Analysis industry data as an example to analyze the interpretation 
results of LIME, as shown in the following Table 5.

Specifically, the data size has the most significant positive impact on the price, indicating 
that a larger amount of data can provide more comprehensive information, thereby enhanc-
ing its market value. Data with low application value and quantity have a negative impact on 
price, indicating that these data with poor characteristics have lower demand and price in the 
market. In addition, the degree of structure, consistency and timeliness have a positive impact 
on the price of data, indicating that the improvement of these characteristics can increase 
the utilization value and market recognition of data. These interpretation results help us un-
derstand how much the model depends on different features in the pricing decision process, 
and provide guidance for data providers to improve data quality and market competitiveness.

 a) b) c) 
Figure 2. Local Explanations of LIME: a – sentiment analysis; b – precision marketing;  
c – financial credit assessment
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SHAP (SHapley Additive exPlanations) is a widely used method for interpreting machine 
learning models (Lundberg & Lee, 2017). It is based on the Shapley value from game theory, 
assigning contribution values to each feature to explain the model’s output. This approach 
quantifies the impact of individual features on model predictions, thereby revealing the key 
features the model relies on when making decisions. In feature importance analysis, SHAP 
values provide a global perspective in terms of averages, illustrating the overall influence 
of each feature on prediction outcomes. We used the SHAP method to calculate the SHAP 
values for all features and analyzed their global impact on the model’s predictions. Figure 3 
illustrates the feature importance based on SHAP values, where dataset size has the highest 
average impact on prediction outcomes, followed by Rating, indicating that these features 
play a significant role in the model.

Table 5. LIME explanation for sentiment analysis data

Feature Impact value Description
Data size positive impact: 356.43 Larger data volume provides more comprehensive 

information, increasing its value.
Applicability negative impact: 46.39 When the application value score is less than or 

equal to 3, the data’s demand and price in the 
market are lower.

Quantity negative impact: 25.44 Data with lower quantity scores have lower value.
Structurization positive impact: 29.24 Data with a structuring degree score between 

3 and 5 have higher utilization value.
Consistency positive impact: 17.31 Data with consistency scores between 4 and 5 

have higher accuracy and utilization value.
Timeliness positive impact: 16.68 Data with timeliness scores between 3 and 4 have 

greater market value and are more desirable when 
updated promptly.

Figure 3. Feature importance analysis chart based on SHAP values
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4.3.2. Optimization effect 

The proposed MLP-Reptile model was run on a standard laptop equipped with an Intel 
Core i7-10700 CPU and 16GB of memory. The entire training process took approximate-
ly 621.78 seconds without GPU acceleration. Despite the limited hardware conditions, the 
model demonstrated high computational efficiency, further highlighting its applicability in 
small-sample scenarios with constrained computational resources. Furthermore, to address 
the computational demands of larger datasets, future work could explore distributed com-
puting or model simplification and optimization techniques.

4.3.2.1. Optimization effect on overall industry data

To verify the effectiveness of the MLP-Reptile model, this study compares it with six methods, 
including classical machine learning models: Linear Regression (LR), K-Nearest Neighbors 
(KNN), Support Vector Regression (SVR), ensemble model: Adaptive Boosting (AdaBoost), 
and models based on different base models and meta-learning algorithms: MLP-MAML (MLP 
model optimized by MAML algorithm), RNN-Reptile (RNN model optimized by Reptile al-
gorithm), CNN-Reptile (CNN model optimized by Reptile algorithm), and MLP-Reptile (the 
proposed method).

Traditional model optimization methods are difficult to apply effectively when training 
samples are severely lacking. However, meta-learning frameworks show great potential in 
developing deep learning-based regression models using small datasets (Lee & Yang, 2022). 
As shown in Table 6, the results show that the MLP-Reptile model outperforms other models 
in handling small sample problems. By training on multiple relevant tasks, the MLP-Reptile 
model enables the model to better adapt to data characteristics when facing new tasks, 
improving the method’s stability and generalization ability. This provides insight that pre-
trained weights and optimization of the objective function help accelerate the adaptation 
process during small sample training. This observation further highlights the advantages of 
the proposed model in small sample problems.

Table 6. Comparison of evaluation metrics between Reptile algorithm and traditional machine 
learning models (Training Set Size: 3800)

LR KNN SVR AdaBoost MLP-MAML RNN-Reptile CNN-Reptile MLP-Reptile

MSE 4.1906 6.5117 5.4992 4.2208 4.1551 4.0400 4.2959 3.7497
RMSE 2.0471 2.5518 2.3450 2.0545 2.0384 2.0100 2.0726 1.9364
MAE 1.5213 1.8884 1.5339 1.7304 1.4978 1.5030 1.5225 1.4313
R2 0.6474 0.4521 0.5373 0.6449 0.6472 0.6570 0.6353 0.6816

4.3.2.2. Optimization effect on industry-specific data

The demand for data resources in various industries is constantly changing, and the chal-
lenge of small-sample prediction becomes more prominent and severe when new types of 
data resource demands emerge in emerging industries. On the Guoxin Youyi (n.d.) trading 
platform, the “Precision Marketing”, “Financial Credit Assessment”, “Sentiment Analysis”, and 
“Research and Technology” industries have only 85, 602, 1450, and 1477 data points, respec-
tively. However, by training on small-sample data in specific industries, it is possible to more 
accurately capture the unique characteristics and trends of that industry, thereby improving 
the accuracy and effectiveness of the model in practical applications and providing more 
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reliable decision support for different industries. Therefore, experiments were conducted on 
data from various industries to assess the model’s performance. As shown in Table 7 below, 
the proposed model performs well on small sample data of these industries.

Table 7. R² values for industry-specific data

data volume LR KNN SVR AdaBoost MLP-Reptile

Precision marketing 85 80.47% 18.94% 38.10% 85.12% 86.70%
Financial credit assessment 602 19.76% –11.24% 5.11% 60.89% 61.72%
Sentiment analysis 1450 19.74% –13.16% 3.00% 33.24% 37.77%
Research and technology 1477 97.33% 89.59% 94.65% 96.88% 97.11%

4.3.3. Ablation experiment

In this section, we conduct ablation experiment to validate the effectiveness of the two im-
provements proposed in this paper for MLP-Reptile (adding batch normalization layers to 
the MLP model and improving the meta-objective function). The results are shown in Table 8.

Table 8. MSE of disintegration experiment for MLP-Reptile model

Model MSE

MLP + Reptile 4.0276
MLP + Reptile + BN 3.8235

MLP + Reptile + L2 3.8328

MLP + Reptile + BN + L2 3.7497

In Table 8, “MLP + Reptile” represents the MLP model optimized by the Reptile algorithm 
without further modifications, using the updating strategy described in preceding Section; 
“MLP + Reptile + BN” denotes the model with an additional batch normalization layer, using 
the same original updating strategy; “MLP + Reptile + L2” indicates the model optimized by 
the Reptile algorithm with added L2 regularization; “MLP + Reptile + BN + L2” refers to the 
model with both an added batch normalization layer and L2 regularization, using the updat-
ing strategy described in preceding Section. The meta-learning iterations are set to 300, with 
an internal loop of 3 steps, a learning rate of 0.1 for updating model parameters, a batch 
size of 256 for the internal loop, and an L2 regularization weight of 0.001. During the training 
phase, the training set size is 3800, and during the testing phase, the test set size is 1200.

As shown in Figure 4, the experimental results indicate that the unoptimized MLP-Reptile 
model has a longer training time (light green line) and is prone to overfitting (dark blue line). 
After optimization, models with added batch normalization layers, improved Reptile algo-
rithm’s meta-objective function, and both batch normalization layers and improved Reptile 
algorithm’s meta-objective function show improvements in model efficiency. Particularly, the 
model with both added batch normalization layers and the inclusion of a regularization term 
in the meta-objective function demonstrates the most significant enhancement in prediction 
efficiency (light green line) and the shortest training time (deep red line). The introduction of 
batch normalization layers, as proposed in Section 3.3.1, aids in quickly learning initial param-
eters of the model, thus leading to better performance on specific new tasks. Additionally, the 
method proposed in Section 3.3.2 of incorporating an L2 regularization term into the Reptile 
algorithm’s meta-objective function also enhances the model’s performance.
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4.3.4. Effectiveness of MLP-Reptile model on different sizes of training sets

This study employed the MLP-Reptile model to train on support sample sets of various 
sizes (200, 400, 800, 1800, 2800, 3800) and evaluated it on a test set of size 1200. The key 
experimental comparison results are shown in Table 9. By comparing the optimized MLP-Rep-
tile model with the MLP model, it can be observed that the model trained with meta-learn-
ing exhibits a significant decrease in loss values compared to the pre-meta-learning model, 
particularly evident in low-sample scenarios. Notably, in the case of a sample size of 400, 
this improvement is particularly significant, with an increase in R² exceeding 10%. This not 
only confirms the effectiveness of the proposed optimization method in training with small 
samples but also highlights the potential to enhance model accuracy with limited data.

Table 9. Improvement effect of MLP-Reptile model on different size training sets

Before 
optimization

After 
optimization

Improvement 
ratio

Before 
optimization

After 
optimization

Improvement 
ratio

Training set: 200, Testing set: 1200 Training set: 400, Testing set: 1200
MSE 18.2989 14.3890 21.37% 5.8876 5.2672 10.54%
RMSE 4.2777 3.7933 11.32% 2.4264 2.2950 5.42%
MAE 3.3698 3.2388 3.89% 1.9310 1.8024 6.66%
R2 –0.5396 –0.2106 60.97% 0.5047 0.5569 10.34%
Training set: 800, Testing set: 1200 Training set: 1800, Testing set: 1200
MSE 5.0239 4.6319 7.80% 4.5574 4.2177 7.45%
RMSE 2.2414 2.1522 3.98% 2.1348 2.0537 3.80%
MAE 1.6873 1.6205 3.96% 1.6318 1.5093 7.51%
R2 0.5773 0.6103 5.71% 0.6166 0.6451 4.64%
Training set: 2800, Testing set: 1200 Training set: 3800, Testing set: 1200
MSE 4.3190 3.9421 8.73% 4.2411 4.0100 5.45%
RMSE 2.0782 1.9855 4.46% 2.0594 2.0025 2.76%
MAE 1.5621 1.4797 5.28% 1.5292 1.5066 1.48%
R2 0.6366 0.6683 4.98% 0.6432 0.6626 3.02%

Figure 4. Training duration and MSE values of fusion experiment model
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However, As shown in Figure 5, with the increase of sample set size, the advantages of the 
MLP-Reptile model gradually decrease. On larger sample sets (such as 1800, 2800, and 3800), 
the gap between the MLP-Reptile model and the model optimized without the Reptile algo-
rithm decreases. On smaller sample sets, the Reptile algorithm can better utilize the informa-
tion from the training tasks to help the model adapt to new tasks. However, on larger sample 
sets, the sample size itself is sufficient for the model to better learn task information, and the 
potential for performance improvement is relatively limited regardless of whether the Reptile 
algorithm is used for optimization. It can be seen that the MLP-Reptile model demonstrates 
more significant effects on smaller sample sets. Therefore, the MLP-Reptile model can better 
leverage meta-learning on small sample sets, addressing the challenges posed by limited data 
and exhibiting more prominent effects. This observation emphasizes the need to balance the 
applicability of different algorithms when selecting sample sizes. For small sample scenarios, 
the MLP-Reptile model may be a more effective choice, while in large sample scenarios, the 
improvement in model performance may depend more on the scale of the sample size itself.

Figure 5. Improvement ratio of evaluation metrics before and after meta-learning on different 
size training sets

Our findings are consistent with recent research that applies meta-learning techniques, par-
ticularly the Reptile algorithm, to small-sample scenarios. Minot and Reddy (2024) demonstrat-
ed the effectiveness of Reptile in antibody engineering under noisy and insufficiently labeled 
data conditions, which is similar to the challenges we face in data pricing. Moreover, Paeedeh 
et al. (2024) confirmed the success of Reptile in cross-domain few-shot learning, highlighting 
the ability of meta-learning to generalize across different tasks with limited data. Zhang et al. 
(2022) showed that Reptile outperformed traditional learning algorithms in multi-agent systems, 
underscoring its adaptability in small-data settings. Additionally, in the field of computer vision, 
these results, along with our findings, emphasize the versatility and effectiveness of the Reptile 
algorithm in improving model generalization for small-sample problems.

4.3.5. Multi-platform validation

To demonstrate the generalization ability and practicality of the model, we evaluated it using 
additional datasets from two platforms: JD Wanxiang (JD Cloud, n.d.) and Tianyuan Data (n.d.). 
These datasets differ slightly in features and size, providing a broader perspective to test the 
robustness and adaptability of the proposed method (Table 10).
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Table 10. Data volume and features of Tianyuan Data and JD Wanxiang Platforms

Platform Tianyuan Data JD Wanxiang 

Data volume 120 798
Features Price, pageviews, data type, 

data format, data size, 
update frequency/collection 
time, supplier, tags, product 
category, etc.

Price, rating, transaction volume, pageviews, 
favorites, data size, data type, data format, 
source, start time, end time, category, etc.

The results from the two platforms are summarized in Table 11.

Table 11. Model prediction performance on JD-Wanxiang and Tianyuan Data 

Metrics MSE RMSE MAE R²

JD Wanxiang 15.51 3.94 3.12 0.67
Tianyuan Data 7.76 2.79 2.03 0.54

Despite differences in feature sets and data volume, the model achieved reasonable pre-
dictive performance on both datasets, confirming its cross-platform adaptability and robust-
ness. The JD Wanxiang dataset offers a richer feature set, which may account for the higher R² 
value and more comprehensive predictions. This underscores the importance of including 
diverse relevant features in data pricing models. In contrast, the Tianyuan dataset is relatively 
smaller in size and feature diversity, potentially limiting the model’s ability to capture com-
plex patterns, as reflected in its lower R² value. The multi-platform validation highlights the 
generalizability of the proposed approach, ensuring its applicability across different datasets 
and platforms.

5. Conclusions

Fair and accurate pricing of data is essential for facilitating their circulation in the data trading 
market, thereby maximizing their value. Due to the presence of the small sample problem, 
accurately modeling and predicting data resource prices become challenging, necessitating 
the exploration of methods to accurately model and predict even in small sample scenarios. 
This study proposes the MLP-Reptile model to address the small sample data resource pricing 
problem. Our approach aggregates data resource information and related price data from 
multiple industries to improve generality and prediction accuracy. Evaluation on real data 
resource confirms the superior performance of our proposed predictive model.

The main contributions are as follows:
1. Analysis of the main factors influencing data prices in specific industries under small 

sample conditions. The study identifies factors such as data size, applicability value, 
completeness, and consistency as the main common factors influencing prices. The 
primary influencing factors vary across different industries, providing references for 
data pricers from various industries. Considering factors such as consistency and com-
pleteness can help products achieve higher selling prices.

2. This paper provides an innovative solution to the small sample data resource pricing 
problem by proposing the MLP-Reptile model. Traditional machine learning methods 
typically require a large amount of labeled data to train models, learning the mapping 
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relationship from input to output. Instead, we introduce the Reptile algorithm, aiming 
to learn common features and patterns between tasks rather than the specific details 
of each task, requiring minimal labeled data. By training on multiple related tasks, the 
model adapts better to new tasks, significantly reducing prediction errors and provid-
ing an effective method for small sample data pricing problems. The following are the 
advantages of the proposed model: 

Consideration of multidimensional factors: Comprehensive consideration of the 
influence of both intrinsic data factors and market factors on data resource prices. 

Accurate pricing in small sample scenarios: Capable of accurately pricing data 
resources, with unique advantages over other models in small sample scenarios. 

Adaptation to different industry characteristics: Experimental results on data from 
different industries demonstrate the proposed model’s ability to accurately adapt to 
the unique requirements of each industry and predict data prices accurately, offering 
practicality and personalized adaptability, providing reliable support for decision-mak-
ing in various industries. 

Efficiency: The operation of adding batch normalization layers to the MLP model 
and improving the meta-objective function reduces model training time, achieving 
better prediction results in a shorter time.

Even in small sample scenarios, data pricers can optimize pricing strategies, maximizing 
the value of data resources by accurately and effectively pricing and understanding the fac-
tors influencing prices. Theoretically, our study not only enriches the application research of 
small-sample learning and meta-learning but also fills gaps in the existing literature, further 
advancing the theoretical development of this field. Practically, this research has broad ap-
plication prospects. The proposed MLP-Reptile model is not only applicable to data pricing 
problems but can also be applied to various fields such as financial forecasting and medical 
data analysis, providing enterprises and organizations with a reliable data analysis tool in 
small-sample scenarios. Furthermore, by optimizing training efficiency, this study offers a 
practical solution for machine learning model training in real-world applications, enabling 
efficient training under limited computational resources and enhancing the accuracy and 
efficiency of decision support. 

This study primarily focuses on modeling the small-sample problem in the early stages of 
data market development, where data transaction volumes are low and features are sparse. 
Therefore, although we did not conduct experiments on large-scale datasets, the preliminary 
results demonstrate that the model performs well in small-sample scenarios. However, to 
evaluate the model’s scalability and performance boundaries, future research will aim to test 
it on larger-scale datasets to further validate its applicability and robustness. Other known 
small sample solution methods can be attempted to address small sample data resource 
pricing problems, such as model fine-tuning, data augmentation, metric learning, etc. Com-
bining different methods can further enhance the ability to solve small sample data resource 
pricing problems. Furthermore, future studies should consider the complexities introduced 
by real-world data trading environments, such as dynamic market conditions and regula-
tory changes. Integrating these factors will make the model more flexible and practical in 
real-world applications.
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