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1. Introduction 

The energy sector holds immense importance due to its central role in both the economy 
and society, with its sector-specific characteristics like inelastic demand and environmental 
concerns further enhancing its significance, necessitating comprehensive research efforts. 
Energy companies play a crucial role in meeting the rising global demand for energy prod-
ucts, a cornerstone of nearly all economic activities. The intricate relationship between energy 
sector entities and those in other sectors is vital for the economy, which relies heavily on 
energy resources. The growing prominence of energy markets has led to increasing parallels 
between energy products and financial assets, impacting pricing evaluations and adjust-
ments. This growing interconnectedness between energy and financial markets means that 
shocks are transmitted more rapidly and directly. Given the unique dynamics of supply and 
demand in the energy sector, prices often exhibit fluctuations and peaks, with these market 
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interconnections enabling the transmission of these fluctuations to other industries. Thus, it 
is imperative to predict future price trends and fluctuations and comprehend their ramifica-
tions on the stock market and broader macroeconomic indicators, driven by the profound 
significance of this industry. The vital connection between the energy sector and financial 
stability directly and indirectly affects economic activities, performance, societal and economic 
development, and overall well-being. A financial system experiencing external pressures can 
disrupt economic operations by limiting access to specific financing or hedging instruments, 
underscoring the importance of studying this relationship.

Since the 2008 financial crisis, there has been a growing focus on systemic risk in research 
and practice. This type of risk has resulted in the development of various measures and reg-
ulations aimed at enhancing financial stability. It is a systemic risk when a risk can potentially 
harm other companies or sectors not directly involved in its production. Large institutions that 
are highly interconnected and influential can cause harm to other companies, making them 
systemic individually. Similarly, smaller institutions can also spread risks to others, causing 
them to become systemic. Systemic risk is often viewed as a market failure and is considered 
when creating economic policies and regulatory measures. 

Considering the significance of the energy sector, this paper’s primary research question 
revolves around assessing how this sector influences the financial resilience of the European 
economy at a systemic level. To address this question, we have devised an indicator designed 
to assist financial authorities across European nations in monitoring the energy sector’s in-
fluence on the overall financial stability of various sectors.

To this end, we use stock market data to quantify and predict the energy sector’s propen-
sity to spur spill-over effects on all the other sectors. For quantification, we use the Diebold 
and Yilmaz (2012) methodology to create an indicator that captures the impact of shocks 
on financial stability rooted in the evolution of the stock prices belonging to energy sector 
companies. Given its dynamic nature, this indicator allows us to identify situations when the 
energy sector significantly impacts financial stability. The main objective is to harness the 
neural network forecasting power to predict extreme levels of this impact based on literature 
that documents the performance of this methodology in predicting crises. We, therefore, use 
a state-of-the-art method for outlier detection to identify situations when this indicator has 
extreme values. Once these moments are well detected, we produce repetitive out-of-sample 
prediction experiments to forecast such events. Our results show that the methodology used 
for these predictions is worth considering for setting up early warning systems that could 
allow authorities to mitigate such moments of high sensitivity to the energy sector. 

Detection of these extreme events is performed by the COPOD (copula-based outlier 
detection methodology developed by Li et al. (2020)) methodology, while for prediction, we 
follow the methods set forth by Türkmen et al. (2021). Along these lines, we employ the Deep 
Renewal model compared with the Croston model for intermittent data prediction and test 
the differences in the forecasting performance of these models.

The study sets out a novel approach and contributes to the literature in several ways. 
Firstly, we designed an elaborate methodological framework that allows authorities to moni-
tor the impact of shocks produced by the energy sector on financial stability at the European 
level. Secondly, we developed a mixture of empirical analyses proving the performance of 
our methodological framework in dynamical forecasting experiments. Lastly, since the da-
taset connects information from the energy sector with the financial ones and covers the 
other economic sectors, our approach furnishes innovatory sagacious perspectives for policy 
formation.
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Our motivation for selecting these methodological tools is twofold. On the one hand, the 
necessity for leading indicators in risk monitoring spurred a wide selection of methodological 
tools for measuring the contribution of companies and sectors to systemic risks. We propose 
a contagion indicator that relies on a combination of several highly used risk metrics to ac-
count for the impact of the energy sector on all other sectors. On the other hand, we employ 
a tool from the domain of artificial intelligence (neural networks). The reason is to create a 
framework that can give our indicator the statute of leading statistics so that it can be part 
of the toolkit used to trigger policy decisions related to financial stability.

Throughout this paper, our understanding of financial stability follows the definition em-
bedded in the modelling framework set forth by Adrian and Brunnermeier (2016) and Acharya 
et al. (2017).

The rest of our paper is structured as follows. Section 2 presents the relevant articles on 
systemic risk and its use in the energy market, specifying the gap in the literature. In addition, 
studies on detecting rare events and the choice of methods and processes for their prediction 
are identified, emphasising financial markets. Section 3 presents the dataset and the meth-
odology for this study, while Section 4 reports the results. Section 5 elaborates discussion. 
Furthermore, the last section concludes.

2. Literature review

Numerous definitions of financial stability are used in the literature and practice. Although 
there is no unanimously accepted definition, most believe that financial stability is linked to the 
absence of systemic episodes that affect the functioning of the financial system, emphasising 
the financial system’s resilience to stress. Financial stability is the financial system’s ability to 
withstand shocks (endogenous and/or exogenous) and not to transmit financial imbalances 
through the ability to mitigate or absorb them. Often, the lack of stability and the appearance of 
financial instability, strongly reflected in any economic and financial system, attracts attention. 
Maintaining a stable financial system is motivated by its ability to allocate resources efficiently 
and manage financial risks, thereby contributing to economic development and growth.

Most specifications of financial stability refer to systemic risk, which does not have a gen-
erally accepted definition. However, some concepts are described in several reference works: 
“the risk of experiencing a strong systemic event. Such an event adversely affects several 
systemically important intermediaries or markets” (European Central Bank, 2009); “the risk 
that the capacity of the entire financial system is impaired, with potentially” (Adrian & Brun-
nermeier, 2016); “any set of circumstances that threatens the stability of or public confidence 
in the financial system” (Billio et al., 2012); “systemic risk matters only to the extent there is an 
impact on the broader economy” (Acharya et al., 2012). Smaga (2014) conducts an extensive 
review of systemic risk definitions in the literature. Additionally, the author delineates factors 
contributing to the systemic risk process and contagion spread, offering a conceptual view 
connecting these appearances, while Caccioli et al. (2018) provide a comprehensive review of 
models addressing financial systemic risk, emphasising the interconnectedness in the global 
financial system and discussing various models, including default cascades due to bilateral 
interbank exposures and overlapping portfolios.

Several methods have been introduced to measure systemic risk (or systemic stability). 
One of these is to aggregate the stability measures calculated at the firm level (z-score and 
distance from insolvency) using averages or by weighting each value according to the relative 
size of the institution. In the end, an assessment of system-wide stability is to be achieved. In 
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the economic literature, this method is considered incomplete because it needs to consider 
the interconnection between financial institutions (in other words, contagion).

Unlike the previous method, First-to-Default Probability, or the probability of insolvency 
occurring in several institutions, considers that financial institutions are interconnected and 
has been proposed as a method of systemic risk measurement for large financial institutions. 
The disadvantage observed in the literature for this method is that it omits that the failure 
of a large institution causes more significant effects than a small one.

Another way to assess the financial system’s stability is the Systemic Expected Shortfall 
(SES) method. This method measures the individual contribution of each institution to sys-
temic risk, helping identify systemically relevant institutions, although it cannot estimate when 
they may have difficulties. In order to cover the need for forecasting that appears as a result 
of another crisis, the SRISK method has been developed by Brownlees and Engle (2017). It 
measures the loss of capital that a company may have in a severe market downturn.

Other methods or indicators include systemic loss distribution, financial soundness indica-
tors developed by the International Monetary Fund, excessive credit growth, market volatility, 
or asymmetric distribution of yields.

The high risk of insolvency faced by oil companies is raised by Restrepo et al. (2018) in 
a paper that analyses the financial links and principal vulnerabilities in the global financial 
architecture of energy companies. The financial problems they face are likely to affect the 
entire energy market. The methodology was developed to evaluate the volatility (including 
the dynamic volatility index) for the entire sample during the analysed period in Diebold and 
Yilmaz (2009, 2012, 2014). Then a network is built to observe volatilities between blocks of oil 
companies in less quiet times, using Greenwood-Nimmo et al. (2016). The study results show 
that the risk spread is very high among energy companies, with an average of 84.7% in the 
analysed period (January 2002 – November 2016). This value is much higher than calculated 
for other sectors or markets: 39.5% for stock markets, 78% for global banks, 74.78% for the 
credit market, and 76% for the foreign exchange market. The authors also note an enhance-
ment in systemic risk in the oil market in the last two analysed years and increased volatility 
of connectivity, with very high values during periods of financial (2008–2009, 2010–2011) and 
political crisis (2014, conflict between Russia and Ukraine). The Diebold and Yilmaz (2012) 
methodology is recognised in the literature to measure contagion, including the spill-over 
issues regarding the financial cycle (Chen et al., 2022).

Using graph analysis, Lautier and Raynaud (2012), consider oil the centre of the energy 
complex, and the energy market is the centre of the price system. Moreover, commodity 
markets have become increasingly interconnected in recent years, thus laying the groundwork 
for increasing systemic risk.

In the same vein, Butzbach (2016) examined the interplay of systemic risk and banking 
regulation, and the work involves elucidating connections between systemic risk and banking 
diversity, evaluating the effectiveness of macro and micro-prudential policy tools in mitigating 
diversity-related systemic risks, and proposing a foundational framework for policies aimed 
at enhancing diversity. 

The need to introduce financial regulations in the energy sector was also proposed (Ker-
ste et al., 2015). The authors measured the systemic risk using a method that considers the 
chance of a company going bankrupt if at least one other company went bankrupt (the 
expected fraction of other failing firms). The study results suggest that the links between 
firms in difficulty are higher in the energy sector. One explanation for this is that most en-
ergy companies use industry companies as counterparties in derivative contracts; it is also 
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a sector with strong vertical integration, with many companies carrying out production and 
distribution actions. High values for the additional insolvency risk in the energy sector (even 
higher than for the banking sector) show the effects of an adverse shock in the sector without 
evidence of the impact on the economy. The results also suggest that the risk of contagion 
from the energy sector to the banking sector is not very high compared to other non-finan-
cial sectors. However, the authors consider this result as not definitive and recommend using 
another method to consider the average marginal loss over a certain probability threshold 
(Marginal Expected Shortfall – MES). Although both methods measure the risk conditioned 
by an extreme event, the one used in the mentioned study calculates the risk according to 
the chances. In contrast, MES and CoVaR calculate the risk according to the value.

A study on the European Energy Exchange and the DAX Industrial Index (Pierret, 2013) 
draws attention to the significance of systemic risk in energy markets: “the risk of an energy 
crisis that raises the prices of all energy products with negative consequences for the real 
economy”. Proposals are made to measure the total cost and net impact on other compa-
nies, starting with adapting the MES methodology. The results show that energy crises are 
attracting rising costs for the economy. On the other hand, the analysis for the DAX industry 
index suggests that events in the energy market have had a low impact on the profitability of 
the sampling analysed. The findings of Nasim and Downing (2023) on the adverse impact of 
energy price shocks on banking sector performance underscore the critical interplay between 
energy market dynamics and financial stability, necessitating informed policy responses to 
mitigate systemic risks and safeguard economic resilience.

Algieri and Leccadito (2017a) use the ΔCoVaR method developed by Adrian and Brun-
nermeier (2016) to explore whether the energy sector contributes to systemic risk across 
the economy. Using a sample of 35 companies in the energy sector that are part of the S 
& P200 energy index, the authors pointed out a risk transfer from the energy sector to the 
whole economy. The periods when the contagion was very high were significant crises, the 
2007–2009 financial crises and Europe’s sovereign debt. The analysed period was October 
2005 – June 2013. Using the ΔCoVaR method based on quantile regression, Algieri and Lecca-
dito (2017b) identified the measure of contagion risk for the energy, food and metals markets. 
They found that financial factors in the energy and metals sectors mainly trigger contagion 
risks. In contrast, financial and economic factors trigger contagion risks in the food sector, 
with the energy sector contributing more to the contagion than other markets.

Throughout this series of papers, we have pinpointed a noticeable deficiency in the exist-
ing literature regarding creating a monitoring tool to detect spill-over effects from the energy 
sector to the financial sector. Prior research outcomes have failed to establish a unanimous 
agreement regarding the character and significance of the connections between the energy 
sector and financial stability. Nevertheless, these studies underscore the critical importance 
of systemic risk and advocate for a fresh approach to research in this area. These sectors 
are intricately intertwined with all others directly and indirectly, albeit with varying intensity.

3. Data and methodology

3.1. Description of the statistical data used

The data used in this research were obtained from the Bloomberg platform and included 
daily prices recorded at the end of trading sessions for May 3, 2007 – December 21, 2021, 
consisting of 3,819 observations corresponding to trading days. These data were extracted 
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for all the companies that make up the STOXX 600 index, respectively 600 companies listed 
on European stock exchanges.

In order to allow for calculation consistency, the data corresponding to the unlisted companies 
for more than 20% of the period under review were deleted. In general, this resulted from the 
fact that they were listed on the stock exchange following May 3, 2007. After data processing, 
488 companies remained in our sample. For all these companies, the daily logarithmic yields were 
calculated, based on which the systemic risk indicators CoVaR, ΔCoVaR and MES were estimated. 
3,818 values of these indicators were obtained for each of the 488 companies.

The aim we pursued in this study was to engender an indicator that reflects the impact 
of the energy sector on financial stability at the European level. To achieve this goal, we have 
used the Global Industry Classification Standard (GICS) developed by Morgan Stanley Capital 
International [MSCI], which divides companies into 24 industrial groups according to the 
principle of the field that brings the highest income (MSCI, n.d.). According to this setup, the 
energy sector comprises companies that activate in Energy Equipment and Services and Oil, 
Gas and Consumable Fuels industries.

3.2. Description of the applied methodology

In crisis prediction, it was evidenced that using neural networks surpasses logistic regressions 
when used for financial systems (Tölö, 2020). The author used macroeconomic data series for 
17 countries for an extended period from 1860 to 2016 and considers that neural networks 
consistently improve predictions in the financial sector. This is the argument for choosing 
such a method to further our research.

The literature on outlier detection is divided based on methods tailored to their definition 
and the field in which they are used. They are often defined as situations when some data 
significantly deflect from the many (Ahmed et al., 2016; Li et al., 2019). A general way to clas-
sify them is by considering non-sequential data with behavioural analysis: point, contextual or 
collective (Aggarwal, 2017; Feremans et al., 2020). This most straightforward way to classify 
the outliers is sometimes criticised because it is based on similarity without modelling the 
temporal structures in the data (Harvey & Peters, 1990; Shumway & Stoffer, 2017). The ambi-
guity of the invoked context is discussed in the literature, as there are different interpretations 
concerning adjacent points (Yu et al., 2014) or seasonality (Golmohammadi & Zaiane, 2015).

Amid the various ways used to identify outliers, a new algorithm based on an empirical copula 
called COPOD was recently developed in a way substantiated as being parameter-free, with a 
good performance and allowing interpretation (Li et al., 2020). We used this method to identify 
rare events and then applied the deep renewal process (Türkmen et al., 2021) to predict them.

We use a combination of analysis methods identified in the recent literature to identify 
how energy companies can affect financial stability. 

To measure systemic risk, we referred to methods recognised in the literature. 
The method used by Adrian and Brunnermeier (2016) presumes that systemic risk meas-

ures consider the increase of tail comovement that may emerge due to the spreading of 
financial difficulties between institutions. The authors believe that the value at risk (VaR) high-
lights the risk of a single company or institution “in isolation” and propose other indicators 
with the following calculation methods:

 ■ ( )| ij C X
qCoVaR  – is the VaR for the whole system, subject to the fact that the company 

(or group of companies, sector) for which we calculate it is subject to an event or shock 
( )iC X ;
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qPr X C X CoVaR q 
≤ = 

 
 is the probability that the yields of the whole sys-

tem will be lower than CoVaR; in our case, q is 1%;

 ■ 50| || i i i iqj X Var j X Varj i
q q qCoVaR CoVaR CoVaR= =∆ = −  (ΔCoVaR is the difference between a 

CoVaR conditioned by a shock applied to a company or sector and CoVaR under the 
conditions in which the respective company or sector is in a so-called “normal” situa-
tion, respectively when the yield is equal to the median yield).

Acharya et al. (2017) developed a new methodology based on expected losses:
 ■ MES – is the average marginal loss above a certain probability threshold during an 
aggregate market shock; the indicator measures the individual contribution of each 
company or sector to systemic risk and is calculated using the following formula:

 | .
 

i
i

i

ES
MES E r R VaR

y
α

α α
∂

 = = − ≤ − ∂
  (1)

 ■ MES is calculated based on the average loss indicator above a certain probability thresh-
old (Expected Shortfall – ES), respectively the average value of logarithmic returns that 
have values lower than the VaR for a certain confidence level α:

 – | £ – .ES E E R VaRα α =    (2)

 ■ ES expressed that taking into account the individual contributions of the companies that 
are part of the study can be formulated as follows:

   | ,
n

i i
i

ES y E r R VaRα α =− ≤ − ∑  (3)

where ir  is the yield of each company, R is the system’s yield (the group analysed), iy  is the 
share of the company i within the group (based on the market capitalisation).

For our analysis, each sector’s average values for each day of the three systemic risk 
indicators (CoVaR, ΔCoVaR and MES) were calculated, obtaining 24 data sets for each of the 
three indicators.

The methodology developed by Diebold and Yilmaz (2012) was used to estimate the 
degree of contagion, which estimates the extent to which the dynamics of one variable con-
tribute to the uncertainty of predicting another variable when all these variables are included 
in a Vector Autoregression system (VAR).

For this purpose, mobile samples of 120 transaction days (corresponding to approximately 
a half-year period, respectively six calendar months) were used for which the FROM indica-
tors were estimated, which reflect the contribution of the S8 (Energy) sector to the increase 
of prediction uncertainty for all other 23 economic sectors. The TO indicators were similarly 
estimated to obtain the NET variant (TO-FROM). There were 3,699 such values (for each 120-
day sample built with the 3,818 trading days) for each of the three systemic risk indicators. 
To obtain a first picture of the evolution of the energy sector, we estimated such values for 
the yields and volatilities of the energy sector.

Acharya et al. (2012) point out a shortcoming of the CoVaR methodology: it does not 
consider the volatility of the financial institution but only its correlation with the market. 
Therefore, we try to mitigate this deficiency and build an aggregate indicator that captures 
both the influence of a shock or shocks on the system (captured by CoVaR and ΔCoVaR) and 
the influence of an aggregate risk (captured by MES). Thus, the aggregate indicator ContagEn 
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quantified the influence of the energy sector on the financial stability of the other sectors at 
the European level and was constructed by calculating the average of the two FROM indica-
tors corresponding to the two systemic risk measures (ΔCoVaR and MES). For the calculation 
of the indicator, the operation of scaling the indicators ΔCoVaR (FROM) and MES (FROM) 
within the range (0–100) is used, obtaining the indicators IΔCoVaR,t and IMES,t from day t. The 
ContagEn indicator for the energy sector will be calculated according to the formula:

 ,  ,  
  .

2
CoVar t MES t

t
I I

ContagEn ∆ +
=  (4)

The ContagEn indicator represents the average value of systemic risk transmitted by the 
energy sector to the other sectors of the economy. It takes values between 0 and 100, 100 
representing the maximum level.

We employ the COPOD methodology to detect outliers (Li et al., 2020). It is based on a 
three-stage interpretability algorithm that has as input of form X = (X1,i, X2,i, … , Xd,i), with i = 
1, 2, … , n and as output a score vector that can be written O(X) = [X1, X2, … , Xn]. The obtained 
score is considered to be a relative measure for the Xi. This value has been compared with 
the other values. Xi will be an outlier as O(Xi) is higher. 

After the outliers’ identification step, the next objective is to predict them using Cros-
ton and Deep Renewal models. Intermittent demand forecasting was addressed by Croston 
(2017), who proposed a methodology that allows for an independent application of exponen-
tial flattening to inter-demand times and positive consecutive demands. His method is con-
sidered a recognised benchmark for software forecasting this data type (Türkmen et al., 2021).

4. Results

To capture the evolution of the degree of contagion, we calculated the averages of the sys-
temic risk indicators (ΔCoVaR and MES) for all companies in each sector, obtaining a value of 
the average systemic risk in each sector. There were 24 indicators related to the 24 sectors 
according to the GICS classification. The heatmap of Diebold – Yilmaz for ΔCoVaR (all sec-
tors, the whole sample) can be observed in Figure 1, while MES for all sectors for the whole 
sample is presented in Figure 2. The colour scale on the right-hand side of each chart shows 
the intensity of the spill-over effect, ranging from smaller values in dark red to higher values 
in blue.

4.1. Computation and evolution of ContagEn

The values obtained for ΔCoVaR and MES indicators (the European energy sector for the 
FROM case – what this sector transmits to the rest of the economy) are presented in Figure 3. 
Figure 4 displays the values obtained for the ΔCoVaR and MES indicators for the NET situa-
tion; they represent the difference between what this sector receives and what it transmits.

We found a reasonably significant difference between the average amount of systemic 
risk transmitted by the energy sector to other sectors of the European economy and the 
received one, the latter being superior, with much higher values and firm reaction peaks for 
both indicators presented (CoVaR and MES), with multiple peaks recorded for the ΔCoVaR 
indicator, but with the highest value recorded for the MES indicator.

The evolution for the period included in the analysis of the ContagEn indicator, which 
represents the average value of systemic risk transmitted by the energy sector to the other 
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Figure 1. Heatmap of Diebold – Yilmaz for ΔCoVaR all sectors for the whole sample 

Figure 2. Heatmap of Diebold – Yilmaz for MES all sectors for the whole sample
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Figure 3. Evolution of ΔCoVaR and MES indicators for the energy sector (FROM, May 2007 – 
December 2021)

Figure 4. Evolution of ΔCoVaR and MES indicators for the energy sector (NET, May 2007 – 
December 2021)

Figure 5. Evolution of the ContagEn indicator (May 2007 – December 2021)
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sectors of the economy, is presented in Figure 5. We obtained values over 50 in 94.13% of 
cases but over 85 in only 52.36%. Extreme values, over 95, are obtained in only 3.40% of 
cases.

The upper fluctuations are lower, and without excessive transmission peaks to the other 
sectors, results are valid for all variants of calculated indicators. Our results are similar to 
those obtained by Kerste et al. (2015) or Pierret (2013) regarding risk transfer to other sec-
tors. However, we note a greater power of risk transmission in times of crisis, as suggested 
by the results obtained by Algieri and Leccadito (2017a) and Restrepo et al. (2018). These 
include the financial crisis of 2007–2009, periods of the European sovereign debt crisis, and 
the COVID-19 crisis.

The highest values are observed for the dates (28, 29, and 30 June 2016) after the an-
nouncement of the Brexit referendum that triggered uncertainty in the energy market (Con-
tagEN values were 99.14, 97.89, and 97.68). The second significant event is the awareness of 
the spread of the SARS-CoV-2 virus in March 2020 (ContagEn indicator value is 97.67). The 
rise of oil prices started at the beginning of 2008 and peaked in July 2008, which is reflected 
in high values for ContagEn for the first half of the year. In early August 2011, while still high 
compared with historical standards, oil prices fell amid weak economic conditions in Europe 
and the United States. The last three events are responsible for the highest values of the 
indicator, with the most prolonged influence belonging to the developments of 2008. The 
value of September 2015 (96.04) is also noteworthy, a year in which there were significant 
decreases in the price of oil amid rising supply and the refusal of the Organization of the Pe-
troleum Exporting Countries to reduce production. In early February 2016, the prices reached 
the minimum of that period; the effects were captured by the indicator ContagEn (95.91). In 
December 2018, there were also sharp decreases in oil prices, with undesirable effects on the 
financial markets (the value of the ContagEN indicator was 92.31).

Outliers were detected using the COPOD algorithm for the first-order differences com-
puted on the ContagEn index. Identifying outliers relies on these series’ persistent dynamics; 
therefore, we used the first two lags as features (explanatory variables) in the COPOD meth-
odology. 

Note: Outliers are represented by the red marks on top of log returns computed on the ContagEn index.

Figure 6. Dynamics of first-order differences in ContagEn and outliers detected with COPOD 
methodology
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For our analysis, the positive spikes only concern us since they correspond to moments 
when the market was susceptible to the energy sector, i.e., when the companies from the 
energy sector transfer shock to the other sectors at the European level. These large move-
ments are depicted in Figure 6.

There are 292 positive outliers detected for a sample of 3,696 log returns that cover 
the period from October 2007 (the first part of 2007 was needed for the first fit of the Die-
bold-Yilmaz methodology to compute the first value for ContagEn) until December 2021. The 
next step in our analysis, which is our paper’s main objective, consisted of investigating the 
forecasting capabilities of these significant increases (positive spikes) of ContagEn. 

Figure 7 uncovers the statistical properties of the identified positive outliers by depicting 
their frequency across all time intervals for which we deliver our forecasts. This chart also 
provides information about the difficulties encountered by the forecasting methodologies. 
We notice, for instance, that approximately 79% of prediction intervals hold up to ten out-
liers, 15% have between eleven and fifteen outliers, and approximately 5% have more than 
15 outliers. Intervals with three outliers are the most frequently met. Since a more significant 
number of outliers in the out-of-sample interval represents a more difficult task for the pre-
dictors, we can expect an essential variation in the performance of these algorithms. 

Figure 7. Frequency of outliers for forecasting intervals

4.2. Robustness check

We evaluate the appropriateness of our selection for the Deep Renewal model by compar-
ing it to the Croston model, a conventional approach commonly employed for analysing 
intermittent data. We will use this model as a benchmark for the Deep Renewal algorithm, 
which is documented as a powerful tool that uses neural network methodology to forecast 
intermittent time series.

We fit both models repetitively on rolling windows of 500 observations that move with 
a step of one day and produce forecasts for the next 30 days. Under this setting, our first 
fitting interval is October 23, 2007, to September 22, 2009, and the first prediction covers the 
next 30 days, ending on November 3, 2009. Our last forecasting interval ended on December 
21, 2021. 

This prediction exercise allows us to develop a framework to measure the performance 
of the forecasting methods employing differences between the actual values of the outliers 
and their forecast values. We used two types of metrics: the Mean Squared Error (MSE) and 
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the quantile losses at 10%, 50% and 90% levels. Figure 8 shows the distribution of these 
measures across all prediction experiments for both Croston and Deep Renewal models. We 
notice that all these representations reveal a more significant concentration of values in the 
lower part of the losses for the Deep Renewal model, which means that these charts indicate 
that the Deep Renewal model in this repetitive sequence of forecasting exercises outperforms 
the Croston model. 

We extended our investigation by grouping the four metrics into categories according 
to the number of outliers we forecast per interval. For instance, we put all the values of MSE 
for predictions from the Croston model, corresponding to situations when the out-of-sample 
intervals (the ones for which we produced our forecasts) contained one outlier in a group 
(we denote it by , ,  1MSE C OG ). Further, we put the MSE for predictions from the Deep Renewal 
models, corresponding to situations with one outlier in the forecast interval in a separate 
group ( , , 1MSE DR OG ). According to this arrangement, we obtained 22 groups , ,  MSE C OiG and 
the corresponding 22 groups , ,MSE DR OiG , for 1 22i = … .

We continued with the same setting for the values of the quantile losses, ending up 
with 22 other groups for the quantile loss at 10% ( 10, , 10, ,, Q C Oi Q DR OiG G ), 22 groups for the 
quantile loss of 50% ( 50, , 50, ,, Q C Oi Q DR OiG G ) and finally, 22 groups for the quantile loss of 90% 
( 90, , 90, ,, Q C Oi Q DR OiG G ).

For each pair of groups, we computed Welch’s test of differences between the two groups 
to investigate the extent to which the Deep Renewal model succeeds in producing better 
metrics than the Croston model. Welch’s test is considered less dependent on hypotheses 
that cannot be easily verified, and when applied, the statistical power is not much diminished 
(Delacre et al., 2017). 

For each set of differences , , , ,QX C Oi QX DR OiG G−  (we denote it as MetricPval ), we obtained 
22 p-values, which we represent in Figure 9.

Figure 8. The distribution of losses resulted from fitting the Croston model and the Deep 
Renewal model
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Note: a) MSEPval , b) Q10Pval , c) Q50Pval , d) Q90Pval .

Figure 9. Distributions of p-values for Welch tests across differences in model performances 
when outliers took place

We notice that the highest columns for these p-values are those for trim levels, usually 
lower than 10%, which shows that the differences between performances of the Deep Renew-
al model and the Croston model are significant in most of the cases in which the number of 
outliers is different in the forecasting interval. Corroborating with the information produced 
in Figure 8, we can conclude that the Deep Renewal model generates better predictions than 
the benchmark model.

5. Discussion

The emergence of new phenomena and processes in the energy sector, with multiple in-
terconnections, and diverse propagation in a complex (Andrei et al., 2023) and complicated 
context of energy ecosystem, contributes to the increased difficulty in understanding and 
researching the analysed subjects. Besides these issues, the current crisis in the European en-
ergy markets is fuelled by the increased prices for electricity, natural gas, and oil, the extreme 
volatility of prices, and supply problems that encourage research in all mentioned fields. 

Our focus on financial stability is motivated by the fact that it is not an independent pur-
pose. However, it maintains the objectives of efficient and sustainable capital allocation and 
the proper functioning of the economy. From this perspective, our results confirm the findings 
of Adrian and Brunnermeier (2016), Billio et al. (2012) and continue the methodological setup 
from Lupu et al. (2020, 2021).

Several novel results can be outlined from our research. First, we highlight that the energy 
sector conditions affect financial stability. Our intended methodological framework renders 
feasibility to monitoring shocks that originate in the energy sectors and may threaten Eu-
ropean financial stability. Second, our methodological structure produces sensitive empirical 

a) b)

c) d)
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results prompted by a dynamic forecasting experiment. The data combination (financial and 
economic sectors) allows for complex connections and helps formulate policies and recom-
mendations. 

As such, they predict positive outliers of our spill-over indicator (ContagEn), equivalent 
to pointing out situations with crises-generating events. An analysis of our ContagEn indica-
tor shows no excessive transmission peaks to the other sectors (results valid for all variants 
of calculated indicators). These conclusions are similar to those of other authors regarding 
transferring risks to other sectors (Kerste et al., 2015; Pierret, 2013). On the other hand, the 
power to transmit shocks increases in times of great crisis or the case of energy sector-spe-
cific events (sharp price changes, sanitary crises, political uncertainty).

Additionally, as mentioned by Tufail et al. (2022), precise financial inclusion can comple-
ment these actions and facilitate the transition to a green economy. Furthermore, energy 
justice priorities, a concept gaining increasing attention (Qian et al., 2022), can also be con-
sidered.

6. Conclusions

Nowadays, the energy industry is gaining importance due to its economic implications.
The main objective of our research is to quantify the degree to which the energy sector 

affects financial stability at the European level and predict situations when these impacts 
are most substantial. We quantify these phenomena by constructing an indicator that cap-
tures the contribution of energy companies to financial stability (ContagEn). Forecasting is 
developed in an out-of-sample setting of repetitive experiments in which we compare per-
formances of the Croston model (as a benchmark) and a neural network model specially 
developed for intermittent data forecasting. The data used for this purpose consists of daily 
prices recorded at the end of trading sessions for May 3, 2007, to December 21, 2021, for 
all companies listed on European stock exchanges included in the STOXX 600 index, divided 
into 24 sectors. Initially, the systemic risk indicators CoVaR, ΔCoVaR and MES were estimated. 
Our analysis relies on previous findings that the energy sector does not transmit intensely 
constantly. 

In addition, these findings have policy implications. Our methodological framework allows 
for creating tools that can monitor and predict situations where the economy becomes highly 
reliant on the energy sector. These tools can aid in developing necessary policy measures to 
reduce such dependencies before they become harmful to the system. Policymakers must in-
crease such actions, especially in light of the European energy crisis, where there are moments 
of extreme volatility. Following the example of financial stability measures, such policies may 
be designed as capital buffers triggered by the extent to which significant shifts in the de-
pendence on the energy sector are predicted for the following time frame.

Although it became a standard in the literature, one of the study’s limitations concerning 
assessing the degree to which the energy sector influences financial stability at the European 
level is that the analysis is limited to listed companies. Due to its design, this study primarily 
examines the spread of contagion exclusively within financial markets. Therefore, it is essential 
to note that one of its limitations is the absence of an analysis of contagion at the level of 
the real economy.

Another limitation would be that the vertical and horizontal integration of the energy 
companies in the analysed sample (if any) is not considered. However, this aspect is vital if 
we analyse the transmission of risk within the sector, an analysis that could qualify as a future 
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research direction. We can also consider another aspect of future development: examining 
the spill-over effects across different countries. In our paper, we concentrate on the most 
significant European companies to provide a general overview of the interconnectedness 
within the entire region. However, refining our selection by including the most important 
companies from each country could also uncover intriguing insights.
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