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Abstract. This paper explores the variation pattern of nickel futures prices using the daily closing 
levels of the nickel futures price index of the London Futures Exchange and the Shanghai Futures 
Exchange. The data coarse-graining method is employed to transform the continuous time series 
data of price index changes into symbols {P, N, M}, which are slid through continuous windows 
to form the modalities of price index linkage fluctuations. By treating the modalities as nodes and 
the transformations between them as edges, a weighted directed complex network is constructed to 
represent the linked volatility of the LME and SHFE nickel futures indices time series. The complex 
network is applied to analyse the network characteristics and obtain the inner pattern of the linked 
fluctuations. The results show that the complex network of time series linked volatility of the LME 
and SHFE nickel futures indices exhibits a power-law nature, with closely linked subgroups formed 
within it. And the mode transitions within these subgroups follow certain patterns. This paper also 
identifies core positioned modes and important intermediate modes that reflect the dynamics of 
nickel prices in reality. The method presented in this paper may be extended to related fields and 
has good applicability.

Keywords: nickel futures price index, coarse-graining method, time series data, linkage fluctua-
tion, complex network, positioned modes, intermediate modes.
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Introduction

Nickel is a metal known for its excellent formability and corrosion resistance. It is widely 
used in non-ferrous metals smelting, chemical production and other fields, and occupies an 
important position in the bulk commodity trade (Dubal et al., 2015; Su et al., 2023). In re-
cent years, the widespread use of lithium batteries has led to an increased demand for nickel, 
one of its key raw materials. As a result, nickel has become a strategic energy raw material 
with rising prices and is increasingly valued by governments (Murdock et al., 2021). In the 
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first half of 2022, international nickel prices experienced sharp fluctuations due to financial 
turmoil and international political changes (Wang et  al., 2023; Zheng et  al., 2022). These 
fluctuations had a significant impact on the global nickel market and deeply affected Chinese 
enterprises (Guohua et al., 2021). China has relatively limited domestic nickel resources and 
is largely dependent on imports. As a major manufacturer of nickel-related products, a stable 
and prosperous nickel market is of great importance to China’s industrial development and 
national security (Sun et al., 2015). Therefore, understanding the links between the Chinese 
nickel market and the international nickel market, as well as the dynamic characteristics of 
these links, is of great interest to both administrators and investors.

Long-term studies have shown that commodities are often interconnected in complex 
ways. These connections often manifest themselves at the economic level as linked volatility 
between stock options and commodity futures prices (Guo et al., 2019). Such linked volatility 
may be either an interaction between commodities of the same type, such as the interaction 
of changes in multiple holdings in the oil and gas chain (Wen et al., 2017), or it may continue 
to be transmitted over time and across a certain space (Zhao et al., 2020). The effects of such 
linked volatility may also extend to a wider range of market sectors, such as the interaction 
of exchange rate markets and commodity markets (Li et al., 2021; An et al., 2020). At the 
data level, commodity trade data are often presented as time series data. Time series data are 
sequences of data recorded in a consistent standard and in time order (Fu, 2011), and are an 
important form of structured data in many fields such as economic management, biomedi-
cine and transport. Time series data contains a wealth of dynamic information, that reflects 
the changing patterns and dynamic characteristics of things (Mahalakshmi et al., 2016). The 
further exploration of time series data may greatly enhance people’s understanding of the 
operation mechanism and reveal the essence of these phenomena.

Time series data forecasting is the statistical analysis of historical time series data to pre-
dict future trends. Depending on the number of variables involved, time series data forecast-
ing can be divided into two main categories: univariate and multivariate forecasting (Mahal-
akshmi et al., 2016). Among them, univariate forecasting is the simplest form of time series 
data forecasting, where the data being analyzed contains only one variable. In this case, there 
is no need to consider the causes or relationships underlying changes in the data. Common 
univariate time series forecasting methods include the moving average method (Armstrong, 
1985), the exponential smoothing method (Fildes & Lusk, 1984), the Box-Jenkins method 
(Hill & Fildes, 1984), the ARARMA model (Meade & Smith, 1985), the Pandit-Wu method 
(Pandit & Wu, 1983), the intervention analysis model (Thury & Anderson, 1980), the state 
space model and the Bayesian forecasting method (Abraham & Ledolter, 1983). Instead, mul-
tivariate forecasting focuses on analyzing causal or correlation relationships between two or 
more variables. Traditional multivariate time series forecasting methods include the autore-
gressive model (Pal & Mitra, 2015), the cointegration test and error correction model (Lee 
et al., 2010), the analysis of variance (Kaufmann & Ullman, 2009), the multivariate statistics 
(Maslyuk & Smyth, 2009), and the synergistic theory (Dong et  al., 2021). The analytical 
methods in traditional economics are relatively effective in analyzing the correlation effects 
between multiple relevant factors over time. However, these methods are less capable of re-
vealing the volatile relationships of linkages. Therefore, some scholars have started to explore 
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the use of complex network methods to analyze the evolutionary effects of linkages between 
things, such as the linkage between commodity prices (An et al., 2015; Dong et al., 2018).

As a traditional commodity, nickel constitutes a typically complex system in international 
trade, and changes in nickel prices in different regions interact through the transmission of 
the system (Wang et al., 2022). Complex networks are network systems that demonstrate a 
high degree of complexity. By abstracting the participants of a real system as nodes in a net-
work and the connections between different participants as links between nodes, and using 
the direction of the links to represent the active and passive relationships of the participants’ 
connections, complex networks can better simulate real systems (Barabási & Albert, 1999). 
As two of the world’s most representative futures markets, nickel futures prices on the Lon-
don Metal Exchange (LME) and the Shanghai Futures Exchange (SHFE) could also constitute 
a non-linear and dynamically changing complex system. The linkages between prices also 
changing over time. While traditional methods are able to represent this bivariate linkage, 
they are unable to describe the patterns and evolution of the linkage fluctuations between 
the two variables. 

Therefore, this paper firstly applies the coarse-graining method to transform the linkage 
fluctuations between the LME and SHFE nickel futures price indices into linkage fluctua-
tion modes. Then, the transmission relationships are determined in a time sequence. Finally, 
a complex network model is constructed to investigate the inner patterns of variation and 
evolutionary mechanisms. By exploring these interactions, it is possible to obtain a different 
perspective on the functioning of the commodity economy, expands the application scope 
of the complex network method, and provides a useful reference for managers and investors 
to accurately grasp the market trend. 

The paper is structured as follows. Section 1 shows the data source, the applicability of 
the method and the calculation formula of the index. Section 2 constructs the theoretical 
model and the network model of coal trade. Section 3 presents the results. The final section 
shows the countermeasures and concludes the paper.

1. Data selection and coarse-grained processing

Commodity price volatility data plays a crucial role in economic data, and this paper exam-
ines the daily closing price indices of LME and SHFE nickel futures, which are ranked among 
the top in the world in terms of annual trading volume and are highly representative of the 
futures market. LME nickel futures require nickel spot with 99.8% nickel purity, while SHFE 
also requires nickel products to contain no less than 99.8% nickel or a minimum of 99.96% 
nickel and cobalt, which is consistent in terms of quality.

The futures price index contains the overall factors of supply and demand in the futures 
market and implies the overall forecast of futures prices. It can also represent the overall price 
changes of the relevant products in the industry in a more comprehensive and standard way 
(Chen, 2013). As this paper focuses on price trends rather than actual prices and has selected 
nickel futures price index data from the LME and SHFE over the last five years. (May 2017 
to May 2022). As trading dates in different markets are influenced by factors such as holidays 
and uncontrollable events, all data that did not match in time have been removed in order 
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to keep the data consistent. After data pre-processing, a total of 1181 valid matching data 
have been obtained.

Data coarse graining can divide a huge data set into smaller subsets and extract core data 
from the noise. In complex systems, the necessary data coarsening work can reduce data size 
and dimensionality without significantly compromising accuracy, thus improving analysis 
efficiency. Relevant methods have been widely applied in system science and computer sci-
ence (Long et al., 2018; Zeng et al., 2019). In this paper, we convert time series data into a 
collection of change trends.

Suppose the closing price index of LME nickel futures on day t  is tLNi , the clos-
ing price index of SHFE nickel futures on day t  is tSNi . Let 1t tLNi LNi LNi −∆ = −  and 

1t tSNi SNi SNi −∆ = − . If 0LNi SNi∆ ×∆ > , it indicates a positive linkage relationship between 
the two. If 0LNi SNi∆ ×∆ < , it indicates a negative linkage relationship between the two. And 
if 0LNi SNi∆ ×∆ = , it indicates no linkage between the two.

a) Overall fluctuation range

b) Partial enlargement 

Figure 1. Change range of index
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Choosing a reasonable linkage symbol allows for a more effective analysis of the link-
ages between nickel futures price indices on different exchanges. As shown in Figure 1, the 
fluctuations in the nickel futures price indices on both exchanges are relatively concentrated 
and generally small, with most concentrated in the range of [–0.05,0.05], which suggests that 
a reasonable level of coarse-graining could simplify the data without filtering out too much 
information.

Setting the linkage between nickel futures price indices in the two places as iCL , as shown 
in formula (1), iCL  is jointly determined by LNi∆  and SNi∆ .

 

P, 0,  
N, 0,  
M, 0,

.
 

i

LNi SNi positive linkage
CL LNi SNi negative linkage

LNi SNi nolinkage

 ∆ ×∆ >
= ∆ ×∆ <
 ∆ ×∆ =

 (1)

As a result, the linkage fluctuations of the nickel futures price indices can be converted 
into a continuous symbol sequence. The coarse-grained symbol sequence is equivalent to the 
study of time series data. The converted symbol sequence tCL  is expressed as formula (2).

 ( ) ( )1 2 3, , , , , , , .t n iCL CL CL CL CL CL P N M= ∈  (2)

After symbolizing the linkage fluctuation data of 1181 nickel futures price indices, an 
abstract symbol sequence ( )1 2 3 4 5, , , , , ,i nCL CL CL CL CL CL CL=   with a length of 1181-1 
can be obtained. Referring the related research (An et al., 2015; Dong et al., 2018), a sym-
bol sequence set is formed by 5 data symbols of the linkage fluctuation of nickel futures 
price index, and the data is slid with the step size of 1 day, thus the linkage fluctuation 
mode of the 1177 price index is obtained. In this paper, the data symbol sequence of nick-
el futures price index linkage fluctuation data can be expressed as a string in the form of 
{ }P,N,N,N,P,P,N,P,P,P, ,P . The string performs window sliding, and finally forms a modal set 
of the form ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }PNNNP , PPNNN , NPPNN , PNPPN , PPNPP , PPPNP , , PPPNN . 
Since the formation of different modes is actually realized by window sliding, the formation 
of the subsequent mode is based on the previous mode, and the modes are transitive and 
directional. The specific coarse graining treatment process is shown in Table 1.

Table 1. Coarse-grained process

Data LME Ni
Price 
index 

changes
SHFE Ni

Price 
index 

changes

Linkage 
direction Symbolic

Coarse-
grained 
mode

2022/5/9 28 350 –1725 2552.9 –59.55 positive P (P,P,P,N,N)
2022/5/6 30 075 –275 2612.45 –112.5 positive P (P,P,N,N,P)
2022/5/5 30 350 –2250 2724.95 –108.85 positive P (P,N,N,P,P)

2022/4/29 32 600 –700 2833.8 60.4 negative N (N,N,P,P,P)
2022/4/28 33 300 245.5 2773.4 –5.25 negative N (N,P,P,P,P)
2022/4/27 33 054.5 304.5 2778.65 99.82 positive P (P,P,P,P,P)
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Data LME Ni
Price 
index 

changes
SHFE Ni

Price 
index 

changes

Linkage 
direction Symbolic

Coarse-
grained 
mode

2022/4/26 32 750 100 2678.83 26.73 positive P (P,P,P,P,P)
2022/4/25 32 650 –1350 2652.1 –220.99 positive P (P,P,P,P,P)
2022/4/22 34 000 150 2873.09 31.48 positive P (P,P,P,P,P)
2022/4/21 33 850 50 2841.61 20.38 positive P (P,P,P,P,N)

……
2017/5/9 9145 – 933.37 – – – –

2. Complex networks construction

In this paper, we use the bivariate linked volatility modes of nickel futures index data as 
nodes, the directed transitions between modes as edges, and the number of transitions be-
tween different modes as edge weights to construct a directed weighted network ijW .

 

11 12 1

21 22 2

1 2

, , .

m

m
ij

m m nm

w w w
w w w

W i m j n

w w w

 
 
 = ≤ ≤ 
 
  





   



 (3)

In the formula, ijw  represents the edge weight from node i  to node j , according to 
the number of transformations of the i  linkage mode to the j  linkage mode. And the final 
construction becomes a complex network of time series linkage fluctuations between LME 
and SHFE nickel futures indices with weighted direction.

The complex network analysis method provides a variety of effective network analyses 
and indicators. In this paper, we mainly use indicators such as node strength, cohesive sub-
group analysis, clustering coefficients, intermediary centrality and mean path length to ana-
lyze the established linkage fluctuation modal networks from three perspectives: statistical 
pattern, change pattern and evolution pattern.

2.1. The statistical pattern of the linkage fluctuation modes

The statistical pattern of linked fluctuation modes is mainly analyzed using relevant indica-
tors based on the statistical analysis of the complex relationship between them. The complex 
network of time series linkage volatility between LME and SHFE nickel futures indices con-
structed in this paper is a typical directional weighted network, and the node strength and 
node strength distributions are chosen to describe the linkage fluctuation patterns between 
these two indices and the degree of correlation.

The node strength can be used to measure the importance of the corresponding node 
(Wasserman & Faust, 1994), and the formula for calculating the node strength is:

 
.

i

i ij
j N

k w
∈

= ∑  (4)

End of Table 1
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In the formula, iN  represents the set of all neighbouring nodes of node i . The greater 
the node strength, the more important the mode is in the network species and the more 
frequently the mode transitions to other modes.

Different nodes have different intensities, and their distribution also varies, which in this 
paper is defined as:

 ( ) / .iLP k k N=  (5)

In the formula, N  represents the sum of the intensities of all nodes. The intensity dis-
tribution of nodes reflects the importance of a mode at a more macro level. The wider the 
intensity is, the higher the probability of the mode occurring in the network and the more 
important the mode is.

2.2. The variation pattern of the linkage fluctuation mode

The linkage fluctuation modes are used to analyze the transitions between various impor-
tant modes in the network, the core modes during mode transitions, the control ability of 
important nodes over other nodes in the network, and the number of subgroups present 
within the network.

The n-Cliques method and the k-Plex method are two effective methods for analyz-
ing subgroups in networks (Ronald, 1992). The n-Cliques is a network reachability-based 
analysis method. In a given network, if there is a subgraph in which the shortest distance 
( ),d i j  between any two nodes i  and j  does not exceed n and ( ), ,d i j n≤  then the subgraph 

consisting of all nodes satisfying this condition is n-Cliques. k-Plex is a node-degree based 
analysis method. In a given network, assume that there are n  nodes in the subgroup and 
that each node in the subgroup is directly connected to at least n k−  nodes, meaning that 
the degree of each node is not less than .n k−  The subgraph consisting of all nodes satisfying 
this condition is a k-Plex.

The n-Cliques method and the k-Plex method are used to analyze the cohesive subgroups 
in the network to initially find out which modes have more frequent transformations with 
each other. The importance of different modes can then be assessed using the clustering 
coefficient. The weighted clustering coefficient is mainly used to count the clustering char-
acteristics of the nodes in the network and their nearby nodes. The higher the weighted 
clustering coefficient, the higher the degree of connection between the node and its nearby 
nodes, which means the more important the position of the mode in the self-circle is, the 
more frequent the mode transitions with other modes (Barrat et al., 2004).

In a time series linkage fluctuation complex network of LME and SHFE nickel futures 
price indices, the weights of the edges indicate the closeness of the relationship between con-
nected nodes and the weighted clustering coefficient is calculated as:

 
( ) ( )

( )
,

.1
21

ij ikw
ij jk ki

i i j k

w w
C i a a a

k S

+
=

− ∑  (6)

In the formula, ijw  represents the weight of the edge between nodes , ,i j  ik  represents 
the node strength of node ,i  iS  represents the degree of node ,i  and ija  represents whether 
there is a connection between nodes i  and ,j  which takes the value of 0 or 1.
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2.3. The evolutionary pattern of the linkage fluctuation mode

The evolution pattern of the linkage fluctuation modes focuses on the evolution of different 
modes over time, such as the transformation relationship between modes, the transformation 
cycles and so on. This can be analyzed using betweenness centrality and mean path length.

The average path of the network is the average of the distance between any two nodes in 
the network and is calculated as:

 
( )

.1
1 ij

i j
L d

N N ≠

=
− ∑  (7)

In the formula, ijd  represents the distance between nodes ,i j  and N  represents the 
number of nodes in the network.

Betweenness centrality refers to the number of times a node acts as a “bridge” be-
tween two other nodes, and the higher the betweenness centrality, the stronger the con-
trol of the node over its neighboring nodes (Zhou et al., 2011). The formula for between-
ness centrality is:

 ( )
( )

( )

( )
( ), ,

,
, .

,
k

k k
i j i j

c i j
w w i j

c i j
= =∑ ∑  (8)

In the formula, ( ),c i j  represents the total number of all shortest paths between nodes 
, .i j  In these paths, the number of paths through node k  is .kc

3. Analysis and results

3.1. Study of the statistical patterns of the linkage fluctuation mode

This paper analyzes the node strength and intensity distributions of the LME and SHFE 
nickel futures daily closing price linkage fluctuation modes. The sign sequence of the fluctua-
tion modes is obtained by coarse-graining the modes. According to the results of the analysis, 
a total of 85 modes occurred in practice, compared to a theoretical total of 243(35) for all 
modes, indicating that some of the modes did not occur in practice. As shown in Figure 2, 
the statistics on the frequency of occurrence of different symbols show that the symbol P, 
representing positive linkage fluctuations, appeared 818 times, accounting for 69.32%. The 
symbol N, representing negative linkage fluctuations, appeared 342 times, accounting for 
28.98%. And the symbol M, representing no linkage fluctuations, appeared 20 times, ac-
counting for 1.69%. This suggests that LME and SHFE nickel futures prices are strongly 
linked over the five-year period from May 2017 to May 2022.

The node strength and node strength distributions of the nodes of the linkage fluctua-
tions mode of the LME and SHFE nickel futures price indices have been calculated and the 
results are shown in Table 2.

As shown in Table 2, the node strength of the symbol (P,P,P,P,P) representing five con-
secutive positive linkages between LME and SHFE nickel futures daily closing prices is 194, 
while the node strength of the symbol (N,N,N,N,N) representing five consecutive negative 
linkages is 4. This indicates that the positive linkage between LME and SHFE nickel futures 
daily closing prices was strong in the last 5 years, with five consecutive positive changes 
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Figure 2. Percentage of occurrences of the linkage fluctuation symbol

69.32%

28.98%

1.69%M

N

P

Table 2. Node strength and strength distributions in the network

No. Node Node strength Distribution of node strength/%

1 (P,P,P,P,P) 194 16.50
2 (N,P,P,P,P) 87 7.40
3 (P,P,P,P,N) 87 7.40
4 (P,P,P,N,P) 76 6.46
5 (P,P,N,P,P) 74 6.29
6 (P,N,P,P,P) 71 6.04
7 (N,N,P,P,P) 41 3.49
8 (P,N,N,P,P) 40 3.40
9 (P,P,N,N,P) 39 3.32

10 (P,P,P,N,N) 37 3.15
11 (P,N,P,N,P) 35 2.98
12 (P,N,P,P,N) 34 2.89
13 (P,P,N,P,N) 34 2.89
14 (N,P,P,N,P) 32 2.72
...

...
...

...
85 (P,P,P,M,N) 1 0.09

having occurred a total of 194 times, while five consecutive negative changes occurred just 
four times. Among the top 29 nodes with the highest node strength, the symbol “M” appears 
zero times, indicating that price fluctuations in the nickel futures market were more intense 
over the last five years.

The directionality of the linkage between the LME and SHFE nickel futures price indi-
ces can be expressed by the weighted number of index volatility symbols, Q, defined as the 
product of the number of occurrences of the index fluctuation symbols and the node strength 
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distribution of that node. The weighted counts of index fluctuation symbols for the top 29 
nodes with the highest node degree are shown in Table 3. From Table 3, it can be seen that 
as the number of positive and negative symbols increases, the ratio of their weighted counts 
increases. This indicates that the ratio of simultaneous linkage appearing in the network is 
increasing over time, with nickel futures prices simultaneous growing or decreasing more 
frequently.

Table 3. Weighted counts of linkage fluctuation combination symbols of former 29 nodes

Symbol combination Weighted times Symbol combination Weighted times

P 3.28 N 1.30
P,P 1.88 N,N 0.30

P,P,P 1.00 N,N,N 0.06
P,P,P,P 0.31 N,N,N,N 0.01

Among all 85 nodes, the top 29 nodes in node strength have an intensity distribution of 
91.97%, indicating that these nodes represent modes that are more likely to transform to or 
from other modes. The node strength distribution of the bottom 48 nodes in node strength 
are all below 0.2%, indicating that these nodes have a limited number of occurrences and 
transitions in the network.

The relationship between the distributions of node strength k and cumulative node 
strength LP(k) for the complex network of time series linkage fluctuations of the LME and 
SHFE nickel futures price indices is shown in Figure 3, both of which follow a power-law 
distribution overall.

a) Ordinary scale
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Figure 3. To be continued
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As shown in Figure 4, after ranking the nodes in the network by node strength, the loga-
rithm of node strength and ranking position was calculated and fitted to obtain the linear 
regression equation   0.72   44.88,Y X=− +  and they follow a power-law distribution overall.

In summary, in the complex network of time series linkage fluctuations between LME and 
SHFE nickel futures indices, the node strength and cumulative intensity distributions, node 
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Figure 3. Distribution of node strength and cumulative strength degree
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strength and ranking order all follow a power-law distribution, with a relatively strong trend 
of simultaneous linkage. This suggests that the prices of Chinese nickel futures products are 
influenced by the prices of London nickel futures products, and generally remain synchro-
nized. However, China does not simply follow international prices when setting prices for 
nickel futures products, but adjusts them to the current political and economic environment 
in China, with a certain degree of independence.

3.2. Study of the variation pattern of the linkage fluctuation mode

This paper presents a statistical analysis of the complex network of time series linkage fluc-
tuations between LME and SHFE nickel futures indices based on n-Cliques. n = 2 is set, 
where there are six subgroups in the network, four of which contain seven nodes and two of 
which contain eight nodes.

As shown in Table 4, the transformation between the six subgroup modes does not exceed 
two steps, and the modes within a subgroup have a higher probability of transforming into 
other modes within the same subgroup. Further observations show that the distribution of 
the six subgroups tends to be consistent, with the symbol P having a clear quantitative ad-
vantage, indicating that there are more positive price index linkage transitions in all of the 
modes. Additionally, the symbol N appears in a significantly higher proportion in subgroups 
2 and 4, indicating a greater chance of negative linkage fluctuation transitions in these two 
subgroups compared to the other subgroups.

Using the k-Plex method to statistically analyze the complex network of time series link-
age fluctuation between LME and SHFE nickel futures price indices, a total of 24 subgroups 
were found when setting k = 2 and the subgroup size was 4. When setting k = 2 and the 
subgroup size was 5, no aggregated subgroups were found.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0

2.5

N
o
d
e
 s

tr
e
n
g
th

Sequence

b) Log-log scale
Figure 4. Distribution of node strength and its ranking



724 X. Chen et al. Analysis of linkage fluctuation in time series data of nickel futures price index

As shown in Table 5, most of the subgroups have no more than 2 steps of transition between 
modes, but some of the subgroups have longer shortest paths from one node to another, and some 
nodes belong to more than one subgroup at the same time. The 24 subgroups can be divided into 
three categories according to their modes: 11 of them have significantly more symbols P than 

Table 4. Clusters of a linkage fluctuation complex network based on n-Cliques

No. Node 
scale Subgroup modal set

1 7 (M,P,P,P,N) (N,P,P,P,N) (P,P,N,P,M) (P,P,N,P,N) (P,P,N,P,P) (P,P,P,N,P) (P,P,P,P,N)
2 7 (M,P,P,N,P) (N,P,P,N,P) (P,N,P,N,M) (P,N,P,N,N) (P,N,P,N,P) (P,P,N,P,N) (P,P,P,N,P)
3 7 (M,P,N,P,P) (N,P,N,P,P) (N,P,P,P,M) (N,P,P,P,N) (N,P,P,P,P) (P,N,P,P,P) (P,P,N,P,P)
4 7 (M,P,P,P,N) (N,P,P,P,N) (P,P,N,N,M) (P,P,N,N,N) (P,P,N,N,P) (P,P,P,N,N) (P,P,P,P,N)
5 8 (N,N,P,P,P) (N,P,P,P,N) (N,P,P,P,P) (P,N,P,P,P) (P,P,P,N,M) (P,P,P,N,N) (P,P,P,N,P) (P,P,P,P,N)
6 8 (N,N,P,P,P) (N,P,P,P,P) (P,N,P,P,P) (P,P,P,N,M) (P,P,P,N,N) (P,P,P,N,P) (P,P,P,P,N) (P,P,P,P,P)

Table 5. Clusters of a linkage fluctuation complex network based on k-Plex

No. Node scale Subgroup modal set

1 4 (M,P,P,N,P) (N,P,P,N,P) (P,P,N,P,N) (P,P,N,P,P)
2 4 (M,P,P,N,P) (P,P,N,P,N) (P,P,N,P,P) (P,P,P,N,P)
3 4 (M,P,P,P,N) (N,P,P,P,N) (P,P,P,N,N) (P,P,P,N,P)
4 4 (M,P,P,P,N) (P,P,P,N,N) (P,P,P,N,P) (P,P,P,P,N)
5 4 (N,N,N,P,N) (N,N,P,N,N) (N,N,P,N,P) (P,N,N,P,N)
6 4 (N,N,N,P,P) (N,N,P,P,N) (N,N,P,P,P) (P,N,N,P,P)
7 4 (N,N,P,N,N) (N,P,N,N,N) (N,P,N,N,P) (P,N,P,N,N)
8 4 (N,N,P,N,P) (N,P,N,P,N) (N,P,N,P,P) (P,N,P,N,P)
9 4 (N,N,P,P,N) (N,P,P,N,N) (N,P,P,N,P) (P,N,P,P,N)

10 4 (N,N,P,P,N) (N,P,P,N,N) (P,N,N,P,P) (P,P,N,N,P)
11 4 (N,N,P,P,P) (N,P,P,P,N) (N,P,P,P,P) (P,N,P,P,P)
12 4 (N,P,N,M,N) (P,N,M,N,M) (P,N,M,N,N) (P,P,N,M,N)
13 4 (N,P,N,N,N) (P,N,N,N,M) (P,N,N,N,N) (P,P,N,N,N)
14 4 (N,P,N,N,N) (P,N,N,N,M) (P,N,N,N,P) (P,P,N,N,N)
15 4 (N,P,N,N,N) (P,N,N,N,N) (P,N,N,N,P) (P,P,N,N,N)
16 4 (N,P,N,N,P) (P,N,N,P,N) (P,N,N,P,P) (P,P,N,N,P)
17 4 (N,P,N,P,N) (P,N,P,N,N) (P,N,P,N,P) (P,P,N,P,N)
18 4 (N,P,N,P,P) (P,N,P,P,N) (P,N,P,P,P) (P,P,N,P,P)
19 4 (N,P,P,N,N) (P,P,N,N,N) (P,P,N,N,P) (P,P,P,N,N)
20 4 (N,P,P,N,P) (P,P,N,P,N) (P,P,N,P,P) (P,P,P,N,P)
21 4 (N,P,P,P,N) (P,N,P,P,P) (P,P,N,P,P) (P,P,P,N,P)
22 4 (N,P,P,P,N) (P,P,P,N,M) (P,P,P,N,N) (P,P,P,P,N)
23 4 (N,P,P,P,N) (P,P,P,N,M) (P,P,P,N,P) (P,P,P,P,N)
24 4 (N,P,P,P,N) (P,P,P,N,N) (P,P,P,N,P) (P,P,P,P,N)
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others, and in these subgroups the price index has more frequent positive linkage fluctuations. 6 
of them have more symbols N, and in these subgroups the price index has more frequent nega-
tive linkage fluctuations. The remaining 8 subgroups have the same number of symbols P and N.

The results of both analyses show that, the nodes in the network form relatively obvious 
clusters. When modes are in a subgroup of modes, they have a greater tendency to transform 
with other modes within the subgroup. In reality, this reflects the fact that changes in the 
nickel futures price index follow a certain pattern, with a high probability of transformation 
within a limited number of changing modes, which could provide some reference for invest-
ment, trade and risk management.

By analyzing the clustering coefficients of the network, the core modes of the network and 
the importance of the different modes in the transition process can be further explored. As 
shown in Table 6, the analysis shows that there are 12 nodes in the network with non-zero 
weighted clustering coefficients, and 12 small clusters are formed around these 12 nodes in 
the network. However, by observing the node strength-weighted clustering coefficient plot 
shown in Figure 5, it can be found that nodes with higher node strength do not generally 

Table 6. All modes and its weighted clustering coefficients

No. Mode Weighted clustering 
coefficients No. Mode Weighted clustering 

coefficients

1 (N,P,P,P,P) 3.10 7 (P,P,N,P,P) 1.30
2 (P,P,P,P,N) 3.10 8 (N,N,P,N,N) 0.33
3 (N,P,P,N,P) 2.25 9 (N,P,N,N,P) 0.33
4 (P,P,P,P,P) 2.08 10 (P,N,N,N,N) 0.25
5 (N,N,N,N,N) 2.00 11 (P,N,N,P,N) 0.20
6 (P,N,P,P,N) 1.67 12 (N,N,N,N,P) 0.15
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Figure 5. Distribution of node strength and weighted clustering coefficients
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have higher weighted clustering coefficients, which indicates that these nodes do not have 
sufficient control over the other nodes in the network and do not have a dominant position. 
Thus, the complex network of time series linkage fluctuations between LME and SHFE nickel 
futures indices has a high degree of complexity. Although small clusters with their own cores 
have been formed in the network, the linkages between the clusters are relatively weak.

3.3. Study of the evolutionary pattern of the linkage fluctuation modes

The complex network of time series linkage fluctuations between LME and SHFE nickel 
futures price indices is a directed weighted network with an average path length of 6.550, 
a network degree of clustering of 0.194 and a weighted distance of 0.806. Combining the 
results of the subgroup and clustering coefficient analysis, shows that although there is some 
node aggregation in the network, the number of nodes contained within each subgroup is 
small and inside the subgroup, the transitions between different modes only require passing 
through a small number of intermediate modes. Since the different subgroups are weakly cor-
related, while part of the nodes of the different subgroups can be converted directly, such as 
nodes (N,P,P,P,P) and (P,P,P,P,N), most of them require passing through more than one node 
before transformation, such as nodes (P,P,P,P,P) and (N,N,N,N,N). A visual graph of two pairs 
of typical nodes and associated nodes based on the gravitational layout (Jacomy et al., 2014) 
is shown in Figure 6, which shows that the nodes that can be directly transformed are closer 
together and the nodes that are difficult to directly transform are further away, providing an 
intuitive understanding of the difficulty of mode change.

Figure 6. Example of transformation processing

As shown in Figure 7, the analysis of the betweenness centrality of the complex network 
of time series linkage fluctuations between LME and SHFE nickel futures indices indicates 
that there are a number of nodes with high betweenness centrality in the network, and these 
nodes play an important bridging role in some groups. Some of these nodes have both high 
betweenness centrality and node strength. Such nodes are surrounded by more nodes and 
are intermediate states in the transformation process of many modes to other forms. They 
play a role in a larger scale and are the core of the network, which represents the overall 
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change pattern of nickel futures prices, such as nodes (P,P,N,P,N), (P,P,P,N,N), (P,N,P,P,P) 
and (P,P,P,N,P). Some of the nodes have lower node strength and limited influence, but have 
high betweenness centrality, such as nodes (M,P,P,P,N), (N,P,N,M,N) and (M,P,P,N,P), which 
indicate fluctuations in nickel futures prices during a certain period, but similar situations 
are not common in reality.
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Figure 7. Double logarithm distribution of betweenness centrality and ranking

In the complex network of time series linkage fluctuations between LME and SHFE nickel 
futures indices, nodes with specific characteristics often signal the beginning of a shift in real-
ity, implying a long-standing market pattern, and they can, to some extent, act as precursors 
for transitions between linkage fluctuation modes. The study of these nodes with specific 
properties could help to understand the pattern of price changes in nickel futures, thus sup-
porting market risk avoidance and more efficient business decisions.

Conclusions

The fluctuations of the LME and SHFE nickel futures price indices form a typically complex 
system that is non-linear and unstable, making it difficult for traditional methods to identify 
the mechanism of price fluctuations. In this paper, the fluctuation status of the nickel futures 
price indices is transformed into specific symbols by the coarse-grained method. A suitable 
sliding window length is selected to form continuous fluctuation modes, different modes are 
regarded as nodes, and the nodes are directed according to the sequence of mode formation, 
and finally a complex network of time-series linkage fluctuations is constructed.

Based on the complex network theory, the nodes reflect the linkage change modes of 
nickel futures prices over a period of time in reality, the connecting lines of the nodes fore-
tell the possible ways of transformation from one mode to another, and the changing modes 
contain the precursors of price changes. From the perspective of methodological, this paper 
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incorporates the ideas of physical economy, which provides a feasible way to study multi-
variate linkage fluctuations and allows for a better understanding of the complexity of mul-
tivariate systems. From the perspective of practical application, this paper studies the modal 
distribution patterns, change patterns and evolutionary mechanisms of nickel futures prices 
in different countries, providing a scientific basis for grasping the nickel futures market, using 
futures prices to predict spot price fluctuations, setting spot prices, and avoiding market risks.

Over the past five years, the LME and SHFE nickel futures price indices have been mostly 
linked in the same direction, demonstrating the relatively strong linkage between the two 
nickel spot trades. Despite the sparse network, this paper identifies a number of core linked 
fluctuation modes, which occur frequently and represent realistic price fluctuation patterns. 
Additionally, the transition paths of the modes have been explored and a number of impor-
tant intermediary nodes have been identified. Based on the strength of the intermediary 
nodes, the nodes are divided into core intermediary nodes and regionally important nodes, 
both of which play a bridging role in the inter-transition of different modes. The occurrence 
of core intermediary nodes can predict the beginning of different mode transitions and may 
provide a guiding significance for the trend of nickel futures prices.

It is worth nothing that the data in this study is limited by the sample size and the differ-
ence in trading dates between the two futures exchanges. This restricts the size of the network 
and reduces the applicability of the study. However, the careful selection and analysis of the 
data in this study have enabled the results to provide as comprehensive a picture as possible 
of the patterns of interest under the conditions set. Future research should not only cover a 
longer time horizon, but also include products in the chain of a particular type of commodity 
or its important complementary/alternative products, beyond a single commodity.

The methodology used in this paper could also be extended to other complex systems. 
By exploring these interactions, this study could provide a unique perspective on the eco-
nomic functioning of commodities, which may extend the application of the complex net-
work approach and provide a valuable reference for managers and investors to accurately 
grasp market trends.
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