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Abstract. This study examined the asymmetric effects of major uncertainty and volatility indices 
(economic policy uncertainty, Chicago Board Options Exchange crude oil volatility, CBOE volatility 
index, CBOE VIX volatility, and NASDAQ 100 volatility target) on the returns of global energy and 
its constituents (global energy index, Brent, heating oil, natural gas, and petroleum). The causality-
in-quantiles test and the quantile-on-quantile regression technique were employed on daily data 
covering the period between April 2012 and March 2022. The findings evidenced asymmetries and 
heterogeneity in the causal effects of global uncertainty and market volatilities on energy markets. 
For all uncertainty and volatility measures, we found strong negative relationships with energy 
commodities at stressed conditions, signalling some hedging benefits for market participants. The 
current research is among the first investigations to explore the asymmetric relationships between 
major uncertainty and volatility indices, as well as global energy and its constituents. Essential 
portfolio implications of our findings are discussed.

Keywords: energy commodities, energy markets, uncertainty indices, volatility indices, causality-
in-quantiles, quantile-on-quantile regression.
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Introduction

Market uncertainties play a pivotal role in the price- and return-generating process for com-
modities (Liu et al., 2018). Due to the unpredictability of the market, risk-averse investors are 
striving to reduce the likelihood that they might lose their invested capital (Vukovic & Prosin, 
2018). Therefore, commodity-based investment has gained attention in recent periods (Umar 
et al., 2019, 2022c; Zaremba et al., 2021) owing to the high integration among traditional 
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markets (Asafo-Adjei et al., 2021a; Owusu Junior et al., 2021, 2022) and the associated need 
for effective portfolio/risk management (Umar et  al., 2022a). According to Skapa (2013), 
direct commodity investing using commodity investable indexes may provide advantages 
of portfolio diversification since it may enhance return, lessen the risk, or even both. Also, 
Kurach (2012) emphasized that typically, commodities are regarded as effective diversifiers of 
equity portfolios. This rekindles the commodity financialisation hypothesis (CFH) originally 
put forth by Domanski and Heath (2007). Owing to market uncertainties, the fundamental 
conclusion concerning the CFH has witnessed some contentions based on empirical find-
ings (Adams & Glück, 2015; Z. Huang et al., 2021; Tang & Xiong, 2012; Yin et al., 2021). Of 
the major commodity classes (i.e., agricultural, energy, and industrial), Umar et al. (2022c) 
underscore the leading role of energies over time. Dragomirescu-Gaina and Philippas (2022) 
document the relative merit of global uncertainty factors on asset prices and returns as op-
posed to local factors.

Meanwhile, the relationship between major global uncertainty measures and energy com-
modities, which are leading and drive global productivity, has not yet been scrutinized, with 
the exception of the recent contribution of Antonakakis et al. (2023), who merely examine 
the relationship between several uncertainty measures and oil prices. The oil sector has one 
of the most unstable markets and one of the largest environmental implications of any in-
dustry (Filimonova et al., 2020). Qiao et al. (2022) found that there is an interaction between 
economic policy uncertainty (EPU) and high-risk assets using time-varying parameter vec-
tor autoregression. According to Zhu et al. (2021), the interconnection among EPU, crude 
oil, and commodities futures increases as the scale expands but decreases in the ultralong 
horizon.

Further, given the leading role of energy commodities, examining the relationship 
among these commodities and implied volatilities is essential for at least three reasons. 
First, implied volatilities present a set of forward-looking measures of uncertainty and, 
hence, could effectively gauge investor fear. From a worldwide standpoint, Osei and 
Adam (2021) demonstrated that US EPU have a significant impact on both advanced 
and emerging market economies, and it is more prevalent in the literature. Second, they 
are a key determining variable in option pricing. Third, volatility trading by investors is 
hinged on the information possessed by implied volatility. Therefore, the link between 
anticipated uncertainty and energy commodities across various conditions of the market 
improves the understanding of financial investors concerning (i) the future trends of 
fundamental asset prices, which is particularly important for devising risk management 
strategies, (ii) the accuracy of option pricing, and (iii) asset allocation and portfolio 
management strategies.

To this end, we examine the influence of major uncertainty variables on the returns of 
energy commodities. We acknowledge that the intense complexities in the global economy 
cause the relationship between financial markets asymmetric across market conditions (Al-
subaie et  al., 2022; Armah et  al., 2022; Assifuah-Nunoo et  al., 2022; Umar et  al., 2022b). 
Consequently, we formulate the following research hypothesis:

H1: the relationship between market uncertainties and energy markets is asymmetric.
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By empirically testing the postulated relationship, this study adds two main contributions 
to the existing evidence. First, we employ five major and widely-noted (Antonakakis et al., 
2023) uncertainty measures (i.e., the US economic policy uncertainty (EPU), CBOE Crude 
Oil Volatility (OVX), CBOE Volatility Index (VIX), CBOE VIX Volatility (VVIX), and DWS 
NASDAQ 100 Volatility Target (GVNF)) to assess their impact on the aggregate global energy 
market and its constituents (i.e., global energy index, Brent, heating oil, natural gas, and pe-
troleum). EPU can provide an outlook for policy uncertainty within the global economy. Ma 
et al. (2019) proved that the US EPU index exhibit the most accurate long-term predicting 
ability for the volatility of crude oil return. Also, Huang et al. (2022) reinforced through time-
domain analysis the strong connection between the gold and crude oil markets and EPU. 
Olubusoye et al. (2021) reported that EPU drives the majority of the energy price uncertainty 
during the pandemic, followed by VIX, COVID-Induced Uncertainty (CIU), Misinformation 
Index of Uncertainty (MIU), and Global Fear Index (GFI). He et al. (2021) showed that posi-
tive associations exist between China’s energy sector stock volatility and EPU shocks, while 
a negative relationship was found between adverse volatility and EPU. OVX is instrumental 
in forecasting oil market volatility, which drives major global activities. Lv (2018) found that 
the effect of OVX on future volatility is statistically significant, demonstrating that OVX can 
amplify price fluctuations for crude oil futures. In the same vein, Lu et al. (2020) proved that 
regime change is effective in addressing the structural break in the energy market and that 
OVX contains information that is estimating of oil realized volatility. Also, Niu et al. (2022) 
showed that the volatility of crude oil is most affected by OVX. Benedetto et  al. (2020) 
noticed that there was less information exchange between OVX and the spot variance of 
WTI returns, while there was more information exchange with Brent. VIX and VVIX are 
particularly important to gauge global market uncertainty based on the changes in the stock 
market of the US. Chen et al. (2021) noticed that natural gas spot, natural gas futures, WTI 
oil futures and spot, and Brent oil spot are all considerably influenced favorably by VIX. As 
well, through the GVNF, the volatility of top-listed markets on NASDAQ can be anticipated 
to influence investment choices. Adekoya et al. (2022) found that in both the causality-in-
mean and causality-in-variance models, EPU has the greatest impact on the stock returns of 
energy companies regardless of the market conditions, although under the causality-in-mean 
model, VIX has a stronger impact than OVX, and the opposite is true for the causality-in-
variance. Hence, taking into account all uncertainty measures may provide valuable insights. 
To the best of our knowledge, no prior study has covered all the aforementioned variables. 
The assessment of the impact of these uncertainty factors will provide insights into their 
respective influence on the price and returns generating mechanism. This is instrumental 
for effective asset allocation and risk management.

Second, in our analysis, the impact of each uncertainty is envisaged from diverse market 
conditions, viz. bullish, bearish, and normal market states rather than an average market 
condition. To achieve this, the quantile-on-quantile regression (QQR) technique proposed 
by Sim and Zhou (2015) is employed. The QQR approach yields more robust results in the 
relationship between the dependent and independent variables relative to classic methods 
like ordinary least squares and simple quantile regressions. Thus, relative to other methods, 
the QQR approach helps us to assess the effect of the quantiles of a single explanatory vari-
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able on distinct quantiles of energy market returns. We employ several tests to confirm the 
use of the QQR approach and the robustness of our findings.

From our findings, the effect of various uncertainty indices evidences the heterogeneous 
impact of global uncertainty indices on energy markets’ returns across normal, bullish, and 
bearish market conditions. EPU’s effect on energy markets is more pronounced than other 
volatility indices such as crude oil volatility, CBOE volatility index, CBOE VIX volatility, 
and DWS NASDAQ 100 volatility target. We document significant Granger-causality from 
uncertainty and volatility indices across different quantiles of energy markets’ returns. We 
contribute to the strand of works that examine the impact of various uncertainties on com-
modity markets by providing fresh evidence from nonparametric estimators.

The remainder of the study is outlined as follows. Section 1 covers a brief literature re-
view; Section 2 details the methods; we present the results and their implications in Section 3 
and conclude the last section.

1. Literature review

The literature on energy commodities has gained increasing attention. We review two major 
strands of literature, particularly on energy commodities and market uncertainties, to situate 
our study.

The first strand of works modeled the dynamic interrelations between commodity uncer-
tainties and/or macroeconomic uncertainties, and relative assessments of energy and non-
energy markets. For instance, El-Karimi and El-Ghini (2020) claimed that through a number 
of direct and indirect means, the rising global commodity prices could increase domestic 
consumer prices. Balli et  al. (2019) explored the network structure of 22 globally traded 
commodity markets’ uncertainties and reveal substantial connectedness between commodity 
markets in the long run. Liu et al. (2018) also report that news implied volatility on com-
modity futures’ long-term volatilities has heterogeneous impacts on energy and non-energy 
commodity futures. Z. Huang et al. (2021) find a consistent predictive power of macroeco-
nomic uncertainties on commodity futures’ volatilities.

The second strand of literature point to the time-varying and heterogeneous links between 
commodity-based uncertainties and/or commodity markets, and nonlinear relationships be-
tween commodity markets and market uncertainty. Reiterating Reboredo and Uddin’s (2015) 
conclusion that uncertainties from general stock market returns are insignificant to predict 
commodity market dynamics, we note that the emphasis on the significance of uncertainty 
indices’ effect on commodity markets cannot be shelved. This partly draws attention to an 
emerging strand of works that examine market uncertainties on commodity investments.

Assaf et al. (2021) model the dynamic linkages between energy markets and selected mar-
ket uncertainties (EPU, equity market uncertainty, geopolitical risk, and international trade 
uncertainty). Among the studied market uncertainties, the authors document that EPU’s 
contribution to system spillovers is the highest. After introducing investor sentiment to the 
system, the authors further divulge that the consumer sentiment index is positively related 
to the net connectedness of energy markets. J. Huang et al. (2021) examine the time-varying 
connectedness of varied uncertainty measures on commodities. Except for macroeconomic 
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uncertainty, all other uncertainty measures possessed time-varying effects on commodity 
markets. With evidence from the COVID-19 pandemic era, the information transmission 
dynamics between global commodities and uncertainties were modeled by Asafo-Adjei et al. 
(2022) and Qabhobho et al. (2022) in a transfer entropy framework.

The asymmetric interrelations between financial markets have been underscored (Agyei 
et al., 2022a, 2022b; Asafo-Adjei et al., 2021b; Bossman & Agyei, 2022a, 2022b; Bossman 
et al., 2022a; Hazgui et al., 2021; Roy & Sinha Roy, 2022; Shah & Dar, 2022; Umar et al., 
2019) but from the emerging strand of works on commodity markets, the asymmetric rela-
tionships between uncertainty indices and commodity markets across bullish, bearish, and 
normal market conditions are yet to be documented. We provide this evidence among energy 
markets, which have seen huge investments in recent periods and have taken a leading role 
among other commodity classes.

Note that from the new literature strand, the commonly used econometric techniques are 
spillover techniques (Assaf et al., 2021; J. Huang et al., 2021), which analyze the overall and 
directional connectedness between a set of variables, and transfer entropy (Asafo-Adjei et al., 
2022; Qabhobho et al., 2022), which quantifies the intrinsic information between markets. 
These techniques may not adequately assess the asymmetric effects of market uncertainty 
on energy markets. As a result, this study employs the QQR technique, which helps us to 
assess the effect of different conditions of market uncertainty on various return distributions 
of energy commodities. This feature is provided by the QQR technique and, hence, justifies 
its use in the current study.

2. Data and econometric framework

2.1. Data

From 25 April 2012 to 31 March 2022, our datasets include daily indices for global energy 
and its constituents (i.e., global energy index – GEnergy, Brent, heating oil – HOil, natural 
gas – NGas, and petroleum), and daily uncertainty indices for the US economic policy un-
certainty (EPU), CBOE Crude Oil Volatility (OVX), CBOE Volatility Index (VIX), CBOE 
VIX Volatility (VVIX), and DWS NASDAQ 100 Volatility Target (GVNF). A total of 2182 
common data points (in terms of daily returns) were generated for each variable. Consistent 
with the literature (e.g., Antonakakis et al., 2023; Owusu Junior et al., 2021) we utilize returns 
to adequately assess changes in market dynamics, which are of importance for risk manage-
ment. For instance, for a given market return on the VIX, we can assess changes in investor 
fear, as depicted by the change in the economic and stock market activity of the US. This 
measure is pivotal for financial analysts – in providing adequate analysis and market trends – 
and portfolio managers – in devising cross-market and cross-asset diversification strategies. 
The statistical properties of the datasets are shown in Table 1 with pictorial trajectories in 
Figure 1. All data were sourced from the EquityRT database.

The descriptive statistics indicate negative mean returns for all energy indices and positive 
averages (nearly zero) for all uncertainty indices. Except for natural gas, the negative skew-
ness for the energy indices suggests that more negative returns were recorded over the sample 
period. For the uncertainty indices, more positive returns were recorded for EPU, GVNF, 
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OVX and VIX but negative for VVIX. The leptokurtic behavior of all the series is evidenced 
by the kurtosis statistics. All series are non-normally distributed. Meanwhile, at the first 
difference, the Augmented Dickey-Fuller (ADF) and Phillips Perron (PP) test statistics sug-
gest that all returns series are stationary. The QQR approach works well with non-normally 
distributed and stationarity time series (Adebayo et al., 2022) and, thus, justifies the choice 
of the econometric approach.

The correlation statistics divulge high positive connectivity between global energy and 
its constituents. Natural gas’ correlation with global energy is the lowest relative to other 
constituents. The energy indices are mainly negative correlated with uncertainty indices ex-
cept for Brent and VVIX, heating oil and VVIX, natural gas and VIX, petroleum and VVIX, 
and global energy and VVIX. All uncertainty indices are positively correlated except for the 
correlations with VVIX.

The trajectories in Figure 1 indicate drops in energy indices but hikes in uncertainty in-
dices across stressed market states. These reveal corresponding clusters for the return series.

2.2. Econometric framework

2.2.1. Non-parametric causality-in-quantiles

As a preliminary analysis, we assess whether there exist any causal relations between uncer-
tainty indices and energy markets’ returns across quantiles. We follow the non-parametric 
approach of Jeong et al. (2012) and Balcilar et al. (2016) to ascertain the extent to which 
uncertainty indices cause the mean returns of energy commodities across quantiles. The 
method is recently expatiated by Jena et al. (2019).

Figure 1. Time series plots
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The simplified hypothesis is tested as:

H0: Uncertainty index does not Granger energy markets’ returns.

This hypothesis is tested under a 95% confidence interval (i.e., at the 5% level of sig-
nificance). This test is undertaken for both signal and decomposed data series to assess the 
predictive power of uncertainty indices on energy markets. This would help establish the 
predictive power of uncertainties on energy markets across the bullish, bearish, and normal 
market states.

2.2.2. The QQR approach

The QQR technique is a nonparametric variant of the classic quantile regression (QR) meth-
od. The QQR method experimentally justifies the conditioned quantile connection between 
multiple variables. Under the QQR technique, one of the QR and one of the nonparametric 
estimates are merged. Because quantiles may represent asymmetry of low and high market 
price and return dynamics, the QQR is appropriate for analysing the bearish/bullish connec-
tions between energy and uncertainty returns.

To begin with, the connections between energy indices and global uncertainties are 
looked at to argue for a causal relationship between global uncertainty indices and energy 
markets’ returns. The basic equation is specified as:

 ( ) ,t t tY X uθ θ= β +  (1)

where tY  and tX  represent the changes in the energy indices’ returns and global uncer-
tainty returns, respectively in period t ; ( )θβ •  is the slope of the relationship between the 
two variables at any conditional level; the thθ  quantile of tY  in Eq. (1) with a conditional 
distribution is represented by θ , and tuθ  is the error term conditioned on thθ  quantile.

Following the specifications of Sim and Zhou (2015), we define the bandwidth for the 
quantiles as 0.05 to 0.95 .h  =    This bandwidth is also in line with recent works such as 
Bossman et al. (2022b) and Umar et al. (2022a). Using QR and QQR, we capture the dynamic 
and nonstationary effect of changes in uncertainty indices and energy returns as well as also 
deduce the effect during bearish, normal, and bullish market returns. QQR reveals these 
qualities better than traditional QR and ordinary least squares approaches.

Furthermore, note that the QQR approach is nonparametric and to ascertain the signifi-
cance of QQR estimates, it is customary to compare them to their QR equivalents to see if 
the QQR connections can be inferred from the QR connections. This procedure provides a 
means of ascertaining the robustness of the QQR coefficients (Adebayo et al., 2022; Bossman 
et al., 2022b).

3. Empirical results

The main results are presented in this section. Two preliminary assessments of the nonlinear 
character of the returns series and the quantile causality between uncertainty indices and 
energy markets are first presented followed by the QQR results.
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3.1. Linearity test

To ascertain the nonlinear character of the variables, we use the Broock Dechert Scheinkman 
(BDS) test advanced by Broock et al. (1996). The Z-stats from the BDS test (see Table 2) lead 
to the rejection of the linearity hypothesis for all sampled variables. Impliedly, the returns 
series for global energy markets and uncertainty indices are nonlinear, justifying the applica-
tion of the quantile-on-quantile regression technique, which is appropriate for the nonlinear 
data type (Adebayo et al., 2022).

Table 2. Z-statistics from BDS test of linearity

Panel A: Global energy and constituents

Dimension GEnergy Brent HOil NGas Petroleum

2 11.30962*** 11.70856*** 10.3586*** 5.289849*** 11.72386***

3 13.98357*** 14.29678*** 13.14445*** 6.622084*** 14.45201***

4 16.16915*** 16.53825*** 15.29003*** 7.957761*** 16.58823***

5 17.91597*** 18.18688*** 16.75844*** 9.41609*** 18.16196***

6 19.84437*** 20.26178*** 18.33655*** 10.73424*** 20.11466***

Panel B: Uncertainty indices

Dimension EPU GVNF OVX VIX VVIX

2 15.57903*** 10.34153*** 8.439222*** 8.363304*** 9.411039***

3 15.79117*** 12.25872*** 9.97084*** 11.28604*** 11.91828***

4 16.16782*** 13.75539*** 10.91596*** 12.7213*** 12.89406***

5 16.29223*** 14.82964*** 11.54816*** 13.92506*** 13.62918***

6 16.58038*** 15.75735*** 12.08715*** 14.66864*** 14.00702***

Notes: This table presents the Z-statistics from the Broock Dechert Scheinkman (BDS) test of linearity. 
[***] denotes the significance of Z-statistics at 1%.

3.2. Causality tests

The quantile causal relations between uncertainties and energy markets are examined in 
this part. This analysis is needed to establish that indeed there is a causal relationship 
between global uncertainty indices and energy markets across conditional distributions 
of energy markets’ returns. Relative to the traditional Granger causality test, which only 
examines the average, the nonparametric causality in the quantiles technique captures 
all quantiles in the distribution (Bossman et  al., 2022b; Jena et  al., 2019; Umar et  al., 
2022a). Therefore, this method may demonstrate how causality works in both low and 
high energy returns.

The results from the quantile causality test are pictorially shown in Figure 2 and numeri-
cally backed by the test statistics in Table 3. From Figure 2, the test statistics are matched 
against the vertical axis with the quantiles on the horizontal axis in each plot. The 5% signifi-
cance level, which corresponds to a critical value (CV) of 1.96, is depicted by the horizontal 
solid line. As such, the null hypothesis states that a change in global uncertainty indices does 
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not Granger-cause a change in energy returns. E.g., the null hypothesis of no Granger-cau-
sality from EPU to Brent is rejected (CV > 1.96; p < 0.05) over the quantile range 0.20–0.70.

Table 3. T-statistics from causality-in-quantiles tests

Panel A: Global energy

t EPU OVX VIX VVIX

0.05 1.25680 1.07588 1.07723 1.13078 1.03053
0.10 1.57659 1.22218 1.51555 1.79070* 1.57994
0.15 1.80822* 1.60741 1.85890* 2.23615** 2.22116**

0.20 2.27686** 26107** 1.98006* 2.60306*** 2.61313***

05 2.49609** 2.51234** 2.55193** 2.71347*** 2.49962**

0.30 2.97401*** 30285*** 3.26445*** 3.27570*** 2.53313**

0.35 3.08829*** 3.14010*** 2.91337*** 3.50813*** 2.70314***

0.40 2.88090*** 3.27682*** 3.07864*** 3.52796*** 2.74534***

0.45 2.89697*** 2.79909*** 2.97489*** 3.40510*** 2.59641***

0.50 2.96694*** 2.95497*** 2.88529*** 3.88572*** 2.79282***

0.55 2.54484*** 2.55687** 2.48836** 3.26496*** 2.77137***

0.60 2.19851*** 2.25448** 2.74372*** 3.29772*** 2.66056***

0.65 2.10229*** 2.13976** 2.71446*** 3.02675*** 3.01260***

0.70 2.36179** 2.71609*** 2.40163** 3.35174*** 3.12180***

0.75 1.81744* 2.36862** 2.05514** 3.00116*** 2.53024**

0.80 1.79956* 1.83417* 1.99942* 2.76792*** 2.69333***

0.85 1.66182* 1.66843* 1.60823 1.78791* 2.05221**

0.90 1.49703 1.45082 1.34311 1.39171 1.30143
0.95 0.83771 0.76211 0.67489 0.85147 0.85556

Panel B: Brent

t EPU GVNF OVX VIX VVIX

0.05 1.12107 1.05603 1.27797 1.10631 1.19668
0.10 1.77362* 1.26815 1.76920* 1.83313* 1.76194*

0.15 2.28904** 1.84926* 2.11155** 2.31599** 1.94523*

0.20 2.50259** 2.35166** 2.74491*** 2.98219*** 2.10205**

0.25 2.59622*** 2.66773*** 3.56402*** 3.36692*** 2.42891**

0.30 2.86345*** 3.07776*** 3.50530*** 3.11659*** 2.59845***

0.35 3.39973*** 3.59995*** 3.37647*** 3.27413*** 3.25436***

0.40 3.39716*** 3.75073*** 3.12553*** 4.05371*** 3.10747***

0.45 3.11483*** 3.10188*** 2.68132*** 3.61777*** 3.35800***

0.50 2.79361*** 2.55530** 2.26313** 3.49732*** 3.27942***

0.55 2.62130*** 2.68427*** 2.39018** 2.83975*** 3.09858***

0.60 2.14643** 2.33140** 2.20423** 3.35506*** 3.18668***

0.65 2.07488** 2.32874** 2.08299** 2.53688** 3.16987***
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Panel B: Brent

t EPU GVNF OVX VIX VVIX

0.70 2.10509** 2.10078** 2.49068** 2.12008** 3.14310***

0.75 1.77120* 1.94675* 2.25825** 2.36274** 2.84084***

0.80 1.61230 2.06370** 2.25177** 2.15903** 2.42264**

0.85 1.42361 1.95254* 1.75348* 2.03883** 2.61684***

0.90 1.12165 1.55273 1.12131 1.67147* 2.04475**

0.95 0.73413 0.84925 0.80338 0.83132 1.05786

Panel C: Heating oil

t EPU GVNF OVX VIX VVIX
0.05 0.91657 0.69661 1.11505 0.98432 0.98021
0.10 1.29557 1.05484 1.81488* 1.55671 1.39211
0.15 1.67551* 1.23947 2.31174** 1.49850 1.50377
0.20 2.01211** 1.54438 2.48503** 1.84375* 1.65778*

0.25 2.38248** 1.79144* 2.49323** 2.10998** 2.44019**

0.30 2.57521*** 2.10336** 2.92197*** 2.44342** 2.44316**

0.35 2.82545*** 2.24159** 2.84955*** 2.52820** 2.52131**

0.40 3.01926*** 2.51261** 2.43358** 2.25720** 2.26202**

0.45 2.80342*** 2.62727*** 2.43473** 2.48332** 2.31204**

0.50 2.55029** 2.72546*** 2.54132** 2.47320** 2.25963**

0.55 2.56858*** 2.30914** 2.33388** 2.45182** 2.35748**

0.60 2.09244** 2.52170** 2.31744** 2.56825*** 2.14389**

0.65 1.91951* 2.56753*** 2.01324** 2.43097** 2.31364**

0.70 1.74396* 2.25663** 1.92031* 2.48851** 2.64901***

0.75 1.59656 2.44534** 1.89059* 2.42749** 2.40398**

0.80 1.46495 1.98434** 1.79725* 2.25411** 2.10403**

0.85 1.47288 1.40240 1.51770 1.73639* 1.83990*

0.90 1.40042 1.07696 1.04447 1.41221 1.30942
0.95 0.94760 0.59121 0.68431 0.94135 1.13546

Panel D: Natural gas

t EPU GVNF OVX VIX VVIX

0.05 0.56574 0.51396 0.50585 0.43991 0.54093
0.10 0.98683 1.03001 0.94370 0.78403 0.79835
0.15 1.20819 1.38907 1.02614 1.44558 1.78693*

0.20 1.34566 1.12215 1.42284 1.48855 1.75581*

0.25 1.70049* 1.53900 1.65045* 1.56261 2.15280*

0.30 1.84512* 1.75613* 1.98355** 1.58383 1.91970*

0.35 1.87780* 1.73633* 2.04654** 1.71269* 1.63718
0.40 1.60012 1.62430 1.77278* 1.58577 1.98368*

Continued Table 3
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Panel D: Natural gas

t EPU GVNF OVX VIX VVIX

0.45 1.71102* 1.68792* 1.81867* 1.72645* 1.86541*

0.50 1.84099* 2.12700** 1.80747* 1.65588* 1.66724*

0.55 2.13001** 1.83864* 2.05655** 1.66985* 2.22394**

0.60 1.87551* 1.61057 1.97048** 1.80594* 2.51336**

0.65 2.03881** 1.59300 1.95581** 1.61389 2.22116**

0.70 1.81981* 1.73851* 1.86296* 1.50161 2.20129**

0.75 1.74505* 1.61953 1.42242 1.23596 1.56309
0.80 1.61785 1.45734 1.45291 1.30443 1.45503
0.85 1.30344 1.21221 1.52484 1.08206 1.34444
0.90 0.85897 0.91704 0.94555 0.86599 0.63645
0.95 0.83163 0.43144 0.47503 0.47568 0.45530

Panel E: Petroleum

t EPU GVNF OVX VIX VVIX

0.05 1.31103 0.98925 1.25818 1.10827 1.04894
0.10 1.71291* 1.25096 1.37281 1.65440* 1.53931
0.15 2.00785** 1.83971* 1.72164 2.29010** 2.16631**

0.20 2.32006** 2.02884** 2.31151** 2.57701*** 2.45556**

0.25 2.44502** 2.48559** 2.49059** 2.80999*** 2.23821**

0.30 2.76899*** 2.72047*** 3.10315*** 2.50308** 2.25896**

0.35 2.85796*** 3.00365*** 3.21632*** 2.90551*** 2.55818*

0.40 3.14060*** 2.70132*** 3.34746*** 3.23271*** 2.72346***

0.45 3.12043*** 2.51300** 2.71257*** 3.48025*** 2.90833***

0.50 3.10254*** 2.42868** 2.80422*** 3.19759*** 2.86531***

0.55 3.01921*** 2.82413*** 2.73551*** 2.81713*** 2.84157***

0.60 3.07367*** 2.47132** 2.66964*** 3.22720*** 3.31871***

0.65 2.78888*** 2.40038** 2.24015** 3.15504*** 3.04786***

0.70 1.67557* 2.20096** 2.67343*** 3.43237*** 2.98936***

0.75 1.69049* 2.31908** 2.18133** 2.78195*** 2.44910**

0.80 1.60250 2.22244** 1.82399* 2.29100** 2.44403**

0.85 1.46724 2.08358** 1.45456 2.06063** 2.39920**

0.90 1.29817 1.63791 1.21713 1.79604* 1.80301*

0.95 0.78312 0.76359 0.71490 1.04796 1.00527

Notes: t denotes quantiles; the significance levels for the critical values of 1.645, 1.96, and 2.567 are 
denoted by [*], [**], and [***], respectively.

End of  Table 3
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Generally, the causal effect of uncertainty indices on the returns of commodity markets 
has a high predictive power across the quantile range 0.20–0.80. Except for the most ex-
treme quantiles, we find a strong predictive power of uncertainty indices on energy returns. 
The exceptional energy market is natural gas for which the predictive power of uncertainty 
indices is relatively low across quantiles. This is unsurprising since natural gas’ correlation 
with global energy was the lowest. It seems decoupled from the broader index and, hence, 
the general conclusions that apply to the other constituents may be seemingly different from 
natural gas. Notwithstanding, the causal effect of uncertainties on energy markets is estab-
lished across most of the quantiles. We probe into the asymmetric relationships under the 
QQR approach.

Figure 2. Causality-in-means test

Notes: This figure reveals the causality in means plots for the causal effect from world uncertainty 
indices and global energy markets. For each panel, plots I, II, III, IV, and V are for EPU, GVNF, OVX, 
VIX, and VVIX, respectively.
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3.3. QQR

For a more simplified QQR analysis, we classify quantiles into market conditions. We attri-
bute the quantile range 0.05–0.35 as the bearish market state (i.e., lower quantiles), 0.40~0.70 
as the normal market state (i.e., median quantiles), and 0.75~0.95 as the bullish market state 
(i.e., upper quantiles). Figure 3 displays the slope coefficients ( )1 , ,β θ t  represented by the 
effect of the tht  quantile of uncertainties on the thθ  quantile of energy returns. The effect 
of the various uncertainty indices (i.e., EPU, GVNF, OVX, VIX, and VVIX) on the global 
energy index (GEnergy) is shown in panel A; Brent in panel B; heating oil (HOil) in panel 
C, natural gas (NGas) in panel D, and petroleum in panel E.

From Panel A of Figure 3, the slope coefficients range between 0 and 15 for the effect of 
EPU on GEnergy. The impact of EPU on GEnergy is positive but nearly zero across all quan-
tiles of EPU and GEnergy except across the median to upper quantiles (0.30–0.95) of EPU 
and lower quantiles (0.05–0.10) of GEnergy where EPU’s effect is strongly positive. Similar 
observations hold for the effects of OVX, VIX, and VVIX on GEnergy but with varying slope 
coefficients. The slope coefficients range from –3 to 5 for OVX and VIX, and from –1.5 to 
1.5 for VVIX. For GVNF, the slope coefficients range from –0.5 to 0.2. GVNF’s impact on 
GEnergy is positive across all quantiles except for the lowest quantile (0.05) of GEnergy and 
the lower to median quantiles (0.05–0.60) of GVNF.

For Brent (i.e., Panel B of Figure 3), the slope coefficients  – for EPU’s effect  – range 
from –20 to 0. The impact of EPU on Brent is positive across all quantiles of EPU and 
Brent except across the lower quantiles (0.05–0.85) of EPU and lower quantiles (0.05–0.10) 
of Brent where EPU’s effect is strongly negative. Similar observations hold for the effect of 
VIX on Brent but with varying slope coefficients which range from –6 to 0. OVX’s impact 
on Brent is positive across the upper quantiles (0.80–0.95) of Brent and the median to up-
per quantiles (0.25–0.95) of OVX. It is worth noting that the strong negative impact of EPU 
on Brent across the lower quantiles (0.05–0.85) of EPU and lower quantiles (0.05–0.10) of 
Brent is similar to the impacts of OVX, VIX, and VVIX on Brent. Across the median quan-
tiles (0.45–0.75) of both Brent and OVX returns, OVX mildly negatively impacts Brent. For 
GVNF, the slope coefficients range from 0 to 0.5. GVNF’s impact on Brent is almost zero 
across all quantiles except for the lowest quantile (0.05) of Brent and the median to upper 
quantiles (0.25–0.95) of GVNF.

For heating oil (i.e., Panel C of Figure 3), with scale coefficients ranging between –4 and 
2, the effect of EPU is recorded as negative across median and high quantiles of heating oil 
and all quantiles of EPU. Across the median and upper quantiles (0.50–0.95) of heating oil 
and the lowest quantile (0.05) of EPU, the impact of EPU on heating oil is positive. Mean-
while, across the lower quantiles (0.05–0.15) of heating oil and the lower and upper quantiles 
(specifically, between 0.05–0.20 and 0.60–0.90) of EPU, the impact of EPU on heating oil is 
highly negative. The scale coefficient of GVNF’s impact on heating oil ranges from 0.05 to 
0.25. GVNF’s impact on heating oil is mildly positive across the median and upper quantiles 
(0.40–0.95) of GVNF and all quantiles of heating oil but at lower quantiles of EPU and almost 
all quantiles of heating oil, the magnitude of the effect is stronger. Across the upper quantiles 
(0.80–0.95) of heating oil and median to upper quantiles (0.35–0.95) of OVX, OVX’s impact 
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on heating oil is almost negligible (i.e., zero). This is similar across the median quantiles 
(0.30–0.60) of heating oil and lower quantiles (0.05–0.10) of OVX. Whereas the OVX’s effect 
is mildly negative across the median quantiles of both OVX and heating oil, it is strongly 
negative across the lower quantiles of heating oil and all quantiles of OVX. VIX has a mild 
positive effect on heating oil across all quantiles of heating oil and VIX except across the 
lower to median quantiles (0.75–0.95) of heating oil and the upper quantile (0.95) of VIX. 
The effects of VIX and VVIX are comparable, but VIX has magnitudes ranging between –3 
and 0.5 whereas VVIX has magnitudes ranging from –1.2 and 0.

From Panel D of Figure 3, the impact of EPU on natural gas ranges from –6 to 4. EPU 
strongly negatively affects natural gas across the upper and lower quantiles of both EPU and 
natural gas returns. Conversely, across the upper (lower) quantiles of natural gas (EPU), 
EPU’s impact is positive. Across the median quantiles (0.35–0.75) of both returns series, 
EPU’s impact is mildly negative. With a scale coefficient ranging from –0.15 to 0.05, GVNF 
has a mildly positive impact on natural gas across all quantiles except at lower quantiles 
(0.75–0.95) of both GVNF and natural gas returns where the impact turns negative. The 
impact of OVX on natural gas ranges between –1 and 0.6. OVX’s effect is mildly positive 
across the median and upper quantiles (0.45–0.95) of both natural gas and OVX but strongly 
positive across the lower quantiles (0.05–0.30) of natural gas and all quantiles of OVX. Mean-
while, across the median and lower quantiles (0.05–0.50) of natural gas (OVX) and median 
and upper quantiles (0.60–0.90) of OVX (natural gas), the impact of OVX on natural gas is 
strongly negative. VIX and VVIX have generally negative impacts on natural gas across all 
quantiles of both natural gas and either VIX or VVIX but across the lower quantiles (0.05–
0.10) of natural gas and the upper quantiles (0.75–0.95) of either VIX or VVIX, the impact 
of either volatility index on natural gas is positive. The only difference is that the magnitude 
of effect for VIX is in higher magnitudes (ranging from –0.5 to 1) relative to that of VVIX 
which ranges between –0.1 and 0.8.

Panel E of Figure 3 shows the impact of uncertainty indices on petroleum. The impact 
of EPU on petroleum ranges from –4 to 2. EPU’s impact is mildly positive across the me-
dian and upper quantiles of both petroleum and EPU returns. Across the lower quantiles 
(0.05–0.10) of EPU and upper quantiles (0.75–0.95) of petroleum, EPU exerts a positive 
impact on petroleum. Meanwhile, across the upper and lower quantiles (i.e., 0.60–0.95 and 
0.05–0.15, respectively) of EPU and lower quantiles (0.05–0.20) of petroleum, EPU’s effect 
is strongly negative. This effect is positive at the median (lower) quantiles of EPU (petro-
leum). GVNF’s impact on petroleum is generally positive (ranging from 0 to 0.25) across all 
quantiles of either asset. However, the magnitude of the effect becomes stronger across the 
median quantiles of petroleum and lower quantiles of GVNF. For OVX, except for the up-
per quantiles of petroleum and the median and upper quantiles of OVX, which reveal nearly 
zero effect, the effect of OVX on petroleum is generally negative across all other quantiles of 
either asset. The magnitude of the negative effect reaches a maximum of –3. VIX and VVIX 
have a mild positive impact (ranging from –3 to 0.5 for VIX and –1.5 to 0.5 for VVIX) on 
petroleum. The respective impact of VIX and VVIX on petroleum is highly negative across 
the lower to median quantiles (0.05–0.55) of petroleum and upper quantiles (0.90–0.95) of 
either VIX or VVIX.
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Figure 3. To be continued
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Figure 3. 3D analysis of QQR estimates

Notes: This figure reveals the 3-dimensional plots of the QQR estimates between world uncertainty 
indices and global energy markets. For each panel, plots I, II, III, IV, and V are for EPU, GVNF, OVX, 
VIX, and VVIX, respectively.

Our results communicate that the effect of various uncertainty factors on energy markets’ 
returns is heterogeneous. This is supported by existing works (Liu et al., 2018; Wang & Lee, 
2022) that identified heterogeneous effects of market uncertainties and volatility measures 
on commodity markets either on the aggregate market level or country level. For instance, 
Wang and Lee (2022) reported varied impacts of Chinese policy uncertainties on local and 
international crude oil prices. Liu et al. (2018) also reported that news uncertainty heteroge-
neously affects energy and non-energy markets.

Indicatively, we report that relative to other market uncertainty and volatility indicators, 
the effect of EPU on commodities records the highest magnitude and particularly manifests 
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across bearish quantiles. This finding supports the existing literature (Assaf et al., 2021) that 
provides evidence that EPU’s effect on net commodity markets’ connectedness is more in-
tense relative to other market uncertainties and volatilities. This observation is not surprising 
given how interconnected and interdependent the energy markets and market uncertainties 
are (Qin et al., 2020; Wang & Lee, 2020), and how bearish conditions may affect their de-
pendency.

The findings on EPU are similar to those for other market volatilities (GVNF, OVX, VIX, 
and VVIX), although the magnitude of the effect may be relatively lower. That is, generally, 
for all volatility measures, we find that at stressed conditions of either energy markets’ re-
turns or market volatility returns, a strong negative effect is found with few peculiarities for 
some energy markets. The varied and intense effect of uncertainties and volatilities on energy 
markets has intuitive support. Stressed market conditions may heighten trade, geopolitical, 
and equity market volatilities, causing unfavorable shifts in investor sentiment. In effect, 
investment decisions and the long-term dynamics of energy prices stand a high chance of 
being affected, although they may be unsuspected by market participants. Such unanticipated 
market shocks will alter investors’ risk appetite and investment opportunities (Assaf et al., 
2021; Bossman, 2021).

Furthermore, it is worth noting that the findings also indicate mild effects of market 
uncertainty and volatility on energy markets. This communicates the potential for diversifi-
cation with energy commodities. Our findings lend support to those emphasized by Asafo-
Adjei et al. (2022) that premised on the information flow between uncertainty and commod-
ity markets, commodity volatilities in commodity markets’ returns could be hedged against 
using policy uncertainty and market volatilities.

3.4. Robustness of QQR estimates

We compare QQR estimates to their QR equivalents to see if the QQR connections can be 
inferred from the QR connections. Because the QQR method is a nonparametric model, it 
is impossible to determine the significance of the coefficients obtained. Because the QQR 
estimations are deconstructed estimates of QR into defined quantiles of the regressors, they 
may be verified by comparing their coefficients to those of QR (Adebayo et al., 2022; Agyei, 
2022; Bossman et al., 2022b, 2023; Umar et al., 2023). The QR and QQR coefficients line 
graphs in Figure 4 indicate this.

For two reasons, line graphs are useful. To begin with, they graphically represent the 
QR estimations by depicting the trend of rising and/or falling uncertainty indices, as 
well as the associated trends in energy market returns. Second, by comparing the QQR 
to the QR estimations, the line graphs confirm the QQR (Adebayo et al., 2022; Bossman 
et al., 2022b). The quantiles (QR/QQR estimates) are shown by the horizontal (vertical) 
axis in the plots; blue and green lines or spots correspond to QQR and QR estimates, 
respectively, across quantiles.

We can see from the graphs in Figure 4 that the QR and QQR estimates for all quantiles 
agree. The only variation is the amount of the effect at particular quantiles, which is in the 
same direction as the quantile estimates. Nonetheless, the QRR estimations are corroborated 
by the QR method.
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Figure 4. To be continued
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Figure 4. Line graphs of QR and QQR slopes

Notes: This figure reveals the line graphs of the QR and QQR estimates for the relationship between 
world uncertainty indices and global energy markets. For each panel, plots I, II, III, IV, and V are for 
EPU, GVNF, OVX, VIX, and VVIX, respectively.
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Conclusions

We examined the asymmetric effects of market uncertainties and volatilities on energy mar-
kets. From 25 April 2012 to 31 March 2022, our datasets include daily indices for global en-
ergy and its constituents (i.e., global energy index, Brent, heating oil, natural gas, and petro-
leum), and daily uncertainty indices for the US economic policy uncertainty (EPU), CBOE 
Crude Oil Volatility (OVX), CBOE Volatility Index (VIX), CBOE VIX Volatility (VVIX), and 
DWS NASDAQ 100 Volatility Target (GVNF). We employed the quantile-on-quantile regres-
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sion (QQR) technique after satisfying the requirements from preliminary analysis covering 
the Broock Dechert Scheinkman (BDS) linearity test and the causality-in-quantiles test.

We confirmed the nonlinear character of the datasets under the BDS test. Our causality-
in-quantiles test suggested that generally, the uncertainty indices largely Granger-cause en-
ergy markets’ returns across the quantile range 0.20–0.70. The QQR results revealed asym-
metric effects of uncertainty and volatility indices on energy markets’ returns. These results 
confirmed the hypothesized relationship (H1) that the relationship between market uncer-
tainties and energy markets is asymmetric. Notably, EPU’s impacts on energy markets have 
the highest magnitudes across the bullish and bearish market states. The findings on EPU are 
qualitatively similar to those for other market volatilities (i.e., GVNF, OVX, VIX, and VVIX). 
Specifically, for all volatility measures, we found that at stressed conditions of either energy 
markets’ returns or market volatility returns, a strong negative effect is generally found. This 
communicates some hedging benefits for market participants.

Our findings have important policy and portfolio implications in some instances. First, in 
terms of policy, we have discovered that economic policy, crude oil volatility, CBOE volatility, 
CBOE VIX Volatility, and NASDAQ 100 volatility concerns all have a significant effect on en-
ergy markets and can significantly undermine energy prices. Following this, we suggest that 
policymakers should pay close attention to how energy prices respond to shocks from policy 
uncertainty, which might manifest as a significant rise or fall in energy prices. As a result, 
authorities’ interference – concerning decision-making – in energy markets should take into 
account the degrees of uncertainty in economic policy and essential market volatilities such 
as those relating to crude oil, NASQAQ top-100, VIX, and VVIX. To stabilize energy prices, 
many sorts of uncertainty and market volatilities should be applied, with policy uncertainty 
in the US being the most important category that determines the price and returns dynamics 
of energy markets.

As long as our findings clearly illustrate the significance of market uncertainty and vola-
tilities for energy price and return dynamics, market participants should consider policy 
uncertainty and market volatilities when designing portfolios and managing risks as they 
relate to investment decisions. As financialization relates to the increasing interest of market 
participants’ use of energy commodities in financial investments, market participants are ad-
vised to pay extra attention not only to policy uncertainty of the US but also consider market 
volatilities such as volatilities in crude markets and top equities markets. Investors should 
take advantage of the mid and negative effects of policy uncertainty and market uncertain-
ties on energy commodities to diversify and hedge against volatilities in commodity returns 
during normal market conditions whilst keeping them as safe havens during stressed market 
conditions. However, the tendency for high positive effects in some market states should be 
carefully incorporated into asset allocation and portfolio management decisions.

We acknowledge the potential shortcomings of our analysis and recognize that they could 
be improved upon in future contributions. The nature of the empirical problem, which in-
fluenced our analysis led us to employ a bivariate technique, which to some extent might be 
restricted. Hence, future works could envisage this problem from a broader perspective and 
employ multivariate techniques to capture more uncertainty and volatilities which may have 
significant impacts on energy markets.
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