
Copyright © 2022 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.
org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

Journal of Business Economics and Management
ISSN 1611-1699 / eISSN 2029-4433

2022 Volume 23 Issue 1

https://doi.org/10.3846/jbem.2021.15650

Supplementary information

THE SEARCH FOR TIME-SERIES PREDICTABILITY-BASED 
ANOMALIES

Javier Humberto OSPINA-HOLGUÍN *, Ana Milena PADILLA-OSPINA

Appendix A: Minimum transaction costs that return non-positive alphas

The results presented in the main article are dependent on transaction costs. If a given trans-
action cost is high enough, even if there were patterns in the time series returns of a decile 
portfolio, the patterns may not be profitably exploitable. In other words, if transaction costs 
rise sufficiently above zero, alpha will eventually disappear, and then alpha will turn negative. 
Table A1 reports the minimum threshold transaction cost, in basis points, that makes the 
algorithm deliver an economically non-positive alpha for the first time, as recorded while 
successively raising the level of transaction cost from zero. This measure is reported for each 
decile portfolio in the four settings examined in Table 2 in the main article. Nonetheless, it 
is important to note that, for some portfolios, the algorithm can occasionally deliver an eco-
nomically positive alpha again when the level of transaction cost rises above those reported 
in Table A1. This phenomenon is due to alpha not always being a monotonically decreasing 
function of transaction cost.

Table A1. Minimum transaction cost that returns a non-positive alpha for each size decile portfolio in 
the four settings examined in Table 2 in the main article

Decile Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

Minimum transaction cost (in basis points) that returns a non-positive Fama and French 
(2015) algorithmic alpha for each equal-weighted size decile portfolio

MTC 43 9 6 8 8 8 11 7 4 2

Minimum transaction cost (in basis points) that returns a non-positive Fama and French 
(2015) algorithmic alpha for each value-weighted size decile portfolio

MTC 35 8 7 8 8 9 10 5 3 –

Minimum transaction cost (in basis points) that returns a non-positive Carhart (1997) 
algorithmic alpha for each equal-weighted size decile portfolio

MTC 51 9 7 8 8 11 11 7 4 2
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Decile Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

Minimum transaction cost (in basis points) that returns a non-positive Carhart (1997) 
algorithmic alpha for each value-weighted size decile portfolio

MTC 41 11 8 9 9 9 10 6 4 2

Note: Minimum transaction cost (MTC), as measured in basis points, that renders a non-positive 
alpha for the first time when transaction cost is successively increased, starting from zero. Alpha is 
measured in a Fama and French (2015) or a Carhart (1997) time series regression on the algorithmic 
arbitrage market timing investment (long in the algorithm, short in the underlying decile portfolio). 
The decile portfolios correspond to each equal-weighted or value-weighted size decile portfolio for the 
testing sample between May 22, 1991, and April 30, 2019. For each decile, the algorithm was trained 
on data from July 1, 1963, to June 6, 1991. We used the 30-day T-bill as the risk-free asset, and one 
of the ten NYSE/AMEX/NASDAQ equal-weighted or value-weighted market-cap decile portfolios as 
the risky asset.

Appendix B: Moving blocks bootstrap p-values

To compute individual p-values that are robust against heteroscedasticity and autocorrelation 
(HAC) in the errors, as well as non-normality, we used the “naïve” (Davison & Hall, 1993) 
moving blocks bootstrap (MBB) (Künsch, 1989). The naïve bootstrap computes robust HAC 
t-statistics with the same formula in the bootstrap world as in the original data (Gonçalves 
& Politis, 2011), and, despite its “naivety”, it is sophisticated enough to perform exceptionally 
well in simulations where it has been found that the naive bootstrap – and the IID bootstrap, 
in particular – outperforms the standard normal approximation (Kiefer & Vogelsang, 2005). 
Furthermore, there is an established theory supporting its suitability for linear regressions in 
the presence of heteroscedastic and autocorrelated errors (even for the IID case) (Gonçalves 
& Vogelsang, 2011). 

To illustrate the approach, it is necessary to describe the setting for the bootstrap. For 
each investment rule (IR) , we tested the two-sided null hypothesis of no abnormal alpha in 
the model , 1, ,t T= … , where ( )0 1,t t tx′ ′=x x ; 0 1tx ≡ ; 1t′x  is a p-dimensional 
vector of regressors at time t  (either the five Fama and French (2015) factors or the four 
Carhart (1997) factors);  is a p + 1-dimensional vector of regression coefficients; and  
can be non-normal, autocorrelated and heteroscedastic. (For simplicity, we have assumed 
that the j  index which denotes the decile of the portfolio in the main text is fixed and it is, 
thus, omitted moving forward). Given the alpha  is, by definition, the ordinary least 
squares coefficient corresponding to 0tx , the null hypothesis is that .

The procedure for computing a p-value for this hypothesis using the MBB is as follows:
1. Run a linear regression of the model , 1, ,t T= …  (where IRt ty ≡ ) and 

obtain the first component of the least-squares estimate of the regression coefficient vector 
, as well as the HAC robust standard error for , denoted by s.e.( ), using the Newey-

West (1987) estimator of the  covariance matrix.1

1 Hanck et al. (2020), for example, provide detailed instruction on computing such a standard error. We 

used the Bartlett kernel and a truncation parameter of 1/30.75T   , where ⋅    is the ceiling function.
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2. Compute the t -statistics (in the original data) as:

 ˆ
ˆ 0

ˆs.e.( )
tα

α −
=

α
. (1)

3. Compute 5,000B =  moving block t -statistic bootstraps as follows:
3.1. Set ,l  1 ,l T≤ <<  as the length of the bootstrap blocks, which are defined as:

 ( ) ( ) ( ){ }, 1 1 –1 1, , , , , , .s l s s s s s l s ly y y+ + + + −
′…′ ′′ ′ ′≡ x x xψ

 
 (2)

There are 1n l− +  of such blocks. When 1l = , the moving blocks bootstraps corresponds 
to the standard IID (paired) bootstrap, also known as random-x or case resampling (Fox & 
Weisberg, 2018). 

3.2. Generate a set of b  blocks ψ ,s lø  (each of length l ) with uniform probability 
1/ ( 1),n l− +  1, , 1s n l…= − +  (Godfrey, 2009, pp. 207–214). That is, the generated blocks 
are obtained by random sampling, with replacement, from all possible 1n l− +  overlapping 
blocks.

3.3. Generate a bootstrap sample, ( ){ }* * * *, , 1, , ,t tS y t T′ = …= x  of size *T bl=  by joining 

together the b generated blocks (Godfrey, 2009, pp. 207–214). (We used *T T=  and trun-
cated the last block when appropriate.)

3.4. Using the bootstrap sample *S , run a linear regression of the model  
*1, ,t T= …  and obtain the first component of the least-squares estimate of the regression 

coefficient vector , as well as the HAC robust standard error of , denoted by , 
using the Newey-West (1987) estimator of the covariance matrix of . 

3.5. Compute the bootstrap t -statistic as:

 *

*

ˆ *

ˆ ˆ
ˆs.e.( )

tα
α −α

=
α

. (3)

4. Compute the value of q  as the cumulative distribution function for the distribution 
*D  evaluated at ˆtα , where *D  is the empirical distribution function of the B  bootstrapped 

values *ˆtα .
5. Finally, compute the p -value associated with the null hypothesis that 0α =  as follows:

 
2 , if 1/ 2

-value
2(1 ), if 1/ 2.

q q
p

q q
≤=  − >

 (4)

A similar procedure was used to compute the p -values of the other regression coeffi-
cients. Although we used a block size of 5l =  in the reported results, we also compared the 
reported results with the results obtained using 1l =  and 10l = , all being similar to that of 

5l = .
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