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Abstract. This paper introduces a new algorithm for exploiting time-series predictability-based 
patterns to obtain an abnormal return, or alpha, with respect to a given benchmark asset pricing 
model. The algorithm proposes a deterministic daily market timing strategy that decides between 
being fully invested in a risky asset or in a risk-free asset, with the trading rule represented by a 
parametric perceptron. The optimal parameters are sought in-sample via differential evolution to 
directly maximize the alpha. Successively using two modern asset pricing models and two different 
portfolio weighting schemes, the algorithm was able to discover an undocumented anomaly in the 
United States stock market cross-section, both out-of-sample and using small transaction costs. The 
new algorithm represents a simple and flexible alternative to technical analysis and forecast-based 
trading rules, neither of which necessarily maximizes the alpha. This new algorithm was inspired by 
recent insights into representing reinforcement learning as evolutionary computation.
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Introduction

This work introduces an algorithm designed to detect and profitably exploit the presence of 
time-series predictability-based anomalies. A market anomaly is a reliable and predictable 
pattern in the time-series or cross-section of asset returns that cannot be explained by a 
benchmark asset-pricing market model (Keim, 2008). An anomaly is typically demonstrated 
by rejecting the joint null hypothesis that the market is efficient and that asset returns behave 
according to a given benchmark asset-pricing model (Keim, 2008). In this context, the asset-
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pricing model attempts to predict the “normal” asset returns based on the asset’s exposure 
to a given set of risk factors. 

When using the modern Fama and French (2015) asset-pricing model as a benchmark, 
the algorithm finds “abnormal returns” – or alphas – as high as 12% annually. Specifically, 
the proposed algorithm postulates a market timing strategy that each day stipulates, using 
past returns as input data, whether an investor is fully invested in a risky asset or in the stan-
dard risk-free asset (the 30-day T-bill). As a risky asset, each of the ten equal-weighted size 
deciles U.S. stock market portfolios representing the market cross section are used. Abnor-
mal returns indicating an anomaly are found robustly in eight of the ten portfolios. Results 
are similar when using value-weighted size-decile portfolios. Furthermore, employing the 
Carhart (1997) asset-pricing model, which accounts for momentum, as a benchmark in a 
robustness check produces even higher abnormal returns, whether equal-weighted or value-
weighted portfolios are used. Generally, alphas computed using both asset-pricing models 
and either weighting type tend to decline as firm size increases, disappearing for the largest 
company’s size-decile portfolio.

This paper advances five original contributions. First, it develops a new algorithm that 
can automatically supply positive abnormal returns exploiting time-series predictability. Al-
though many algorithms attempt to maximize profitability measures, such as total cumulative 
return or Sharpe ratio, a thorough literature search revealed only one work involving the 
development of an algorithm that can maximize alphas automatically: Brogaard and Zareei 
(2018). In comparison to that paper’s, this study’s algorithm is more flexible and consider-
ably faster.

Second, this work’s proposed algorithm is based on neither conventional technical analy-
sis nor asset prices (or returns) forecasts. While conventional technical analysis appeals to 
various indicators to determine each buy and sell signal,1 using such indicators is not neces-
sarily scientifically justified and is instead typically based on traditional (folkloric) or other-
wise subjective thinking. Forecasts, on the other hand, are most commonly built according 
to forecast error minimization. Such procedures do not necessarily maximize a risk-adjusted 
measure of profitability in the manner of alphas. This is especially evident when including 
transaction costs: even a perfect forecast may induce so many cumulative transaction costs 
that its insight into trading decisions may be suboptimal, or even useless, in terms of maxi-
mizing risk-adjusted profitability.

Instead, the proposed algorithm more closely follows reinforcement-learning literature: 
in its construction, the algorithm looks for an alpha maximizing trading rule, in which the 
rule is encoded in a perceptron function (cf. Gold, 2003). Beginning with the groundbreaking 
work by Allen and Karjalainen (1999), genetic algorithms and genetic programming have 
been widely used to construct trading rules (cf. Liu et al., 2020), including in hedge-fund and 
expensive-commercial-software contexts.2 These trading rules are often represented using 

1 The terms “conventional technical analysis” and “technical analysis tradition” are used in this work to denote the 
standard methods of technical analysis. These methods are essentially identified in, for example, Murphy (1999), 
Plummer (2010), Kirkpatrick and Dahlquist (2011), Edwards, Magee, and Bassetti (2007), and Pring (2002), or by 
technical analysis certifications such as those awarded by the Chartered Market Technician® Program.

2 See, for example, the Proteom Fund Ltd. (http://jonathankinlay.com/2018/09/developing-trading-strategies-
with-genetic-programming) or Trading System Lab software, which featured an initial upfront cost of $60,000  
(http://www.tradingsystemlab.com).
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basic mathematical operations and logical connectors. Significantly, the present work implies 
the novel proposition of instead representing such trading rules as neural networks, which 
are both considerably simpler to program than genetic programming rules and substantially 
more general, given the approximation properties of neural networks (cf. Kidger & Lyons, 
2020). Importantly, in this context, the trading rules are the neural networks themselves (the 
policies), departing from more common neural-networks-as-forecasting-tools applications. 
This new approach was inspired by the work of Salimans, Ho, Chen, Sidor, and Sutskever 
(2017), which interpreted reinforcement learning as a general evolutionary algorithm form, 
broadly simplifying reinforcement learning programming. Such simplification may ultimately 
enable advances not only in other financial fields (including risk management, portfolio allo-
cation, and market microstructure) but also in related economics fields (including stochastic 
games, real-time bidding, consumption and income dynamics, and adaptive experimental 
design) (cf. Charpentier et al., 2021).3

Third, the proposed algorithm incorporates a market timing strategy that has already 
considered trading costs when it arrives at determining its trading signals – when to buy or 
sell the risky asset – meaning that the algorithm’s alpha is already optimized for transaction 
costs, which contrasts with the usual development of trading rules (e.g., development based 
on forecasts or technical analysis), where rules might no longer be optimal after introducing 
transaction costs.

Fourth, this study’s approach reveals a previously unreported anomaly in the U.S. stock 
market cross-section. The time-series predictability-based anomaly is robust to changes in 
the benchmark asset-pricing model, from the Fama and French (2015) to the Carhart model 
(1997), and portfolio construction, from equal-weighted to value-weighted. The first result is 
important because it demonstrates that the algorithm successfully exploits predictability pat-
terns in the data, independent of the benchmark used. The second result is important because 
investors can often more easily reproduce value-weighted portfolios than equal-weighted 
portfolios, with the former approach often requiring less rebalancing.

Fifth, the anomaly documented in this work was identified using exclusively out-of-
sample data. Searching for anomalies is frequently a trial-and-error procedure, which can 
produce false results given data-mining bias. All of the abnormal results this work reports 
were obtained using data not seen by the algorithm during its development. This practice 
alleviates any overfitting and data-mining concerns and strongly reinforces the conclusion 
that the anomaly found is real.

The rest of the paper is organized as follows: Section 1 provides a general overview of 
the literature associated with investment algorithms; Section 2 describes the algorithm for 
optimizing alpha directly and introduces the data used to test its efficacy; Section 3 provides 
the descriptive statistics of the (out-of-sample) data and the performance of the algorithm in 
terms of alphas for two types of size decile portfolios using two modern asset pricing models; 
the final section provides concluding remarks. 

3 An anonymous reviewer suggested emphasizing the potential connection to price formation and transmission 
mechanisms (e.g., Gričar & Bojnec, 2019; Hassouneh et al., 2015, 2017).



4 J. H. Ospina-Holguín, A. M. Padilla-Ospina. The search for time-series predictability-based anomalies

1. Literature review

The literature on investment algorithms (specifically, market-timing strategies based on past 
returns) is broad. It can be divided into four main branches: investment algorithms based on 
forecasts, investment algorithms based on conventional technical analysis, and investment 
algorithms based on reinforcement learning (or control theory in general, as in the case 
of dynamic programming), which includes the fourth branch, algorithms based on policy 
optimization.

Algorithms based on forecasts typically try to invest according to the best available fore-
cast for the next day. Forecasts are based on different methodologies, from those based on 
conventional methodologies such as autoregressive moving averages models (Atsalakis & Va-
lavanis, 2013), to those based on soft computing, such as neural networks or support-vector 
machines (Atsalakis & Valavanis, 2009; Henrique et al., 2019). The goal of such algorithms 
is to produce an optimal forecast and then to follow a simple investment strategy based on 
that forecast. An example of an investment strategy could be investing in a risky asset when 
the forecast for the risky asset’s return is positive and investing in the riskless asset when the 
forecast for the risky asset’s return is negative (Chan, 2017). Variants include investing in the 
risky asset only when a certain threshold for the risky asset’s return is surpassed. A forecast 
is considered optimal or the best available because it minimizes an error measurement, such 
as the root-mean-squared error. However, an optimal forecast does not necessarily optimize 
risk-adjusted measures of total return, such as alpha, which the proposed algorithm does.

Algorithms based on conventional technical analysis, on the other hand, rely on invest-
ment indicators and rules often resembling folklore (Park & Irwin, 2007). While many trad-
ers follow these rules (cf. Lo & Hasanhodzic, 2010; Menkhoff, 2010), such rules do not 
generally have a substantial or scientific basis (Malkiel, 2007). Instead, they are heavily based 
on anecdotal experience or traditional beliefs. Although the empirical evidence in favor of 
technical analysis is controversial (Park & Irwin, 2007), some modern authors have tried to 
substantiate it (Han et al., 2013, 2016; Lo et al., 2000). Given the dubious basis, this paper 
distances itself from conventional technical analysis.

Algorithms based on reinforcement learning, or control theory, attempt to optimize a 
measurement of (risk-adjusted) total return (v.g., Bertoluzzo & Corazza, 2014; Cong et al., 
2021; Kolm & Ritter, 2021; Mosavi et al., 2020; Pendharkar & Cusatis, 2018; Xufre Casqueiro 
& Rodrigues, 2006; Zhang et  al., 2020). The investment process is seen in these kinds of 
algorithms as the generalization of a Markov decision-making process: an agent in a given 
state has to act in the market, (e.g. invest in a risky or riskless asset), and the market returns 
a reward and a new state of being for the agent (Charpentier et  al., 2021; Fischer, 2018). 
Specialized deep-reinforcement-learning techniques have recently begun to be used.

Algorithms based on policy optimization can be seen as a variant of reinforcement learn-
ing wherein the policy is optimized directly. Most commonly, policy optimization does not 
require computing the policy encoded in the V or Q  function (Sutton & Barto, 2018), but a 
parametrized policy that generates a whole sequence of actions and states can be optimized 
directly based on the total (possibly risk-adjusted) reward it generates for a whole episode. 
(A parametrized policy here is an investment rule described by a finite number of parameters 
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that indicates how to invest given a state.) Often, evolutionary algorithms are used to perform 
this optimization. An example of this kind of algorithm is the work of Brogaard and Zareei 
(2018). Like the current work, those researchers attempted to optimize alpha, but using ge-
netic programming to find optimal-technical-analysis rules instead of, as this paper does, 
attempting to use a perceptron function of past returns to find the optimal policy directly. 
(Sometimes the other types of algorithms are presumed to be “augmented” by technical 
indicators, such as in Brogaard and Zareei (2018).)

Reinforcement-learning literature is the newest and most regularly effective of the four 
different branches. Direct policy optimization is an innovation in this context. This work fills 
a gap in the literature by describing, for the first time, how alphas can be optimized directly in 
parametrized form without resorting to the traditional approach dictated by technical analy-
sis and by introducing a more easily implemented and considerably faster new algorithm.

2. Data and methodology

To illustrate the identification of an anomaly based on predictability, the proposed algorithm 
is applied to the daily returns of the ( 1, ,10)j = …  size-decile portfolios of the United States 
market, with j  ranging from the decile with the smallest firms to the decile with the largest 
firms. The decile portfolios were constructed based on sorting NYSE, AMEX, and NASDAQ 
stocks into ten groups (deciles) according to market equity (size). Upon assigning stocks 
to portfolios, daily returns (including dividends) were calculated using equal weighting or 
value weighting. The portfolios were rebalanced at the end of each June using June’s market 
equity and NYSE breakpoints. The portfolios for the period between July 1, 1963, and April 
30, 2019, were obtained from Kenneth French’s website4, with returns measured in terms of 
percentage (computed using current dollar prices). Half the sample was used for training 
(7026 data points), and half the sample was used for testing the algorithm out-of-sample.

Let us begin by expressing the market timing strategy in terms of the linear parametric 
functional form that guides the investment process. In a market timing strategy, the invest-
ment rule used is of one particular form: it indicates when to leave or when to enter the 
market, that is, when to hold the risky or the riskless asset. In other words, the market timing 
strategy’s naked return M

jtR  at time t  according to the investment rule on the underlying 
j -th portfolio is:
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where 1Post−  is the position the investment strategy set the previous day (i.e., at 1t − ), 
2Post−  is the position set at 2t − , jtR  is the daily return of the j -th risky portfolio at time 

t , ftr  is the risk-free rate at time t , and τ  is the transaction cost per trade. The position 

4 https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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1Post−  (or 2Post− ) takes the value of 1 if the investment rule dictates buying or holding 
the risky portfolio, obtaining return jtR  for the portfolio, and it takes the value of 0 if the 
investment rule is invested off-the-market in the risk-free asset. The 30-day T-bill is used as 
a risk-free asset, assuming that a transaction cost is charged for trading the risky portfolio 
but that there are no costs for trading the 30-day T-bill (e.g., Balduzzi & Lynch, 1999; Han 
et al., 2013; Lynch & Balduzzi, 2000).

The measure of profitability or performance of the strategy is the Fama and French (2015) 
alpha, although another asset pricing model is used as a robustness check. The return used to 
measure the alpha is based on the zero-cost arbitrage portfolio, which is long in the market 
timing portfolio resulting from applying the investment rule and short in the underlying 
portfolio. That is, the excess return of the investment rule IR jt  is computed relative to the 
buy and hold positions on the risky portfolio; therefore, it is defined as: 

 IR jt jt jt
MR R≡ − . (2)

According to the above, the portfolio performance measure IR jt  is the alpha jα  from 
the time series regression of the five-factor Fama and French model (2015). That is, the alpha 
from the regression

 MKT, SMB, ,HML HML,,SMB,MKT

,RMW RMW, CMA,,CMA

IR

,
jt j t t j tjj

j t t jtj

r r r

r r+

= α +β +β

β

++β

β + ε
 

(3)

where MKT,tr  is the daily return in excess of the market, SMB,tr  is the daily return of the 
small-minus-big (SMB) factor related to size, HML,tr  is the daily return of the high-minus-
low (HML) factor related to growth, RMW,tr  is the daily return of the robust-minus-weak 
(RMW) factor related to operating profitability, and CMA,tr  is the daily return of the 
conservative-minus-aggressive (CMA) factor related to investment aggressiveness. The 
Fama and French (2015) daily factors and the daily risk-free rate are taken from Kenneth 
French’s website. See Fama and French (2015) for a complete description of the factor 
returns. The risk-free rate corresponds to the one-month Treasury bill rate (from Ibbotson 
Associates).

Before continuing, it is important to stress the main implication of the recorded al-
pha being measured using an algorithmic arbitrage market timing investment (long in 
the algorithm, short in the underlying decile portfolio). The implication is that, by the 
definition in Eq. (2), this work focuses on the degree to which the market timing strategy 
outperforms the size-decile portfolio after discounting the particular size-decile portfolio 
performance. Thus, if the market timing strategy naively advised to always buy and hold 
the size decile portfolio, then the daily returns of the algorithmic arbitrage market tim-
ing investment and its alpha would be zero every time (by Eq.  (2)), as would the final 
cumulative return.

The proposal of the new investment strategy is to increase the likelihood of finding 
a market timing algorithm that automatically generates a high risk-adjusted return in 
terms of the alpha. On the one hand, rules from the technical analysis tradition are not 



Journal of Business Economics and Management, 2022, 23(1): 1–19 7

used because their scientific status is highly doubtful. On the other hand, prediction rules 
ultimately only minimize the sum of the distances between the predicted values and the 
respective real values, thus not necessarily promoting maximum profitability. Instead, a 
market timing strategy that could succeed by the nature of its construction is sought after; 
that is, a strategy that could automatically maximize alpha. 

Based on the previous framework, the equations that specify the position of a general 
investment strategy in terms of a parametric functional form f  can be written as follows:

 ( )*
1 1Pos ( , )t tH f− −= a R  and ( )*

2 2Pos ( , ) ,t tH f− −= a R  (4)

where H  is the Heaviside function

 
0, 0

( ) ,
1, 0

x
H x

x
<=  ≥

 (5)

f  is a general parametric function, ( )0 1 Ia a a= …a  is a vector of parameters to be 

specified, ( )*
1 1 2, , ,t jt jt jt IR R R− − − −= …R  is a vector with the information of the past returns 

from t I−  until 1t − , and  ( )*
2 2 3 1, , ,t jt jt jt IR R R− − − − −= …R  is a vector with the informa-

tion of the past returns from 1t I− − until 2t − . When *
1( , )tf −a R  and *

2( , )tf −a R  are 
known, they use the information available on past returns to establish when to buy or 
hold the risky portfolio, and when to sell it and hold the risk-free asset instead. Notice 
how, unlike standard predictive investment strategies, neither *

1( , )tf −a R  nor *
2( , )tf −a R  

is a prediction in itself but rather a rule about the investment position to be taken (just 
as a moving average rule establishes this position without making any prediction about 
what is the future return).

To make the problem more manageable, several simplifying assumptions can be made. 
For example, a linear function f  could be used, one of the simplest possible cases, i.e., a 

function ( 1)*
0( , ) I k

t k i jt ii kf a a R+ −
− −== +∑a R . This form, used in (4), recalls the perceptron 

function employed in reinforcement learning for trading by Gold (2003). Specifically, the 
present work uses 10I =  past returns for the optimal control investment rule. Following 
this section, this simple parametric rule’s ability to cover a broad spectrum of possible 
investment strategies will be appreciated.

In this framework, to build an optimal investment rule, values of the vector a  param-
eters such that *

1( , )tf −a R  and *
2( , )tf −a R  maximize alpha are needed. While this framework 

enables optimization of other performance measures, including cumulative returns and the 
Sharpe ratio, the present study is concerned with the Fama and French alpha. To optimize 
the Fama and French (2015) alpha specifically, it is possible to search the vector a  of pa-
rameters which chooses the investment positions 1Post−  and 2Post−  between 2 1t − =  and 

training2 2t T− = −  in the training data such that the alpha jα  is maximum in the time series 
regression from the Fama and French model, i.e., the regression in (3). Since from (2), (1) 
and (4), consecutively:
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the term IR jt  in (3) can be expressed in terms of the rules *
1( , )tf −a R  and *

2 ( , )tf −a R , and 
it is even possible to estimate the alpha in this regression by ordinary least squares as

 ( )1
1

ˆ )( ) ,(T T
j j

−α = X X X IR   (7)

that is, as the first element of the vector 1 )( ()T T
j

−X X X IR , where X  is the matrix of regres-
sors of (3), jIR  is the vector of regressands expressed in terms of the rules *

1( , )tf −a R and 
*

2( , ),tf −a R  and the operations TA  and 1−A  denote the transpose and inverse of matrix A, 
respectively. Consequently, the components of a  can be chosen that maximize the estimated 
alpha ( )1

1
ˆ (( ) )T T

j j
−α = X X X IR  in order to determine the investment rule *

1( , )tf −a R .
However, in practice, there are two major obstacles to achieving the desired maximiza-

tion. The first one is that ( )1
1

ˆ (( ) )T T
j j

−α = X X X IR  is an enormous algebraic expression, 

specifically of training 2T −  addends, which may involve the optimization of an expression of 
thousands of terms. But the second obstacle is more serious. Each of these terms contains 
expressions in terms of Heaviside functions. These expressions are not only highly nonlinear 
but also do not change locally almost everywhere. They are also discontinuous and nondiffer-
entiable, since the derivative of ( )H x  is the Dirac delta function ( )xδ  which is a “generalized 
function” (i.e., a distribution) having the property of being zero everywhere, infinity in 0, and 
whose integral over the reals is 1.

To overcome the obstacles that the optimization involves, a heuristic method of optimi-
zation was used that, unlike classical optimization methods such as quasi-Newton methods 
or gradient descent, does not require that the function is continuous, changes locally or is 
even differentiable. The method chosen is inspired by the theory of evolution and is called 
differential evolution (DE) (Rocca et al., 2011; Storn & Price, 1997).

The method starts from an initial population of m  input vectors { }1 2, , , m…a a a . This 
population is composed of vectors a  randomly chosen as potential candidates to maximize 
the estimated alpha ( )1

1
ˆ (( ) )T T

j j
−α = X X X IR . As the number of components of each can-

didate vector is 1 11I + = , m  is chosen much higher than 1I + . Later, each element of this 
initial population “evolves” to generate a new candidate to solve the optimization problem 
by two consecutive mechanisms. First, by mutation from three vectors of the initial popula-
tion da , ea  and fa  one solution candidate is obtained as ( ),f d es′ = + −a a a a  where s   
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is a scale factor less than one. Second, by crossing (interbreeding), a new candidate ′′a  is 
obtained from candidate ′a  and another point ga  of the initial population. The new can-
didate takes the i -th coordinate of ′a  and replaces it with the i -th coordinate of ga  with 
probability ρ  or leaves if unchanged with probability 1−ρ . If ˆ ˆ( ) ( ),j j g′′α > αa a  ′′a  replaces 

ga  in the initial population. If ˆ ˆ( ) ( ),j j g′′α ≤ αa a ga  is not replaced. The end result is also a 
new population with m  vectors.

The process is repeated iteratively, and the optimization stops when the difference be-
tween the optimal candidate of ˆ jα  is within a numerically insignificant specified distance 
of the optimum in the previous population, as are the distances between the vectors cor-
responding to these optimum values, (i.e., when the optimum converges based on predeter-
mined tolerances). Given that, for the particular type of problem addressed here, there is no 
single solution vector – instead, the solution is a region – the fulfilling tolerances used were 
relatively large (0.001 in each case).

The final result of the optimization is an optimization parameter vector •a  which chooses 
the positions taken by the investment strategy:
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in a manner that optimizes the estimated Fama and French alpha in the training data (i.e., 
within the sample). These optimal parameters are also expected to work out-of-sample if 
there is no overfitting during the optimization.

Since the parametric form of the function chosen to establish the position is linear, i.e., 
*

1 0 1( , ) I
t i jt iif a a R− −== +∑a R  (and 1*

2 0 2( , ) I
t i jt iif a a R+
− −== +∑a R ), and besides it depends 

on 10I =  past returns, one wonders how general this parametric form is. Although it would 
have been possible to choose a more general functional form, for example, a nonlinear func-
tion with more parameters, the greater the number of parameters used and the complexity of 
the formula, the greater the possibility of overfitting. In other words, the possibility of finding 
an investment rule that generates an optimal alpha in the training data but only a mediocre 
alpha in the test data (outside the sample). Indeed, the functional form used was chosen to 
be simple and have few parameters for this reason. Despite this, such a functional form turns 
out to be quite flexible, as is explained below.

First, it is trivial to see that any inequality of the form 1
1 *( , )tg C− >Ra  or of the form 

1
1 *( , ) ,tg C− <Ra  with 1 * 1 1

1 0 1( , ) ,I
t i jt iig a a R− −== +∑a R  is a special case of *

1( , ) 0tf − >Ra . Simi-

larly, any inequality of the form 1
1 2* *

1 1 2( , ) ( , )t tg g− −> aR Ra  or 2* *
1 1 1

1
2( , ) ( , ),t tg g− −< aR Ra  

with *
1 0 1( , ) ,Ik

k t k ik jt iig a a R− −== +∑a R  is also a special case of *
1( , ) 0tf − >Ra . Accordingly, 

neither the direction of the inequality, nor the presence or absence of a constant, nor the 
fact that the right side of the inequality is zero limit the generality of this type of investment 
strategy.

Secondly, Zakamulin (2016) has shown that a wide variety of technical analysis indica-
tors can be written in terms of a linear combination of returns. Among others, momentum 
indicators and general moving average indicators including simple moving averages, simple 
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moving average crossings, and linear, exponential and reverse exponential moving averages. 
In line with this, all these indicators, if they maximize the estimated alpha, have been verified 
by optimizing the selected investment strategy. So, according to the above, the parametric 
form of the chosen function, although parsimonious, is also quite general.

Thirdly, the parametric form of the function used is nothing more than a perceptron; that 
is, an artificial neuron using the Heaviside function as the activation function. The learning 
here is achieved through differential evolution. As a linear algorithm, perceptrons are very 
efficient if the training set is linearly separable, and this choice of function can be seen as the 
first approximation of a solution to the problem of finding an optimal investment algorithm.

3. Results and discussion

Table 1 shows the descriptive statistics of the testing sample from May 22, 1991, to April 
30, 2019, for equal-weighted (Panel A) and value-weighted (Panel B) size decile portfolios, 
respectively. Of the 20 portfolios, only the equal-weighted size decile portfolio with the small-
est firms has a mean significantly different from zero ( 0.02)p = . This portfolio is also the 
only one with a Sharpe ratio over one, a risk-adjusted measure that otherwise ranges from 
0.47  to 0.57 . Each portfolio is negatively skewed, except for the equal-weighted size-decile 
portfolio with the largest firms.

The algorithm was designed and tested using the Wolfram and Julia languages, as well as 
Microsoft Excel. The final results (presented in Table 2) were computed in the Wolfram and 
R languages on a 6th Generation Intel Core i7-6700HQ. Training and testing each investment 
rule for a given decile portfolio required approximately 20 seconds. Panel A of Table 2 shows 
the out-of-sample Fama and French (2015) alphas that the algorithm achieved for the ten 
equal-weighted size-decile portfolios, while Panel B shows the same for the value-weighted 
size decile portfolios. To demonstrate that abnormal returns can survive transaction costs, a 
transaction cost of 1 basis point per trade was used for calculation as per Eq. (1). Given this 
cost was recognized by Balduzzi and Lynch (1999) as the lower limit for transaction costs in 
the 1990s, it is highly probable that big institutional investors can now trade below that cost. 
(In any case, Appendix A in the Supplementary Material develops a sensibility analysis of al-
pha in terms of transaction costs for further transparency.) The results clearly show alphas of 
significant economic importance in almost every portfolio, except for those with the largest 
firms. This could be because the excess returns of the arbitrage portfolios are less volatile, and 
therefore less suitable for a market-timing strategy. The alphas found in the equal-weighted 
size-decile portfolios grew from 0.09% to 12.12% annually as firm size decreased (Table 2, 
Panel A), while they grew from −3.73% to 12.03% annually as firm size decreased for the 
value-weighted portfolio (Table 2, Panel B). 

However, trends were not monotonic. Using equal-weighted size decile portfolios (Ta-
ble  2, Panel A), the algorithm did not return significant alphas for size deciles 9 and 10, 
those featuring the largest firms. For size deciles 2–8, alphas ranged from 5.49% annually for 
decile 3 to 8.70% annually for decile 7. The alpha calculated increased over 12% annually for 
size decile 1, which featured the smallest firms. For the value-weighted size decile portfolios 
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(Table 2, Panel B), again, the trend was not monotonic. The alpha returned by the algorithm 
for size decile 9 was not significant, while the alpha for size decile 10 was negative. Between 
portfolio size decile 7 and 8, the alpha dropped from 7.40% annually for decile 7 to 4.06% 
annually for decile 8. Between portfolios with size decile 2 and 6, alphas ranged from 5.13% 
annually for size deciles 3 to 7.19% annually for size decile 6. Alphas grew to 12.03% annually 
for size decile 1 portfolio, which featured the smallest firms.

The betas for market and size factors were almost invariably negative for both the equal-
weighted (Table 2, Panel A) and value-weighted portfolios (Table 2, Panel B), indicating that 
the investment strategy represented a useful hedge against those factors. The betas for the 
other factors were most commonly insignificant, indicating that exposure to those factors 
was irrelevant to increasing returns.

An automatic anomaly search with the Carhart model (1997) was conducted as a robust-
ness check:

 MKT, SMB, ,HML HML, MOM,,SMB ,MOM,MKTIR ,jt j t t j t t jtj jj r r r r= α +β +β + ++β β ε  (9)

where MKT,tr  is the daily return in excess of the market, SMB,tr  is the daily return of the 
small-minus-big (SMB) factor related to size, HML,tr  is the daily return of the high-minus-
low (HML) factor related to growth, and MOM,tr  is the momentum factor. Panel C of Ta-
ble 2 shows the out-of-sample results for equal-weighted size-decile portfolios, while Panel 
D shows the same for value-weighted size-decile portfolios under Carhart’s model.

The results show that the algorithm is not only capable of reproducing the predictability 
anomaly using those factors, but is capable of obtaining even (economically) higher alphas 
for eight of the ten portfolios when considering equal-weighted size decile portfolios (Ta-
ble 2, Panel C) and for ten of the ten portfolios when considering value-weighted size decile 
portfolios (Table 2, Panel D).

Table 1. Panel A. Summary statistics for the daily returns of equal-weighted size decile portfolios

Decile

Naked returns (in annual percentage):

jR

Smal lest (2) (3) (4) (5) (6) (7) (8) (9) Largest

Mean 31.44** 14.91 14.60 13.00 13.57 13.72 13.46 13.25 13.09 11.73
St. De-
via tion 13.49 21.84 21.53 21.24 21.39 19.89 19.73 19.86 19.19 18.82

Skewness −0.57 −0.10 −0.19 −0.14 −0.15 −0.14 −0.14 −0.05 −0.05 0.12
Sharpe 
Ratio 2.15 0.57 0.56 0.50 0.52 0.57 0.56 0.54 0.55 0.49

Obser-
vations 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027

Note: Summary statistics for the daily returns of equal-weighted size decile portfolios for the testing 
sample between May 22, 1991, and April 30, 2019. *, **, and *** indicate a significant mean at the 0.1, 
0.05, and 0.01 levels, respectively. “St. Deviation” stands for “Standard Deviation”.



12 J. H. Ospina-Holguín, A. M. Padilla-Ospina. The search for time-series predictability-based anomalies

Panel B. Summary statistics for the daily returns of value-weighted size decile portfolios

Decile

Naked returns (in annual percentage):

jR

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

Mean 11.88 12.75 13.23 12.10 12.82 12.83 12.99 12.98 12.46 10.64
St. Deviation 16.40 21.36 21.00 20.54 20.55 18.94 18.76 18.87 18.05 17.51
Skewness −0.64 −0.23 −0.29 −0.23 −0.26 −0.26 −0.31 −0.22 −0.17 −0.03
Sharpe Ratio 0.57 0.48 0.51 0.47 0.50 0.55 0.56 0.56 0.55 0.47
Observations 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027

Note: Summary statistics for the daily returns of value-weighted size decile portfolios for the testing 
sample between May 22, 1991, and April 30, 2019. *, **, and *** indicate a significant mean at the 0.1, 
0.05, and 0.01 levels, respectively. “St. Deviation” stands for “Standard Deviation”.

Table 2. Panel A. Fama and French (2015) algorithmic alphas for each equal-weighted size decile port-
folio

Decile

Dependent variable:

IR j

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

jα
12.12*** 6.71*** 5.49** 6.80*** 6.42*** 7.25*** 8.70*** 5.53*** 2.04 0.09

[0.00] [0.00] [0.02] [0.00] [0.00] [0.00] [0.00] [0.00] [0.28] [0.93]

,MKTjβ
−0.30*** −0.60*** −0.61*** −0.61*** −0.61*** −0.60*** −0.60*** −0.59*** −0.61*** −0.58***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

,SMBjβ
−0.25*** −0.55*** −0.50*** −0.43*** −0.34*** −0.22*** −0.15*** −0.06* 0.04 0.15***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.06] [0.10] [0.00]

,HMLjβ
−0.04 −0.16*** −0.08* −0.06 −0.05 0.00 −0.04 −0.01 −0.02 0.00

[0.11] [0.00] [0.06] [0.17] [0.25] [0.93] [0.34] [0.84] [0.69] [0.99]

,RMWjβ
0.10*** 0.00 0.02 0.03 0.08** 0.05 0.05 0.11** 0.04 0.01

[0.00] [0.94] [0.54] [0.32] [0.05] [0.30] [0.16] [0.01] [0.45] [0.75]

,CMAjβ
0.00 0.00 0.02 0.07 0.07 0.07 0.05 0.00 0.00 0.05

[0.99] [0.92] [0.78] [0.21] [0.18] [0.15] [0.36] [0.99] [0.94] [0.34]
Obs. 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027
Adj. R2 0.41 0.53 0.54 0.55 0.54 0.55 0.54 0.53 0.55 0.55

Note: A Fama and French (2015) time series regression on the algorithmic arbitrage market timing 
investment – long in the algorithm and short in the underlying decile portfolio – was conducted for 
each equal-weighted size decile portfolio for the testing sample between May 22, 1991, and April 
30, 2019. For each decile, the algorithm was trained on data from July 1, 1963, to June 6, 1991. 
A transaction cost of 1 bp was assumed for training and testing. The 30-day T-bill is used as the 
risk-free asset, and one of the ten NYSE/AMEX/NASDAQ equal-weighted market-cap size-decile 



Journal of Business Economics and Management, 2022, 23(1): 1–19 13

portfolios is used as the risky asset. The betas correspond to each of the Fama and French (2015) 
factors: MKT represents the excess market return factor, SMB represents the small-minus-big fac-
tor related to size, HML represents the high-minus-low factor related to growth, RMW represents 
the robust-minus-weak factor related to operating profitability, and CMA represents the conserva-
tive-minus-aggressive factor related to investment aggressiveness. Alphas are annualized and pre-
sented as percentages. Bootstrap p-values based on 5,000 bootstrap replications are in brackets (see 
Appendix B in the Supplementary Materials for details). *, **, and *** indicate significance at the 0.1, 
0.05, and 0.01 levels, respectively. Obs. and Adj. R2 represent the number of observations and the 
adjusted coefficient of determination.

Panel B. Fama and French (2015) algorithmic alphas for each value-weighted size decile portfolio

Decile

Dependent variable:

IR j

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

jα
12.03*** 5.85** 5.13** 5.67*** 6.19*** 7.19*** 7.40*** 4.06** 1.60 −3.73**

[0.00] [0.01] [0.02] [0.01] [0.00] [0.00] [0.00] [0.03] [0.33] [0.03]

,MKTjβ
−0.41*** −0.60*** −0.58*** −0.59*** −0.58*** −0.58*** −0.59*** −0.60*** −0.58*** −0.52***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

,SMBjβ
−0.42*** −0.57*** −0.49*** −0.44*** −0.34*** −0.23*** −0.16*** −0.08*** −0.01 0.14***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.63] [0.00]

,HMLjβ
−0.08** −0.09** −0.06 −0.04 −0.04 0.03 0.02 0.03 0.03 0.02

[0.02] [0.04] [0.12] [0.36] [0.36] [0.36] [0.39] [0.29] [0.35] [0.57]

,RMWjβ
0.10*** 0.01 0.04 0.02 0.04 0.06* 0.05* 0.06* −0.02 −0.04

[0.01] [0.68] [0.15] [0.47] [0.18] [0.10] [0.09] [0.09] [0.47] [0.16]

,CMAjβ
0.02 −0.06 0.02 0.03 0.03 0.01 −0.05 −0.06 −0.08** 0.00

[0.62] [0.21] [0.64] [0.55] [0.49] [0.89] [0.17] [0.11] [0.04] [0.99]
Obs. 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027
Adj. 
R2 0.49 0.54 0.54 0.55 0.53 0.56 0.55 0.55 0.55 0.52

Note: A Fama and French (2015) time series regression on the algorithmic arbitrage market timing 
investment – long in the algorithm and short in the underlying decile portfolio – was conducted 
for each value-weighted size decile portfolio for the testing sample between May 22, 1991, and April 
30, 2019. For each decile, the algorithm was trained on data from July 1, 1963, to June 6, 1991. 
A transaction cost of 1 bp was assumed for training and testing. The 30-day T-bill is used as the 
risk-free asset, and one of the ten NYSE/AMEX/NASDAQ value-weighted market-cap size-decile 
portfolios is used as the risky asset. The betas correspond to each of the Fama and French (2015) 
factors: MKT represents the excess market return factor, SMB represents the small-minus-big fac-
tor related to size, HML represents the high-minus-low factor related to growth, RMW represents 
the robust-minus-weak factor related to operating profitability, and CMA represents the conserva-
tive-minus-aggressive factor related to investment aggressiveness. Alphas are annualized and pre-
sented as percentages. Bootstrap p-values based on 5,000 bootstrap replications are in brackets (see 
Appendix B in the Supplementary Materials for details). *, **, and *** indicate significance at the 0.1, 
0.05, and 0.01 levels, respectively. Obs. and Adj. R2 represent the number of observations and the 
adjusted coefficient of determination.



14 J. H. Ospina-Holguín, A. M. Padilla-Ospina. The search for time-series predictability-based anomalies

Panel C. Carhart (1997) algorithmic alphas for each equal-weighted size decile portfolio

Decile

Dependent variable:

IR j

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

jα 12.58*** 5.75** 5.37** 6.88*** 7.69*** 7.60*** 9.47*** 6.68*** 2.51 0.46
[0.00] [0.01] [0.02] [0.00] [0.00] [0.00] [0.00] [0.00] [0.17] [0.77]

,MKTjβ
−0.32*** −0.61*** −0.61*** −0.60*** −0.63*** −0.62*** −0.61*** −0.63*** −0.60*** −0.59***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

,SMBjβ
−0.26*** −0.55*** −0.50*** −0.41*** −0.34*** −0.25*** −0.16*** −0.09** 0.03 0.14***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.01] [0.13] [0.00]

,HMLjβ
−0.06*** −0.15*** −0.08*** −0.03 0.01 0.04 0.01 0.04 −0.01 0.06*

[0.01] [0.00] [0.01] [0.31] [0.67] [0.24] [0.58] [0.23] [0.82] [0.09]

,MOMjβ
−0.03 0.01 0.03 0.02 0.04* 0.03 0.03* 0.05** 0.06*** 0.05**

[0.16] [0.62] [0.15] [0.30] [0.09] [0.19] [0.10] [0.02] [0.01] [0.01]
Obs. 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027
Adj. 
R2 0.40 0.53 0.54 0.53 0.55 0.55 0.55 0.55 0.55 0.55

Note: A Carhart (1997) time series regression on the algorithmic arbitrage market timing invest-
ment – long in the algorithm and short in the underlying decile portfolio – was conducted for each 
equal-weighted size decile portfolio for the testing sample between May 22, 1991, and April 30, 2019. 
For each decile, the algorithm was trained on data from July 1, 1963, to June 6, 1991. A transaction cost 
of 1 bp was assumed for training and testing. The 30-day T-bill is used as the risk-free asset, and one of 
the ten NYSE/AMEX/NASDAQ equal-weighted market-cap size-decile portfolios is used as the risky 
asset. The betas correspond to each of the Carhart (1997) factors: MKT represents the excess market 
return factor, SMB represents the small-minus-big factor related to size, HML represents the high-mi-
nus-low factor related to growth, and MOM represents the momentum factor. Alphas are annualized 
and presented as percentages. Bootstrap p-values based on 5,000 bootstrap replications are in brackets 
(see Appendix B in the Supplementary Materials for details). *, **, and *** indicate significance at the 
0.1, 0.05, and 0.01 levels, respectively. Obs. and Adj. R2 represent the number of observations and the 
adjusted coefficient of determination

Panel D. Carhart (1997) algorithmic alphas for each value-weighted size decile portfolio

Decile

Dependent variable:

IR j

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

jα 13.03*** 8.20*** 6.28*** 6.17*** 7.06*** 7.83*** 8.25*** 5.17** 2.12 −3.67**

[0.00] [0.00] [0.01] [0.00] [0.00] [0.00] [0.00] [0.00] [0.18] [0.02]

,MKTjβ
−0.43*** −0.61*** −0.60*** −0.60*** −0.60*** −0.60*** −0.58*** −0.60*** −0.58*** −0.54***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00]

,SMBjβ
−0.42*** −0.57*** −0.51*** −0.42*** −0.35*** −0.24*** −0.17*** −0.09*** −0.01 0.14***

[0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.79] [0.00]

,HMLjβ
−0.09*** −0.15*** −0.07** −0.06** −0.04 0.01 −0.02 −0.02 −0.02 0.03
[0.00] [0.00] [0.03] [0.04] [0.14] [0.72] [0.41] [0.43] [0.37] [0.27]
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Decile

Dependent variable:

IR j

Smallest (2) (3) (4) (5) (6) (7) (8) (9) Largest

,MOMjβ
−0.07*** −0.03* −0.04** −0.03* −0.05*** −0.05*** −0.05** −0.04** −0.03** −0.01
[0.00] [0.06] [0.02] [0.09] [0.01] [0.00] [0.00] [0.02] [0.03] [0.66]

Obs. 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027 7,027
Adj. 
R2 0.48 0.55 0.55 0.54 0.53 0.55 0.54 0.55 0.55 0.54

Note: A Carhart (1997) time series regression on the algorithmic arbitrage market timing invest-
ment – long in the algorithm and short in the underlying decile portfolio – was conducted for each 
value-weighted size decile portfolio for the testing sample between May 22, 1991, and April 30, 2019. 
For each decile, the algorithm was trained on data from July 1, 1963, to June 6, 1991. A transaction cost 
of 1 bp was assumed for training and testing. The 30-day T-bill is used as the risk-free asset, and one of 
the ten NYSE/AMEX/NASDAQ value-weighted market-cap size-decile portfolios is used as the risky 
asset. The betas correspond to each of the Carhart (1997) factors: MKT represents the excess market 
return factor, SMB represents the small-minus-big factor related to size, HML represents the high-mi-
nus-low factor related to growth, and MOM represents the momentum factor. Alphas are annualized 
and presented as percentages. Bootstrap p-values based on 5,000 bootstrap replications are in brackets 
(see Appendix B in the Supplementary Materials for details). *, **, and *** indicate significance at the 
0.1, 0.05, and 0.01 levels, respectively. Obs. and Adj. R2 represent the number of observations and the 
adjusted coefficient of determination.

General Note: The alphas in italics are significantly positive (abnormal) in the respective asset pricing 
model.

As firm size decreased, the alphas found for the equal-weighted size decile portfolios 
grew from 0.46% to 12.58% annually (Table 2, Panel C); for value-weighted portfolios, they 
grew from −3.67% to 13.03% (Table 2, Panel D). For the equal-weighted size decile portfolios 
(Table 2, Panel C), the alpha calculated was insignificant for the two size decile portfolios 
featuring the largest firms. The alpha dropped monotonically between size decile portfolios 
7 and 10, from 9.47% annually for 7 to 0.46% annually for 10. Between portfolios with size 
decile 2 and 6, the alpha ranged from 5.37% annually for size decile 3 to 7.69% annually for 
size decile 5. The alpha calculated reached over 12.5% annually for the portfolio featuring 
the smallest firms.

For the value-weighted portfolios (Table 2, Panel D), the alpha was negative or not sig-
nificantly different from zero for the two portfolios with the largest firms. From size deciles 2 
and 8, the algorithm calculated alphas ranged from 5.17% annually for size decile 8 to 8.20% 
annually for size decile 2. The algorithm calculated an alpha of over 13% annually for the 
portfolio with the smallest firms.

As with the Fama and French (2015) model, negative exposure (beta) to the market and 
size factors were found to be predominant, for both the equal-weighted (Table 2, Panel C) 
and value-weighted portfolios (Table 2, Panel D). This, in turn, suggests that the algorithm 
constitutes a valuable hedge against exposure to these factors. The algorithm is also a valuable 
hedge against exposure to the book-to-market HML factor in three of the equal-weighted 
portfolios (Table 2, Panel C) and four of the value-weighted portfolios (Table 2, Panel D). In 

End of Panel D
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the case of the value-weighted portfolios, the algorithm also returned negative momentum 
betas for nine of the ten portfolios (Table 2, Panel D). In turn, it returned positive momentum 
betas in five of the ten equal-weighted portfolios; and statistically indistinguishable from zero 
betas in the other five cases (Table 2, Panel C). 

In summary, the algorithm not only delivers statistically and economically significant 
positive risk-adjusted returns (alphas) most of the time using both the Fama and French 
(2015) and Carhart (1997) models but is also a valuable hedge against market and size fac-
tors. In the case of Carhart’s model, the algorithm also provides a valuable hedge against the 
momentum factor when value-weighted portfolios are considered.

In simpler terms, the algorithm – applied to different portfolios ordered by size – was 
able to generate an investment that greatly outperformed the buy and hold strategy out-of-
sample, even after both transaction costs and adjusting returns according to the algorithm’s 
exposure to some of the most widely employed risk factors. Furthermore, exposure to these 
risk factors was generally low or negative, implying that when risk due to these factors is high 
(for example, when the market is trending downward), the algorithm performs even better. It 
should be noted that these risk-adjusted returns were obtained directly from the algorithm’s 
design and, thus, should be generalizable to other portfolios containing time-series patterns. 
Additionally, the algorithm is simpler and much faster than alternatives, such as those using 
genetic programming (cf. Brogaard & Zareei, 2018). Together, these results strengthen the 
notion that using this algorithm represents a competitive choice for building market-timing 
strategies.

Conclusions

This paper has introduced a novel algorithm for automatically discovering anomalies based 
on the time-series predictability of asset returns. The proposed algorithm delivers a market 
timing strategy that decides whether to invest in or continue holding a risky asset or invest 
in or continue holding a riskless asset instead. This decision is made every day using a para-
metric perceptron function of past returns to represent the trading rule. Then, the algorithm 
directly optimizes the trading rule parameters for a maximum alpha using in-sample differ-
ential evolution. In contrast to forecast-based trading rules, which minimize forecast error, or 
technical analysis trading rules, which often reflect traditional or subjective interpretations, 
the proposed algorithm can automatically accommodate any exploitable time-series patterns 
of returns for optimal risk-adjusted returns. Given its design, the algorithm can also incor-
porate transaction costs in the trading rule representation – also differing from conventional 
technical analysis or prediction-based strategies – and deliver optimal alphas in the presence 
of transaction costs.

To demonstrate its capabilities, the algorithm was applied to size-decile portfolios rep-
resenting a cross-section of the U.S. stock market, identifying an unreported out-of-sample 
anomaly using two of the most popular modern asset-pricing models and using different 
weighting schemes to construct the portfolios. The trading strategies obtained reasonably 
good (even as high as 12% annually) risk-adjusted performance in terms of the alpha for 
almost all of the examined portfolios.
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One of the algorithm’s current limitations concerns the complexities of establishing a 
market inefficiency. When testing efficiency, it is well-known that the rejection of efficiency 
can be caused by the market being truly inefficient or by the wrong asset-pricing model 
having been used to define normal returns. That is, reported abnormal returns might be the 
product of true exploitable predictability or the use of an inappropriate set of risk factors. 
Fortunately, if a new set of risk factors is required, and if exploitable patterns remain, the 
algorithm is sufficiently flexible to identify abnormal returns using the new set.

A second limitation of the algorithm is its use of a perceptron instead of a more general 
neural network architecture. Given the attempt to build a minimal working example, using 
a perceptron facilitated avoiding overfitting. Nonetheless, we are currently working towards 
generalizing the algorithm to other architectures, which may ultimately produce even better 
results. Despite this limitation, the present study provides a new avenue for research by offer-
ing the possibility of an algorithm that can both calculate investment strategies that optimize 
the alpha and automatically search for out-of-sample anomalies.

A direct line of future research might involve generalizing the linear trading rule that 
determines purchase-and-sales orders [ *

1( , )tf −
•a R ] to even more general nonlinear alter-

natives to assess whether such alternatives tend towards overfitting. Furthermore, the input 
variables used to construct the trading strategies could easily be extended beyond previous 
returns to incorporate other market variables. The algorithm could also be used to optimize 
other risk-adjusted measures, such as the Sharpe ratio or even total returns. Additionally, 
the algorithm is not restricted to the data selected for this study. Instead, its design makes it 
generalizable to other portfolios featuring exploitable trading patterns.
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