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Abstract. This study conducts a dynamic rolling comparison between the Pareto/NBD model (para-
metric model) and machine learning algorithms (observation-driven models) in customer base 
analysis, which the literature has not comprehensively investigated before. The aim is to find the 
comparative edge of these two approaches under customer base analysis and to define the imple-
mentation timing of these two paradigms. This research utilizes Pareto/NBD (Abe) as representative 
of Buy-Till-You-Die (BTYD) models in order to compete with machine learning algorithms and 
presents the following results. (1) The parametric model wins in transaction frequency prediction, 
whereas it loses in inactivity prediction. (2) The BTYD model outperforms machine learning in 
inactivity prediction when the customer base is active, performs better in an inactive customer 
base when competing with Poisson regression, and wins in a short-term active customer base when 
competing with a neural network algorithm in transaction frequency prediction. (3) The parametric 
model benefits more from a short calibration length and a long holdout/target period, which exhibit 
uncertainty. (4) The covariate effect helps Pareto/NBD (Abe) gain a better predictive result. These 
findings assist in defining the comparative edge and implementation timing of these two approaches 
and are useful for modeling and business decision making.

Keywords: BTYD, parametric model, Pareto/NBD model, observation-driven model, machine 
learning, customer base analysis, non-contractual setting.

JEL Classification: M31, C53.

Introduction

Relationship marketing emphasizes that a firm should maintain long-term relationships with 
its customers, because they help the firm derive more revenue (Benoit & Van den Poel, 2009; 
Gupta et al., 2006; Reinartz & Kumar, 2000). Unlike the situation when relationships between 
firms and customers are governed by a contract, non-contractual relationships commonly ex-
ist in many businesses, but they demand more attention from firms in order to manage their 
customer base. Marketing academics have developed a useful parametric model, the Pareto/
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NBD model (Schmittlein et al., 1987) (Pareto/NBD (SMC), hereafter), to monitor a firm’s 
customer base, and it has since become the golden standard for unearthing firm-customer 
relationships in non-contractual settings (Jerath et al., 2011) and is a high-efficiency model 
that needs only three frugal forms of information (Recency-Frequency-Calibration Length). 
Following this modeling framework, many researchers have promoted some useful variants, 
such as the BG/NBD model (Fader et al., 2005a), MBG/NBD model (Batislam et al., 2007), 
and periodic death opportunity (PDO, hereafter) model (Jerath et al., 2011). Among them, 
Abe (2009) provides a flexible alternative of the Pareto/NBD model (Pareto/NBD (Abe), 
hereafter) that incorporates richer customer characteristics as covariates and thus can utilize 
the increasing availability of customer transaction data with more information besides just 
recency, frequency, and calibration length.

Machine learning is commonly known as an observation-driven model and has perme-
ated into every corner of many different industries (Ahmad et al., 2019; Coussement & De 
Bock, 2013; Smeureanu et  al., 2013). It is able to detect patterns much easier and reuses 
uncovered patterns to predict future data (Murphy, 2012). Moreover, it provides numerous 
modeling candidates, like Logistic Regression (LG, hereafter), Poisson Regression (PR, here-
after), Decision Tree (DT, hereafter), Naïve Bayes (NB, hereafter), Support Vector Machine 
(SVM, hereafter), Random Forest (RF, hereafter), Neural Network Algorithm (NNA, hereaf-
ter), etc., which are easy to employ and could satisfy the needs of firms for discovering more 
valuable information from their customer base. Many studies have utilized machine learning 
in customer base analysis (Buckinx & Van den Poel, 2005; Kumar & Zymbler, 2019; Ngai 
et al., 2009), but BTYD models are relatively unknown by people. Both approaches provide 
solutions for customer base analysis, yet to the best of our knowledge, no previous research 
has conducted a comprehensive comparison between these two approaches under customer 
base analysis. Therefore, the first objective and contribution of this research are investigating 
the predictive edge between Pareto/NBD (Abe) and machine learning algorithms in customer 
base analysis.

Machine learning algorithms in this paper belong to supervised learning, which needs a 
certain time span to prepare the training label. Previous research studies have seldomly tar-
geted the influence of the target/label span on the prediction results. Nie et al. (2011) define 
a customer as a churner who does not conduct any transaction during a 12-month period. 
Coussement and De Bock (2013) consider a gambler as a churner if he/she does not play dur-
ing a 4-month period. Zhao et al. (2016) examine the sensitivity of predictive results to differ-
ent label spans. Because these research studies do not explore the influence of the target/label 
span and holdout/prediction span on results and do not discuss the implementation timing 
between models, the second contribution of this research is to propose a labeling schema 
for modeling and to define the implementation scenario and timing of the two approaches.

The remainder of this paper runs as follows. The next section first reviews the BTYD 
models and explains the differences between the two approaches. Second, it introduces ob-
servation-driven models, including NNA, LG, PR, DT, RF, SVM, and NB, which are com-
monly used in marketing. This study then explores three real-world datasets and explains 
how the data are prepared for comparison. Next, the empirical results herein clarify the 
comparative edge between the parametric model and the observation-driven model. The 
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study then conducts regression analysis to explore the effects of time span, data characteris-
tics, and covariate effect among the comparative differences. Finally, this research concludes 
with discoveries, limitations, and future directions.

1. Model description and specification

Ngai et al. (2009) find that classification and association models have received the most re-
search attraction, with customer retention analysis being the main application focus. Thus, 
DT, RF, SVM, and NB are also included in an inactivity comparison. NNA and LG are the 
main algorithms of machine learning for inactivity prediction. For transaction frequency pre-
diction, NNA and PR are the chosen algorithms that can compete with Pareto/NBD (Abe).

1.1. Parametric model

1.1.1. Pareto/NBD model

Based on a customer’s past transaction history, the Pareto/NBD model forecasts active status 
and purchase volume for a certain future period and builds upon two individual-level be-
havioral processes, the transaction process and the dropout process, which are depicted by 
Poisson distribution and exponential distribution. These two processes are assumed to be in-
dependent across customers, and heterogeneity among the customer base is modeled by two 
Gamma distributions. Following this framework, marketing scientists have accommodated 
this model to meet a wider array of application needs. Fader et al. (2005a) replace the dropout 
process with the Beta-Geometric paradigm (BG/NBD), which assumes that a dropout can 
occur immediately after a purchase. Fader et al. (2010) set up the BG/BB model that uses 
the Bernoulli-Beta paradigm to depict the transaction process, but it ignores the influence 
of previous transactions on present purchase behavior. Jerath et al. (2011) provide a variant, 
named the PDO model, that segregates discrete dropout opportunities from transaction time 
into calendar time. It allows customers to make a decision at a periodic length. These models 
use Maximum Likelihood Estimation (MLE, hereafter) to approximate the parameters, as it is 
an efficient method for estimating the Pareto/NBD model, but it encounters a severe problem 
due to numerous evaluations of the Gaussian Hypergeometric Function (Fader et al., 2005a; 
Ma & Liu, 2007).

Ma and Liu (2007) utilize Markov Chain Monte Carlo (MCMC, hereafter) for the es-
timation of Pareto/NBD (SMC) in order to solve the estimation burden of MLE, but they 
leave the derivations of the Pareto/NBD model intact (Singh et al., 2009). Abe (2009) takes 
advantage of the hierarchical Bayes framework (HB, hereafter) and MCMC and utilizes data 
augmentation (Tanner & Wong, 1987) to simplify the likelihood function when an unobserv-
able lifetime and inactivity status are introduced as latent variables. In addition, he replaces 
the Gamma-Gamma prior distribution with the multivariate normal distribution to enable 
the correlation between the two processes and to introduce the covariate effect. His efforts 
improve computation efficiency and directly achieve useful individual-level estimations. In 
his empirical study, Pareto/NBD (Abe) with covariates performs better than that without 
covariates and demonstrates that recency-frequency could be conjuncted with a customer’s 



1734 S.-M. Xie. Comparative models in customer base analysis: parametric model and observation-driven...

characteristics and other behavior variables into customer base analysis. Platzer and Reutterer 
(2016) model the “clumpiness” idea raised in Zhang et al. (2014) in a more general timing 
pattern to capture regularity across customers and incorporate regularity into the Pareto/
NBD model (named Pareto/GGG), but it cannot incorporate covariates in the case of the 
Gamma-Gamma-Gamma prior. Based on the above-mentioned improvements of Pareto/
NBD (Abe) and its implementation advantages (Abe, 2009; Bernat, 2019; Korkmaz et al., 
2013), this research employs Pareto/NBD (Abe) as the representative of BTYD models in 
order to compare with machine learning algorithms under customer base analysis.

1.1.2. Basic differences between the parametric model and observation-driven model

Before beginning the comparison, this study evaluates the parametric model versus the 
observation-driven model. Findings show that some basic differences between these two ap-
proaches may influence the acknowledgment of BTYD models in the business world.

HB could avoid the overfitting values through population distribution so as to structure 
dependency into the parameters (Dew & Ansari, 2018; Gelman et al., 2013). Pareto/NBD 
(Abe) is a parametric model – that is, each datapoint is used to fit its own likelihood, and 
then it maximizes the posterior function by MCMC. This means each datapoint has a series 
of parameter draws to achieve maximum a posteriori by marginalizing over all possible pa-
rameter choices. However, it may be too optimistic to use MCMC to maximize the posterior, 
due to the following reasons. (1) Irregularity transaction behavior or heterogeneity exists in 
the customer cohort, but with group characteristics. Individual estimation may dismiss valu-
able information from the group. (2) The aggregate information of transaction records may 
be insufficient enough to formulate an accurate distribution to depict these customers’ true 
behavioral patterns via recency-frequency, thus leading to a greater risk of over-explanation.

Contrary to Pareto/NBD (Abe), the observation-driven model uses all datapoints to train 
the parameters on a universal aspect. As a learning algorithm, it learns the patterns of the 
data and not just one datapoint (Murphy, 2012; Witten et al., 2016). Hence, the weights of 
the observation-driven model capture the majority of characteristics in the customer cohort, 
which could be used to predict the out-of-sample. In addition, machine learning algorithms 
are much more flexible than Pareto/NBD (Abe) at adjusting their structure and meeting dif-
ferent kinds of data. Unlike the parametric model that makes several stringent assumptions 
on a limited number of variables, machine learning provides numerous innovative algorithms 
for marketers to handle a voluminous amount of data (Cui et al., 2006).

1.2. Observation-driven model

1.2.1. Neural Network Algorithm (NNA)

NNA is a network structure composed of Input Layer, Hidden Layer(s), and Output/Target Layer. 
A layer consists of neurons that control data transformation from the previous layer to the next 
layer. Between layers, neurons are connected so as to conduct the data stream from Input Layer 
to Output/Target Layer. This study adopts the fully connected neural network rather than other 
complex/deep NNAs, such as a Long Short-term Memory Network (LSTM) (Sifa et al., 2018) and 
Convolutional Neural Network (CNN) (Chen et al., 2018; Timoshenko & Hauser, 2019).
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NNA can handle non-linear relationships between variables (West et al., 1997), and Fader 
et al. (2005b) find a non-linear relationship between recency-frequency and future transac-
tions. In retention analysis, Ferreira et  al. (2004) note that NNA dominates at inactivity 
prediction, and the best model has a structure with 15 hidden units. Sharma and Panigrahi 
(2011) also adopt a neural network-based approach for predicting inactivity, and the predic-
tion accuracy of their proposed model exceeds 92%. The flexibility of the neural network is 
that it can be integrated with other models to generate a better prediction value. Hadden et al. 
(2007) join NNA with Genetic Algorithm, presenting empirical results that their model can 
powerfully predict customer inactivity.

To the best of our knowledge, there are scant pieces of research about transaction fre-
quency prediction via NNA. Sifa et al. (2015) adopt the Poisson Regression Tree to predict 
the number of future purchases, by assuming a Poisson distribution for the purchases. How-
ever, the result is a binary tree that does not sufficiently utilize the meaning of “purchases”. 
Sifa et al. (2018) focus on lifetime value prediction over a long period with 7 days of informa-
tion, showing that the purchase amount and the number of previous purchases are the most 
informative features for predicting future customer lifetime values. They further find that 
transaction frequency is one of the most important features, but they are unable to provide 
a way to estimate the transaction frequency in the future.

NNA can easily be adapted to fit continuous variables when the loss function and activa-
tion function are replaced. One can utilize NNA with the Sigmoid function as the activation 
function and with Categorical Cross-Entropy as the loss function for fitting the active status. 
In transaction frequency, NNA is adopted with the tanh function in the hidden layer and 
Relu function in the output layer as the activation function and with Mean Square Error as 
the loss function. Thus, this paper uses trial-and-error to select the hidden nodes in the hid-
den layer and shows that NNA with 10 hidden nodes is able to generate the best predictive 
accuracy.

1.2.2. Logistic Regression (LG)

LG is a statistical technique that uses a logit transformation to map the outcome values from 
negative infinity to positive infinity, making it naturally suitable for inactivity prediction. 
Neslin et al. (2006) find that LG is commonly used by both academia and practitioners. In 
spite of Random Forest consistently performing the best, LG shows a similar prediction per-
formance as both Random Forest and automatic relevance determination neural networks 
(Buckinx & Van den Poel, 2005). Nie et al. (2011) use credit card data of a Chinese bank to 
predict churners via Decision Tree and Logistic Regression, showing that LG performs better 
than Decision Tree in churn prediction.

1.2.3. Poisson Regression (PR)

One of the individual-level hypotheses of Pareto/NBD, the transaction process, follows a 
Poisson distribution. In transaction frequency analysis, the commonly used linear model for 
count data prediction is PR, which is a type of a generalized linear model where the response 
variable follows a Poisson distribution. Hence, this research considers PR for transaction fre-
quency prediction. Coxe et al. (2009) summarize Poisson Regression and its variants in order 
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to model count data. Some articles have also investigated the problems and the adaptations of 
PR at fitting count data (Gardner et al., 1995; Ver Hoef & Boveng, 2007). Trinh et al. (2014) 
propose the Poisson log-normal distribution, which replaces the Gamma distribution (prior 
distribution) with the log-normal distribution, for future purchase prediction, thus showing 
better performance toward buyer behavior than the negative binomial distribution.

1.2.4. Decision Tree (DT)

DT selects a variable’s discernibility from high to low by information entropy. The commonly 
used evaluation methods are Information Gain, Information Gain Ratio, and Gini Index. 
This research utilizes DT with Information Gain. Hadiji et al. (2014) find that DT performs 
better than Neural Network Algorithm, Logistic Regression, and Naïve Bayes in terms of the 
weighted averaged F1-score. Hung et al. (2006) present that both Neural Network Algorithm 
and Decision Tree perform best at predicting churn, which helps a company know which 
customers will drop out. The results of DT are easily understandable and are able to achieve 
interpretable rules to instruct the prediction. Keramati et al. (2016) apply DT at churner pre-
diction and extract the specific features of churners, thus helping bank managers to identify 
churners in the future.

1.2.5. Random Forest (RF)

RF is an ensemble learning algorithm that can solve the overfitting problem. It uses the fea-
ture of bagging to select those features that help achieve tree growth (Hastie et al., 2009). Bu-
rez and Van den Poel (2009) adopt the Weighted Random Forest in churn prediction, which 
performs significantly better than the Random Forest classifier. When denoting imbalanced 
data, the predictive class will be biased. Xie et  al. (2009) thus incorporate both sampling 
techniques and cost-sensitive learning in RF to formulate an improved balanced random 
forest (IBRF). They find that the proposed algorithm performs better in churn prediction 
than other classifiers like the artificial neural networks, decision trees, and class-weighted 
core support vector machines (CWC-SVM).

1.2.6. Support Vector Machine (SVM)

For inactivity prediction, SVM targets to find a hyperplane that can segregate the classes. 
The hyperplane is supported by some representative datapoints to enlarge the gap between 
classes. Xia and Jin (2008) compare SVM with Decision Tree, Artificial Neural Network, 
Naïve Bayes, and Logistic Regression in the telecommunications industry, noting that SVM 
performs best in churn prediction. Coussement and Van den Poel (2008) combine SVM 
with a parameter-selection technique, which then executes better than Logistic Regression. 
However, the dataset has many features that are not linearly separable. The kernel function 
helps SVM to map the non-linear relationship into a high-dimensional space where the 
datapoints are linearly separable. Chen et al. (2012) formulate a hierarchical multiple kernel 
support vector machine (HMK-SVM) to compete with currently available classifiers, such as 
Decision, Boosting, Logistic Regression, etc. and discover that HMK-SVM exhibits outstand-
ing performance under contractual and non-contractual settings. 
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1.2.7. Naïve Bayes (NB)

NB is a probabilistic model based on the Bayesian theorem that assumes attributes are condi-
tionally independent. NB has been adopted by many research studies, but does not perform 
best among the classifiers (Buckinx et al., 2002; Saradhi & Palshikar, 2011; Vafeiadis et al., 
2015). Huang et al. (2012) find that Naïve Bayes performs badly when facing a large number 
of features. They suggest using a dimension reduction technique, like Principal Component 
Analysis, to first transform features to a low dimension and then to employ Naïve Bayes in 
classification. This bad prediction performance may come from the independent assumption, 
which ignores the relationship/correlation between features.

2. Datasets and experimental set-up

2.1. Datasets

This study employs three different types of datasets – Mobile Game (GAME), Online Music 
Retailing (CDNOW), and Online Grocery Retailing (GROCERY) – in the comparison be-
tween Pareto/NBD (Abe) and machine learning. Table 1 reports data description for these 
three datasets.

Table 1. Data description

Key characteristic GAME CDNOW GROCERY

Start date 2016-08-11 1997-01-01 2006-01-01
End date 2017-09-28 1998-06-30 2007-12-30
Type Daily Daily Daily
Overall observations 189 339 14 658 10 483
Number of customers 5000 5000 1525
Sales
  Q25 Sales 20.00 14.49
  Median Sales 50.00 25.98
  Q75 Sales 270.00 44.10
  Average sales per customer 22 790.90 105.85

The GAME dataset comes from a top-3 mobile game company in Taiwan. This dataset has 
a total of 5000 customers from 413 days of observations between 2016-08-11 and 2017-09-28. 
Marketing scientists have utilized the CDNOW dataset in many pieces of customer base pre-
diction (e.g., Fader & Hardie, 2001; Romero et al., 2013; Wübben & Wangenheim, 2008; Zhang 
et al., 2014). To keep the same sample points as the GAME dataset, this research randomly sam-
ples 5000 customers. The observations are from a 545-day time window between 1997-01-01 and 
1998-06-30. The GROCERY dataset is available from the BTYDplus package of R and is from an 
online retailer offering a broad range of grocery categories. There is no other information except 
customer ID and transaction date in this dataset. There are 10 483 transaction records made by 
1525 customers during the observation period from 2006-01-01 to 2007-12-30.
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The covariates are the in-App purchase in the GAME dataset and the expense in the CD-
NOW dataset. Both are named as “sales” in this research. From the statistics summary in 
Table 1, customers in the GAME dataset consume 22790.90 game coins on average, but this 
presents a positive skew. The distribution of individual transaction amount shows more asym-
metry in the CDNOW dataset. Finally, the GROCERY dataset is naturally without covariates.

This research samples 50 customers of each dataset and visualizes their transaction re-
cords through timing patterns shown in Figure 1. The research finds that customers have 
unique transaction patterns in the different datasets:  most customers are heavy users of 
GAME at the beginning but never come back after the last transaction; some customers do 
make repeat transactions across a long time period; most customers have a large inter-trans-
action time between transactions in CDNOW; and GROCERY has the most active customer 
base. Since differential transaction patterns exist in different datasets, the conclusion must be 
incorrect if this research only conveys one comparison between the parametric model and 
the observation-driven model. The next section introduces the dynamic analytical procedure 
for iterative comparison purposes.

Figure 1. Fifty sampled customers’ timing pattern in the three datasets

2.2. Estimation procedure

This research selects the supervised algorithms that need a target variable to train the algo-
rithm’s weights. As Figure 2 presents, they need the input data in ( 0t , *–T T ] and the target 
variable in ( *–T T , T ], where 0t  is the first-ever transaction date, T  is calibration date, and 

*T  is length of holdout/target period. For a fair comparison in testing between these two 
approaches, the information in the calibration period makes up the input variables – that is, 
recency-frequency and calibration length (covariates will be added if the dataset has more 
variables) are the input variables for the predictive comparison in (T , *T T+ ].

Figure 2. Illustration of data preparation for customer base prediction
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Before moving on, this study must make a clarification about “Why does the Target 
Period Have an Equal Length as the Holdout Period?” First, the target variable in machine 
learning algorithms is extracted from the target period for training purposes, and thus the 
target period may affect testing accuracy. The equivalence of the target period and holdout 
period can eliminate the influence of the time span in testing. Second, the time span influ-
ences whether the customer is active in inactivity prediction. For example, there is higher 
inactivity potential in the seven-day target period than that in a one-day target period, be-
cause customers can flip the coin seven times rather than once. Third, it makes sense in the 
real business world when machine learning algorithms are utilized for predicting transactions 
of customers in a short-term or long-term period.

Figure 3. Illustration of the dynamic analytical procedure

The dynamic analytical procedure aims to clarify the influence of the time span on pre-
diction accuracy. Figure 3 visualizes this dynamic comparison where the calibration length 
is on the horizontal axis, and the holdout/target period is on the vertical dimension. These 
two-dimensional scales split the comparison space into 91 combinations if the holdout/target 
length is constrained to be smaller than the calibration length. In addition, the holdout/target 
length is arranged weekly so that it satisfies managerial needs. In order to fully utilize the 
information of the dataset, each cell in Figure 3 is the basic unit where Pareto/NBD (Abe) 
competes with machine learning algorithms.

Figure 4 illustrates two specific examples to unravel the data preparation and the dynamic 
comparison when setting 21 days as the calibration period and when the target period and 
holdout period are set to 1 day and 7 days, respectively. These two comparisons are the two 
scenarios marked by a pentagram in Figure 3.
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2.3. Evaluation index

This research uses two evaluation methods to assess the best model in each cell in Figure 3. 
This research adopts accuracy for inactivity prediction and Mean Absolute Error ( MAE ) for 
transaction frequency prediction.

1. Accuracy for Inactivity Evaluation
The confusion matrix is a commonly used evaluation method to summarize the perfor-

mance of a classifier for the categorical classification task. Inactivity classification is a binary 
classification task, and the accuracy is then the ratio of the exact classified instances to the 
whole instances. 

 True Positive + True NegativeAccuracy =
True Positive + False Positive + True Negative + False Negative

. (1)

2. MAE  for Transaction Frequency Evaluation
This research focuses on the average errors in transaction frequency prediction where all 

individual differences have equal weight. MAE  is utilized for predictive ability comparison 
between the two approaches.

 
1

1 ˆMAE – ,
n

i i
i

y y
n =

= ∑   (2)

where ˆiy  is the fitted number of purchases, iy  is the actual future transaction frequency, 
and n  denotes the number of customers.

3. Empirical results

This section investigates the empirical results of the three real-world datasets and compares 
the predictive edge between the two mentioned approaches. This study defines a “winner” 
in the combination as the model/algorithm having the best prediction accuracy. Table 2 and 
Table 4 show the number and percentage of different models, Figure 5 and Figure 6 show 
the specific winner in each cell if it has the best prediction accuracy, and Table 3 and Table 5 

Figure 4. Specific interpretation of the analysis procedure
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conclude the statistical testing results between the parametric model and observation-driven 
models, respectively.

3.1. Inactivity prediction

LG is generally the best model in the comparisons, because it has the highest winning num-
bers in the real-world datasets. Pareto/NBD (Abe) loses its predictive edge in all three real-
world datasets, because it is unable to produce better accuracy than the observation-driven 
models. More importantly, the incorporated covariate seems inconducive for Pareto/NBD 
(Abe) to improve its prediction power, which implies that machine learning benefits more 
from the covariate.

Table 2. Number and percentage of different models winning at inactivity prediction

Dataset DT LG NNA PNBD RF SVM NB

GAME 1
(1.10%)

25
(27.47%)

18
(19.78%)

17
(18.68%)

9
(9.89%)

21
(23.08%)

0
(0.00%)

GROCERY 11
(12.09%)

33
(36.26%)

12
(13.19%)

0
(0.00%)

18
(19.78%)

17
(18.68%)

0
(0.00%)

CDNOW 11
(12.09%)

22
(24.18%)

37
(40.66%)

0
(0.00%)

10
(10.99%)

11
(12.09%)

0
(0.00%)

Figure 5 shows that Pareto/NBD (Abe) is almost defeated by machine learning algorithms 
and could only protect its absolute prediction advantage for the long calibration length and 
holdout length in the GAME dataset. For this classification problem, different machine learn-
ing algorithms provide marked prediction accuracy even without any behavioral hypothesis 
like the parametric model. Moreover, NB does not show up in the best estimation results 
above, as it is a probabilistic model for point estimation with prior information from the 
training data. Thus, the rule-based model outperforms the probabilistic model, based on 
the behavioral hypothesis. LG, one of the simplest machine learning algorithms, is able to 
generate better predictive accuracy than Pareto/NBD (Abe).

Table 3. Paired t-test for inactivity prediction

Dataset PNBD vs. 
BEST

PNBD vs. 
DT

PNBD vs. 
LG

PNBD vs. 
NNA

PNBD vs. 
RF

PNBD vs. 
SVM

PNBD vs. 
NB

GAME –0.0056
(0.0180)

0.0031
(0.0897)

–0.0047
(0.0086)

–0.0038
(0.0040)

–0.0007
(0.7258)

0.0056
(0.0254)

0.0470
(0.0000)

GROCERY –0.4241
(0.0000)

–0.4059
(0.0000)

–0.4211
(0.0000)

–0.3630
(0.0000)

–0.4086
(0.0000)

–0.4095
(0.0000)

–0.3720
(0.0000)

CDNOW –0.1349
(0.0000)

–0.1321
(0.000)

–0.1336
(0.0000)

–0.1340
(0.0000)

–0.1327
(0.0000)

–0.1312
(0.0000)

–0.0659
(0.0000)

Note:  BEST means the best machine learning algorithm that has the best prediction accuracy in each 
combination.
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Figure 5. Best model at inactivity prediction
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Aside from winner counting, this study uses the paired t-test to find the statistical signifi-
cance between models. Table 3 shows that Pareto/NBD (Abe) has a significant insufficient 
predictive power over the machine learning algorithms in “PNBD vs. BEST”. Pareto/NBD 
(Abe) is totally defeated in the CDNOW dataset and GROCERY dataset, but it has a better 
predictive edge over DT, SVM, and NB in the GAME dataset. This means that Pareto/NBD 
(Abe) loses in a general comparison, but wins in some one-to-one comparisons. Coupled 
with the timing pattern in Figure 1 and the mean of an individual in each dataset, Table 3 
demonstrates that the machine learning algorithm wins by being more 13% or higher than 
Pareto/NBD (Abe) in infrequent datasets (CDNOW and GROCERY), but may lose in a 
frequent dataset (GAME).

3.2. Transaction frequency prediction

As an evaluation method for transaction frequency,  measures the disagreement between the 
true transaction frequency and the predicted transaction frequency. This section compares 
Pareto/NBD (Abe) with NNA and PR at transaction frequency prediction.

Table 4. Number and percentage of different models winning at transaction frequency prediction

Dataset NNA PNBD PR

GAME 0  
(0.00%)

35  
(38.46%)

56  
(61.54%)

GROCERY 1  
(1.10%)

89  
(97.80%)

1  
(1.10%)

CDNOW 4  
(4.40%)

87  
(95.60%)

0  
(0.00%)

NNA is completely beaten in this comparison. Pareto/NBD (Abe) dominates in this quan-
tity’s prediction, especially in the CDNOW dataset and the GROCERY dataset where it wins 87 
scenarios and 89 scenarios, respectively. PR shows overwhelming advantages over NNA and is 
better than Pareto/NBD (Abe) in the GAME dataset. The included covariate has no covariate 
effect, because Pareto/NBD (Abe) has exactly the same performance in the GROCERY dataset 
(without covariate) as in the CDNOW dataset (with covariate). The model shows inconsistent 
performance in different datasets, which may be related to features of the customer base.

Figure 6 shows that the winning position of Pareto/NBD (Abe) is different in the three 
datasets. It dominates the CDNOW and GROCERY datasets where the calibration length 
and the target/holdout lengths have no influence on its performance, but unexpected per-
formance appears in the GAME dataset. PR outperforms Pareto/NBD (Abe) and NNA 1) in 
the longest calibration length and the target/holdout length and 2) in the short calibration 
length and the target/holdout length, but Pareto/NBD (Abe) wins in the median calibration 
length and the long target/holdout length.

Different from inactivity prediction, Pareto/NBD (Abe) shows overwhelming predictive 
power over NNA and PR at transaction frequency forecasting. The customer-level behavioral 
hypothesis of Pareto/NBD (Abe) may contribute to the more accurate transaction frequency 
prediction. 
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Figure 6. Best model at transaction frequency prediction
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Table 5. Paired t-test in transaction frequency prediction

Dataset PNBD vs. BEST PNBD vs. NNA PNBD vs. PR

GAME 0.0491
(0.0087)

0.3299
(0.000)

0.0547
(0.0072)

GROCERY 0.0453
(0.000)

0.0688
(0.0000)

0.1585
(0.1038)

CDNOW 0.0132
(0.0000)

0.0135
(0.0000)

5.5156
(0.0357)

Note: BEST means the best machine learning algorithm that has the best prediction accuracy in each 
combination.

3.3. Predictive difference decomposition

This research defines two dependent variables, PNBD competitorA Ac–cc c  and competitor PNBDMAE–MAE
competitor PNBDMAE–MAE , to clarify the advantage of Pareto/NBD (Abe) over machine learning algorithms. 

They have a positive value if Pareto/NBD (Abe) has a higher predictive accuracy over the se-
lected machine learning algorithms. As with Table 1 data description and Figure 1 customer 
timing patterns, customers have different transaction patterns among different datasets. This 
study uses the average recency and average frequency of a customer base in the calibra-
tion period as the behavioral characteristics to examine their contribution for a predictive 
comparison. It includes the length of calibration period and holdout/target period to realize 
the effect of a time span and formulates the dummy variable to analyze the covariate effect.

Table 6. Regression results

De pen-
dent 

variable

Inactivity Transaction frequency

PNBD NNA–Acc Acc PNBD LGc –Ac Acc NNA PNBDM AE–AE M PR PNBDM AE–AE M

log(Avg 
(Re cen-
cy))

0.185*** 0.167*** –0.070* 2.181

(0.027) (0.023) (0.038) (2.795)

log(Avg 
(Fre qu-
en cy))

0.045*** 0.045*** 0.120*** –2.097***

(0.008) (0.007) (0.011) (0.799)

log(Time 
span for 
Calib-
ration)

–0.170*** –0.155*** –0.062 –2.045

(0.041) (0.036) (0.058) (4.293)

log(Time 
span for 
Holdout/
Target)

0.058*** 0.058*** 0.074*** 1.508**

(0.007) (0.006) (0.010) (0.728)

Cova-
riate

0.420*** 0.464*** 0.006 5.065*

(0.028) (0.024) (0.039) (2.890)
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De pen-
dent 

variable

Inactivity Transaction frequency

PNBD NNA–Acc Acc PNBD LGc –Ac Acc NNA PNBDM AE–AE M PR PNBDM AE–AE M

Intercept
–0.284** –0.362*** 0.348** –0.792

(0.122) (0.106) (0.171) (12.764)

R2 0.710 0.788 0.432 0.048

Adjusted 
R2 0.705 0.784 0.422 0.030

Notes: PNBD: Pareto/NBD (Abe); *p < 0.01, **p < 0.001, ***p < 0.0001.

If one considers significance, then the above regression result in Table 6 indicates the 
following. 

For inactivity prediction, Pareto/NBD (Abe) performs better than NNA or LG when the 
calibration period is short and the holdout/target period is long. Pareto/NBD (Abe) excels in 
a long-term active customer base, which is characterized by a relative larger average transac-
tion frequency and recency.

Comparing NNA at transaction frequency prediction, Pareto/NBD (Abe) performs bet-
ter at long-term prediction for a short-term active customer base, which is characterized by 
a large average transaction frequency and small average recency. When comparing to PR, 
Pareto/NBD (Abe) dominates in long-term prediction for an inactive customer base. Just 
like inactivity prediction, Pareto/NBD (Abe) can sustain more severe uncertainty for a long 
target/holdout period.

The covariate has an insignificant effect in a comparison between Pareto/NBD (Abe) and 
NNA on transaction frequency prediction, while Pareto/NBD (Abe) benefits more when 
competing with PR. Conversely, the covariate has a significant effect on inactivity prediction. 
More customer purchasing information helps Pareto/NBD (Abe) gain higher predictive ac-
curacy than NNA and LG.

3.4. Discussions 

In the visualized results and the absolute winner counting, the findings show that Pareto/
NBD (Abe) cannot compete with machine learning at inactivity prediction, but nearly rules 
over all the transaction frequency prediction scenarios. The results of the paired t-test in-
dicate that the parametric model has a dominant edge in transaction frequency prediction, 
but is almost defeated at inactivity prediction even with some winning in the GAME dataset. 
Therefore, the relationship between machine learning and Pareto/NBD (Abe) is stable over 
different combinations of calibration period and holdout/target period.

The regression results in Table 6 demonstrate that Pareto/NBD (Abe) is an expert at inactivity 
prediction when the customer base is long-term active. For transaction frequency prediction, 
Pareto/NBD (Abe) wins for an active customer base when competing with NNA and for an 
inactive customer base when competing with PR. Moreover, Pareto/NBD (Abe) has a dominant 
advantage in a short calibration length and long holdout/target length, when the training dataset 

End of Table 6 
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comprises severe uncertainty. Different from inactivity prediction, Pareto/NBD (Abe) can only 
benefit from the covariate when comparing with PR. Additionally, the covariate effect does not 
exist in the absolute winning comparison between approaches, but more purchasing information 
helps Pareto/NBD (Abe) gain a higher predictive edge over machine learning.

Conclusions

Following the achieved results in this paper’s empirical analysis, winner counting and the 
paired t-test in general indicate that the parametric model wins at transaction frequency 
prediction and that the observation-based model dominates for inactivity prediction. Pareto/
NBD (Abe) has a predominant advantage under a short calibration period and a long target/
holdout period where machine learning performs badly. Thus, this research examines the 
influence of data characteristics on a model’s comparative edge given the average recency 
and average frequency of a customer base. Findings show that Pareto/NBD (Abe) wins at 
inactivity prediction when the customer base is active. Given an inactive customer base, Pa-
reto/NBD (Abe) outperforms PR at transaction frequency prediction, but loses its predictive 
edge when competing with NNA. Furthermore, Pareto/NBD (Abe) benefits more from the 
covariate effect, which helps to narrow the predictive difference between two approaches.

The empirical results define the comparative edge of these two approaches and thus offer 
some managerial implications. First, managers and practitioners can select a specific mod-
eling approach to obtain valuable information from the data. This study suggests that the 
observation-driven model may be a replacement for the parametric model for inactivity 
prediction, but the empirical results show that the latter has a better fit than the former at 
transaction frequency prediction. This provides evidence why the classification has received 
the most research attraction and that customer retention analysis is the main application fo-
cus. Hence, managers and practitioners can utilize machine learning for inactivity prediction 
and the BTYD model for transaction frequency prediction. Besides the inactivity prediction, 
managers have the ability to make a better inventory management if they combine customer 
image and basket analysis with the transaction frequency predicted by the parametric model. 
In other words, managers can make inventory management at individual level when they 
know what the customer looks like by customer image, what his/her most favorite goods or 
services are by basket analysis, and the times that the customer will revisits.

Second, the results of regression analysis help to clarify the implementation timing of 
the two approaches. For example, the parametric model has high tolerance for uncertainty 
in the short calibration length and the long holdout/target length. Practitioners may benefit 
from this discovery by obtaining a more accurate prediction when facing a barren dataset. 
Furthermore, the covariate is helpful at distinguishing the implementation timing and com-
parative edge for both inactivity prediction and transaction frequency prediction, which 
means that more customer purchasing information will make the model’s prediction better. 
Hence, the covariate helps narrow the predictive difference between the two approaches, and 
Pareto/NBD (Abe) can gain better prediction results. Hence, business analysts depend on the 
richness of data to apply the right model at right time, then to support business managers in 
business monitoring and decision making. 
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Third, this research provides a label preparation schema that eliminates the influence and 
noise of the target span and holdout period. This schema differs from previous studies that 
only convey limited comparisons and do not fully utilize information at different calibration 
lengths. Furthermore, managers and practitioners can harness the labeling schema in this 
research to gain a more reasonable and accurate predictive model under different calibration 
lengths and holdout periods. Besides the technical aspect of the proposed labelling schema, 
it empowers managers to connect their business projects with business intelligence (BI) from 
the decision making aspect. Hence, they will know how many resources they can coordinate 
and allocate to their projects in a reasonable holdout period.

Aside from these plentiful results and benefits, three future directions offer targets of 
interest for follow-up research. The main limitation of this present study is that the time-
invariant variable is absent, which may benefit the comparison if datasets include various 
characteristics on customers. In addition, only one covariate is included herein, which may 
not be able to fully employ the covariate effect into the decomposition of the compara-
tive edge. Hence, it would be worth it to conduct a further study if more time-invariant or 
time-variant variables are available. Moreover, the only adopted BTYD model is Pareto/NBD 
(Abe), which may result in an unfair and unbalanced comparison. For a non-covariate com-
parison, several BTYD models can be made available for competing with machine learning 
under customer base analysis, and future research should thus be able to obtain more robust 
and comprehensive results.

Different datasets in different calibration periods have different customer base charac-
teristics. This research uses the average recency and average frequency of a customer base 
to explain the predictive differences therein, but there are some readily available concepts 
that can be made substitutes, such as the previously mentioned “clumpiness” or “regular-
ity”. Additionally, this research utilizes the standard version of machine learning algorithms. 
Other deep learning structures can satisfy the comparison needs, such as LSTM and CNN. 
These network structures should meet researchers’ desire to obtain more useful information 
for comparison. These continuous models are helpful at exploring sequential data and may 
obtain more accurate predictions than machine learning. Lastly, future research can employ 
an ensemble machine learning algorithm and deep learning structure to explore customer 
data and purchasing data simultaneously.

References

Abe, M. (2009). “Counting your customers” one by one: A hierarchical Bayes extension to the Pareto/
NBD model. Marketing Science, 28(3), 541–553. https://doi.org/10.1287/mksc.1090.0502

Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine 
learning in big data platform. Journal of Big Data, 6(1), 28. 
https://doi.org/10.1186/s40537-019-0191-6

Batislam, E. P., Denizel, M., & Filiztekin, A. (2007). Empirical validation and comparison of models for 
customer base analysis. International Journal of Research in Marketing, 24(3), 201–209. 
https://doi.org/10.1016/j.ijresmar.2006.12.005

Benoit, D. F., & Van den Poel, D. (2009). Benefits of quantile regression for the analysis of customer 
lifetime value in a contractual setting: An application in financial services. Expert Systems with Ap-
plications, 36(7), 10475–10484. https://doi.org/10.1016/j.eswa.2009.01.031

https://doi.org/10.1287/mksc.1090.0502
https://doi.org/10.1186/s40537-019-0191-6
https://doi.org/10.1016/j.ijresmar.2006.12.005
https://doi.org/10.1016/j.eswa.2009.01.031


Journal of Business Economics and Management, 2020, 21(6): 1731–1751 1749

Bernat, J. R. (2019). Modelling customer lifetime value in a continuous, non-contractual time setting. 
http://hdl.handle.net/2105/45923   

Buckinx, W., Baesens, B., Van den Poel, D., Van Kenhove, P., & Vanthienen, J. (2002). Using machine 
learning techniques to predict defection of top clients. WIT Transactions on Information Commu-
nication Technologies, 28. 

Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: Partial defection of behaviourally loyal 
clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 
252–268. https://doi.org/10.1016/j.ejor.2003.12.010

Burez, J., & Van den Poel, D. (2009). Handling class imbalance in customer churn prediction. Expert 
Systems with Applications, 36(3), 4626–4636. https://doi.org/10.1016/j.eswa.2008.05.027

Chen, P. P., Guitart, A., del Río, A. F., & Periáñez, Á. (2018). Customer lifetime value in video games 
using deep learning and parametric models. In 2018 IEEE International Conference on Big Data (Big 
Data), (pp. 2134–2140). IEEE. https://doi.org/10.1109/BigData.2018.8622151

Chen, Z. Y., Fan, Z. P., & Sun, M. H. (2012). A hierarchical multiple kernel support vector machine 
for customer churn prediction using longitudinal behavioral data. European Journal of Operational 
Research, 223(2), 461–472. https://doi.org/10.1016/j.ejor.2012.06.040

Coussement, K., & De Bock, K. W. (2013). Customer churn prediction in the online gambling industry: 
The beneficial effect of ensemble learning. Journal of Business Research, 66(9), 1629–1636. 
https://doi.org/10.1016/j.jbusres.2012.12.008

Coussement, K., & Van den Poel, D. (2008). Churn prediction in subscription services: An application 
of support vector machines while comparing two parameter-selection techniques. Expert Systems 
with Applications, 34(1), 313–327. https://doi.org/10.1016/j.eswa.2006.09.038

Coxe, S., West, S. G., & Aiken, L. S. (2009). The analysis of count data: A gentle introduction to Poisson 
regression and its alternatives. Journal of Personality Assessment, 91(2), 121–136. 
https://doi.org/10.1080/00223890802634175

Cui, G., Wong, M. L., & Lui, H.-K. (2006). Machine learning for direct marketing response models: 
Bayesian networks with evolutionary programming. Management Science, 52(4), 597–612. 
https://doi.org/10.1287/mnsc.1060.0514

Dew, R., & Ansari, A. (2018). Bayesian nonparametric customer base analysis with model-based visu-
alizations. Marketing Science, 37(2), 216–235. https://doi.org/10.1287/mksc.2017.1050

Fader, P. S., & Hardie, B. G. (2001). Forecasting repeat sales at CDNOW: A case study. Interfaces, 
31(3_suppl.), S94-S107. https://doi.org/10.1287/inte.31.4.94.9683

Fader, P. S., Hardie, B. G., & Lee, K. L. (2005a). “Counting your customers” the easy way: An alternative 
to the Pareto/NBD model. Marketing Science, 24(2), 275–284. 
https://doi.org/10.1287/mksc.1040.0098

Fader, P. S., Hardie, B. G., & Lee, K. L. (2005b). RFM and CLV: Using iso-value curves for customer base 
analysis. Journal of Marketing Research, 42(4), 415–430. https://doi.org/10.1509/jmkr.2005.42.4.415

Fader, P. S., Hardie, B. G., & Shang, J. (2010). Customer-base analysis in a discrete-time noncontractual 
setting. Marketing Science, 29(6), 1086–1108. https://doi.org/10.1287/mksc.1100.0580

Ferreira, J., Vellasco, M. M., Pacheco, M. A. C., Carlos, R., & Barbosa, H. (2004). Data mining techniques 
on the evaluation of wireless churn [Conference presentation]. European Symposium on Artificial 
Neural Networks, Bruges, Belgium.

Gardner, W., Mulvey, E. P., & Shaw, E. C. (1995). Regression analyses of counts and rates: Poisson, 
overdispersed Poisson, and negative binomial models. Psychological Bulletin, 118(3), 392. 
https://doi.org/10.1037/0033-2909.118.3.392

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data 
analysis (3rd ed.). Taylor & Francis. https://doi.org/10.1201/b16018

http://hdl.handle.net/2105/45923
https://doi.org/10.1016/j.ejor.2003.12.010
https://doi.org/10.1016/j.eswa.2008.05.027
https://doi.org/10.1109/BigData.2018.8622151
https://doi.org/10.1016/j.ejor.2012.06.040
https://doi.org/10.1016/j.jbusres.2012.12.008
https://doi.org/10.1016/j.eswa.2006.09.038
https://doi.org/10.1080/00223890802634175
https://doi.org/10.1287/mnsc.1060.0514
https://doi.org/10.1287/mksc.2017.1050
https://doi.org/10.1287/inte.31.4.94.9683
https://doi.org/10.1287/mksc.1040.0098
https://doi.org/10.1509/jmkr.2005.42.4.415
https://doi.org/10.1287/mksc.1100.0580
https://doi.org/10.1037/0033-2909.118.3.392
https://doi.org/10.1201/b16018


1750 S.-M. Xie. Comparative models in customer base analysis: parametric model and observation-driven...

Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Ravishanker, N., & Sriram, S. (2006). 
Modeling customer lifetime value. Journal of Service Research, 9(2), 139–155. 
https://doi.org/10.1177/1094670506293810

Hadden, J., Tiwari, A., Roy, R., & Ruta, D. (2007). Computer assisted customer churn management: 
State-of-the-art and future trends. Computers & Operations Research, 34(10), 2902–2917. 
https://doi.org/10.1016/j.cor.2005.11.007

Hadiji, F., Sifa, R., Drachen, A., Thurau, C., Kersting, K., & Bauckhage, C. (2014). Predicting player 
churn in the wild. In 2014 IEEE Conference on Computational Intelligence and Games (pp.1–8). 
IEEE. https://doi.org/10.1109/CIG.2014.6932876

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, infer-
ence, and prediction (2nd ed.). Springer Science & Business Media.

Huang, B., Kechadi, M. T., & Buckley, B. (2012). Customer churn prediction in telecommunications. 
Expert Systems with Applications, 39(1), 1414–1425. https://doi.org/10.1016/j.eswa.2011.08.024

Hung, S. Y., Yen, D. C., & Wang, H. Y. (2006). Applying data mining to telecom churn management. 
Expert Systems with Applications, 31(3), 515–524. https://doi.org/10.1016/j.eswa.2005.09.080

Jerath, K., Fader, P. S., & Hardie, B. G. (2011). New perspectives on customer “death” using a generaliza-
tion of the Pareto/NBD model. Marketing Science, 30(5), 866–880. 
https://doi.org/10.1287/mksc.1110.0654

Keramati, A., Ghaneei, H., & Mirmohammadi, S. M. (2016). Developing a prediction model for cus-
tomer churn from electronic banking services using data mining. Financial Innovation, 2(1), 10. 
https://doi.org/10.1186/s40854-016-0029-6

Korkmaz, E., Kuik, R., & Fok, D. (2013). “Counting Your Customers”: When will they buy next? An empirical 
validation of probabilistic customer base analysis models based on purchase timing (ERIM Report Series 
Research in Management, ERS-2013-2001-LIS). Erasmus Research Institute of Management. 
http://hdl.handle.net/1765/38235

Kumar, S., & Zymbler, M. (2019). A machine learning approach to analyze customer satisfaction from 
airline tweets. Journal of Big Data, 6(1), 62. https://doi.org/10.1186/s40537-019-0224-1

Ma, S.-H., & Liu, J.-L. (2007). The MCMC approach for solving the Pareto/NBD model and possible 
extensions. In Third International Conference on Natural Computation (ICNC 2007). (pp. 505–512). 
IEEE. https://doi.org/10.1109/ICNC.2007.728

Murphy, K. P. (2012). Machine learning: A probabilistic perspective. MIT Press.
Neslin, S. A., Gupta, S., Kamakura, W., Lu, J., & Mason, C. H. (2006). Defection detection: Measur-

ing and understanding the predictive accuracy of customer churn models. Journal of Marketing 
Research, 43(2), 204–211. https://doi.org/10.1509/jmkr.43.2.204

Ngai, E. W., Xiu, L., & Chau, D. C. (2009). Application of data mining techniques in customer relation-
ship management: A literature review and classification. Expert Systems with Applications, 36(2), 
2592–2602. https://doi.org/10.1016/j.eswa.2008.02.021

Nie, G., Rowe, W., Zhang, L., Tian, Y., & Shi, Y. (2011). Credit card churn forecasting by logistic regres-
sion and decision tree. Expert Systems with Applications, 38(12), 15273–15285. 
https://doi.org/10.1016/j.eswa.2011.06.028

Platzer, M., & Reutterer, T. (2016). Ticking away the moments: Timing regularity helps to better pre-
dict customer activity. Marketing Science, 35(5), 779–799. https://doi.org/10.1287/mksc.2015.0963

Reinartz, W. J., & Kumar, V. (2000). On the profitability of long-life customers in a noncontractual set-
ting: An empirical investigation and implications for marketing. Journal of Marketing, 64(4), 17–35. 
https://doi.org/10.1509/jmkg.64.4.17.18077

Romero, J., Van der Lans, R., & Wierenga, B. (2013). A partially hidden Markov model of customer 
dynamics for CLV measurement. Journal of Interactive Marketing, 27(3), 185–208. 
https://doi.org/10.1016/j.intmar.2013.04.003

Saradhi, V. V., & Palshikar, G. K. (2011). Employee churn prediction. Expert Systems with Applications, 
38(3), 1999–2006. https://doi.org/10.1016/j.eswa.2010.07.134

https://doi.org/10.1177/1094670506293810
https://doi.org/10.1016/j.cor.2005.11.007
https://doi.org/10.1109/CIG.2014.6932876
https://doi.org/10.1016/j.eswa.2011.08.024
https://doi.org/10.1016/j.eswa.2005.09.080
https://doi.org/10.1287/mksc.1110.0654
https://doi.org/10.1186/s40854-016-0029-6
https://doi.org/10.1186/s40537-019-0224-1
https://doi.org/10.1109/ICNC.2007.728
https://doi.org/10.1509/jmkr.43.2.204
https://doi.org/10.1016/j.eswa.2008.02.021
https://doi.org/10.1016/j.eswa.2011.06.028
https://doi.org/10.1287/mksc.2015.0963
https://doi.org/10.1509/jmkg.64.4.17.18077
https://doi.org/10.1016/j.intmar.2013.04.003
https://doi.org/10.1016/j.eswa.2010.07.134


Journal of Business Economics and Management, 2020, 21(6): 1731–1751 1751

Schmittlein, D. C., Morrison, D. G., & Colombo, R. (1987). Counting your customers: Who-are they 
and what will they do next? Management Science, 33(1), 1–24. https://doi.org/10.1287/mnsc.33.1.1

Sharma, A., & Panigrahi, D. (2011). A neural network based approach for predicting customer churn 
in cellular network services. International Journal of Computer Applications, 27(11), 26–31. 
https://doi.org/10.5120/3344-4605

Sifa, R., Hadiji, F., Runge, J., Drachen, A., Kersting, K., & Bauckhage, C. (2015). Predicting purchase 
decisions in mobile free-to-play games [Conference presentation]. Eleventh Artificial Intelligence and 
Interactive Digital Entertainment Conference.

Sifa, R., Runge, J., Bauckhage, C., & Klapper, D. (2018).  Customer lifetime value prediction in noncon-
tractual freemium settings: Chasing high-value users using deep neural networks and SMOTE. In 
Proceedings of the 51st Hawaii International Conference on System Sciences.  
https://doi.org/10.24251/HICSS.2018.115

Singh, S. S., Borle, S., & Jain, D. C. (2009). A generalized framework for estimating customer life-
time value when customer lifetimes are not observed. Quantitative Marketing and Economics, 7(2), 
181–205. https://doi.org/10.1007/s11129-009-9065-0

Smeureanu, I., Ruxanda, G., & Badea, L. M. (2013). Customer segmentation in private banking sec-
tor using machine learning techniques. Journal of Business Economics and Management, 14(5), 
923–939. https://doi.org/10.3846/16111699.2012.749807

Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. 
Journal of the American Statistical Association, 82(398), 528–540. 
https://doi.org/10.1080/01621459.1987.10478458

Timoshenko, A., & Hauser, J. R. (2019). Identifying customer needs from user-generated content. Mar-
keting Science, 38(1), 1–20. https://doi.org/10.1287/mksc.2018.1123

Trinh, G., Rungie, C., Wright, M., Driesener, C., & Dawes, J. (2014). Predicting future purchases with 
the Poisson log-normal model. Marketing Letters, 25(2), 219–234. 
https://doi.org/10.1007/s11002-013-9254-1

Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of ma-
chine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 
55, 1–9. https://doi.org/10.1016/j.simpat.2015.03.003

Ver Hoef, J. M., & Boveng, P. L. (2007). Quasi‐Poisson vs. negative binomial regression: How should 
we model overdispersed count data? Ecology, 88(11), 2766–2772. https://doi.org/10.1890/07-0043.1

West, P. M., Brockett, P. L., & Golden, L. L. (1997). A comparative analysis of neural networks and 
statistical methods for predicting consumer choice. Marketing Science, 16(4), 370–391. 
https://doi.org/10.1287/mksc.16.4.370

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: Practical machine learning tools 
and techniques (4th ed.). Morgan Kaufmann.

Wübben, M., & Wangenheim, F. v. (2008). Instant customer base analysis: Managerial heuristics often 
“get it right”. Journal of Marketing, 72(3), 82–93. https://doi.org/10.1509/jmkg.72.3.082

Xia, G. E., & Jin, W. D. (2008). Model of customer churn prediction on support vector machine. Sys-
tems Engineering – Theory & Practice, 28(1), 71–77. https://doi.org/10.1016/S1874-8651(09)60003-X

Xie, Y. Y., Li, X., Ngai, E., & Ying, W. Y. (2009). Customer churn prediction using improved balanced 
random forests. Expert Systems with Applications, 36(3), 5445–5449. 
https://doi.org/10.1016/j.eswa.2008.06.121

Zhang, Y., Bradlow, E. T., & Small, D. S. (2014). Predicting customer value using clumpiness: From RFM 
to RFMC. Marketing Science, 34(2), 195–208. https://doi.org/10.1287/mksc.2014.0873

Zhao, Y., Yao, L., & Zhang, Y. (2016). Purchase prediction using Tmall‐specific features. Concurrency 
Computation: Practice Experience, 28(14), 3879–3894. https://doi.org/10.1002/cpe.3720

https://doi.org/10.1287/mnsc.33.1.1
https://doi.org/10.5120/3344-4605
https://doi.org/10.24251/HICSS.2018.115
https://doi.org/10.1007/s11129-009-9065-0
https://doi.org/10.3846/16111699.2012.749807
https://doi.org/10.1080/01621459.1987.10478458
https://doi.org/10.1287/mksc.2018.1123
https://doi.org/10.1007/s11002-013-9254-1
https://doi.org/10.1016/j.simpat.2015.03.003
https://doi.org/10.1890/07-0043.1
https://doi.org/10.1287/mksc.16.4.370
https://doi.org/10.1509/jmkg.72.3.082
https://doi.org/10.1016/S1874-8651(09)60003-X
https://doi.org/10.1016/j.eswa.2008.06.121
https://doi.org/10.1287/mksc.2014.0873
https://doi.org/10.1002/cpe.3720

