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Abstract. The request of equal accessibility must be respected to some extent when dealing with 
problems of designing or rebuilding of emergency service systems. Not only the disutility of the 
average user but also the disutility of the worst situated user must be taken into consideration. Re-
specting this principle is called fairness of system design. Unfairness can be mitigated to a certain 
extent by an appropriate fair allocation of additional facilities among the centers. In this article, two 
criteria of collective fairness are defined in the connection with the facility allocation problem. To 
solve the problems, a series of fast algorithms for solving of the allocation problem was suggested. 
This article extends the family of the original solving techniques based on branch-and-bound prin-
ciple by newly suggested techniques, which exploit either dynamic programming principle or con-
vexity and monotony of decreasing nonlinearities in objective functions. The resulting algorithms 
were tested and compared performing numerical experiments with real-sized problem instances. 
The new proposed algorithms outperform the original approach. The suggested methods are able 
to solve general min-sum and min-max problems, in which a limited number of facilities should 
be assigned to individual members from a finite set of providers. 

Keywords: emergency system design, collective fairness, equal accessibility, allocation problem, 
dynamic programming, polynomial approach.
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Introduction 

An important task of state administration and self-government is to ensure public safety and 
health. Organization called emergency services and rescue services are established for this 
purpose to address different emergencies. The problems that have to be solved are multi-
faceted, complex, and seemingly insoluble. That’s a way the policymakers are increasingly 
looking for new options (Marsh et al., 2017; Koval et al., 2019). The three primary emergency 
services that can be summoned directly by the public are emergency medical services, fire-

http://orcid.org/0000-0003-4774-0877


Journal of Business Economics and Management, 2020, 21(4): 1058–1071 1059

fighters, and police. These service systems are designed and operated to provide the popu-
lation of a geographical region with the emergency service. The availability of emergency 
services depends very heavily on location. 

Probably, the most important efficacy measurement of emergency services is the response 
time, i.e. the amount of time that it takes for emergency responders to arrive at the scene 
of an incident after activating the emergency system. Fast response times are often a crucial 
component of the emergency service system (Davis, 2005). 

As said above, to manage such a system is a complex problem involving, from the public’s 
point of view, very sensitive issues such as security, saving of lives or property protection 
on the one hand, and the technical and especially economic capabilities of the emergency 
service provider on the other (Staňková et al., 2018; Cyganska, 2017). One of the possible 
ways to solve these problems is to use the tools of mathematical optimization. An essential 
factor in using this approach is the precise formulation of the model and, in particular, the 
criteria for assessing suitable solutions and the question of the solvability of the constructed 
models in a reasonable time. 

The most common organizational model for providing an emergency service system is 
possible to describe as follows. A finite set of service centers located at nodes of the road 
network of the region represents a structure of the emergency system. Demands for service 
originate mostly at dwelling places of the region. The set of dwelling places is denoted as the 
set of system users, where each user is specified by his location and frequency of demands. 
When a service system structure is to be designed, the number of service centers is usually 
given. Disutility perceived by an individual user is proportional to the network distance 
between the user and the nearest service center. 

In this paper, a problem of fair allocation of additional facilities in the given set of emer-
gency service centers is dealt. The objective of the associated problem is to deploy the addi-
tional facilities in the fairest way. To solve the problem, a series of fast algorithms is suggested 
that were tested and compared performing numerical experiments with real-sized problem 
instances.

The paper is organized as follows. Section 1 presents literature review on designing the 
emergency system, Section 2 introduces the linear model approach to modelling collective 
fairness in emergency systems followed by dynamic programming approach in Section 3. An 
alternative polynomial approaches to the fair facility deployment is described in Section 4. 
Section 5 presents results of numerical experiments comparing the methods developed in 
previous sections, and the final section summarizes presented findings and concludes.

1. Literature review

A large number of papers can be found in published literature dealing with various aspects 
relating to the design and optimization of emergency service systems. Several aspects affect-
ing the availability and response time of these services were examined in these contributions.

The issues concerning the patient flow within the health system were studied by Lau et al. 
(2018). Mitigating the patient flow bottlenecks can enhance workflow efficiency and reduce 
patient wait-time. Similarly, Carmen, Van Nieuwenhuyse, and Van Houdt (2018) studied 
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the impact of inpatient boarding on emergency department congestion and capacity us-
ing a semi-open queueing network model with limited resources and discontinuous patient 
service.

Another aspect of designing the emergency service systems studied in several papers 
is the problem of emergency service bases location. Nogueira, Pinto, and Silva (2018) deal 
with this problem on a case of ambulance base locations in Brazil. Similarly, Stanimirovic 
et al. (2017) studied the problem to choose locations for establishing emergency units on 
real-life instances obtained from two networks of police units in Montenegro and Serbia. A 
two-stage stochastic programming location-allocation model is proposed by Boujemaa et al. 
(2018) to simultaneously determine the location of ambulance stations, the number and the 
type of ambulances to be deployed, and the demand areas served by each station. Research 
carried on the ambulance location and management in the Milano area (Italy) is reported by 
Aringhieri, Carello, and Morale (2016).

The limited personal and/or technical resources can be considered probably the most 
common aspect in practice concerning performance and perceived quality of an emergency 
service system. This topic was studied in a number of papers. For instance, Vermuyten et al. 
(2018) studied the staff scheduling problem encountered in practice at an Emergency Medi-
cal Services system. Analogically, Garner and van den Berg (2018) estimated the optimal he-
licopter emergency medical services base locations within New South Wales using advanced 
mathematical modeling techniques. A new double standard model, along with a genetic al-
gorithm, is introduced by Liu et al. (2016) for solving the emergency medical service vehicle 
allocation problem that ensures acceptable service reliability with limited vehicle resources.

In the following text, the above-mentioned aspect is considered with limited resources 
where a service system structure is to be designed and the number of service centers is given. 
Depending on the applied objective, the service system structure design is formulated as a 
kind of either the weighted p-median or p-center problem (Brotcorne et al., 2003; Marianov 
& Serra 2002; Ingolfsson, et al., 2008; Chanta et al., 2014). A host of publications has been 
devoted to the problem formulation and to the associated methods of the problem solving 
(Jánošíková, 2007; Janáček & Gábrišová, 2009). Once an emergency system structure is de-
termined, clusters of users are also uniquely designated according to the rule that a user’s 
demand is allocated to the nearest service center. As cluster demands are primarily satis-
fied by facilities located at the cluster service center, a disutility volume perceived by users 
involved in the cluster is inversely proportional to the number of facilities allocated at the 
service center. This proposition follows from the simple fact that if the facilities are currently 
occupied by earlier demands, the newly emerged demands must wait. This way the average 
response time in the cluster increases, when there is located an insufficient number of fa-
cilities regarding the given frequency of demand occurrence and the average time-distance 
from the center to a user. Due to the uneven distribution of the population in the region, the 
populations of the individual clusters are exposed to various degrees of disutility.

Perceived disutility is influenced by the total cluster workload per one facility located at 
the cluster center. The amount of a cluster workload is quantified by the so-called transporta-
tion performance necessary for the satisfaction of the cluster demands. The cluster workload 
is defined as a sum of time distances from the cluster users to the nearest service center mul-
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tiplied by the demand frequencies. Unfairness following from the uneven workload distribu-
tion can be mitigated to a certain extent by an appropriate distribution of additional facilities 
among the centers. This phenomenon called “collective fairness” has been addressed by only 
a few authors so far. Two cases of the problem formulation were studied by Janáček and 
Gábrišová (2017). Similarly, Toro-Diaz et al. (2015) included some fairness considerations 
when analyzing the planning of large-scale emergency medical service systems. 

The impact of the facility deployment on an individual cluster is characterized by the 
ratio of the cluster workload and the number of facilities assigned to the cluster. The cases 
differ in the definition of the minimized objective function. The first case objective involves 
the minimization of the squared deviation of the cluster workload ratio from a fixed value, 
such as the average workload per one facility in the whole serviced region. The second case 
objective consists of minimizing the maximum of the cluster workload ratios. In this case, the 
ratio for the worst situated cluster is minimized not regarding the ratio values of the clusters, 
which are situated a bit better. In contrary to the first case, the second case prefers to improve 
the worse situated cluster instead of improving the situation in each one. An integer linear 
programming model can be formulated and solved by an arbitrary integer-programming 
solver (IP-solver) equipped with a branch-and-bound procedure (Janáček & Gábrišová, 2017) 
for both cases mentioned above.

In this paper, the problem formulation is generalized and formulated both the generalized 
min-sum and min-max problems in the terms of mathematical programming. Furthermore, 
dynamic programming procedures are suggested not only for the min-sum problem but also 
for the min-max one. In addition, another approach based on convexity and monotony of 
decreasing nonlinearities in objective functions is presented.

2. Models of collective fairness and linear integer programming approach

Let m denote the number of clusters and the associated service centers of a considered emer-
gency service system and let p denote the number of additional facilities, which are to be 
deployed among the service centers. Both cases of the fair facility deployment mentioned in 
Section 1 can be formulated using a series of strictly convex decreasing functions fi(y) de-
fined on the interval [0, p] for i = 1, …, m. Examples which demonstrate the two mentioned 
cases were given in Janáček and Gábrišová (2017), where the function was defined by (1) for 
the case of minimization of the average squared deviation of the cluster ratio from the aver-
age workload per one facility in the whole system. The constant Pi in (1) and (2) denotes a 
workload connected with the cluster (or service center) i:
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To be able to describe facility deployment, the integer variable yi for each service center 
i = 1, …, m is introduced. The variable yi models a decision on the number of additional 
facilities located at the service center i.

The first case of the fair facility deployment problem can be formulated as follows for 
fi(y) defined by (1):

 
1 1
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m m
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Model (4) describes the second case of the fair facility deployment problem regarding 
fi(y) defined by (2):
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Both models (3) and (4) are nonlinear. Originally by Janáček and Gábrišová (2017), they 
were reformulated to linear integer programming models as follows.

Let the constants eik for i = 1, …, m and k = 0, …, p are defined by (5), and then a series 
of auxiliary variables zik∈{0, 1} for i = 1, …, m and k = 0, …, p is introduced, where the 
variable zik will take the value of one, if k additional facilities are to be located at the center i:

 ( ) for 1, ..., , 0, ...,ik ie f k i m k p= = = . (5)

After these preliminaries, the non-linear problem (3) for the first case can be rewritten 
as the following linear form:
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The constraint (7) allows distributing exactly p additional facilities in the set of m cen-
ters and constraints (8) assure that only one of possible facility numbers is assigned to the 
center i.

Using the above-defined constants eik and zero-one variables zik, the non-linear problem 
(4) for the second case can be reformulated to the following linear one. To complete the min-
max model, a variable h is introduced to model upper bound for the values fi(yi):

 Minimize h (10)
Subject to (7), (8), (9) and 
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Another approach to linearization of the problems (3) and (4) is presented below. Let the 
constants cik for i = 1, …, m and k = 1, …, p are defined by (13):

 ( 1) ( ) for 1, ..., , 1, ...,ik i ic f k f k i m k p= − − = = . (13)

As the functions fi(y) are decreasing, the constants cik are positive. Due to assumed strict 
convexity of the functions, also cik >cik+1 holds for each k = 1, …, p-1. 

To be able to substitute the value of variable yi in the models (3) and (4), a series of 
auxiliary zero-one variables xik∈{0, 1} for i = 1, …, m and k = 1, …, p is introduced and the 
relation between variables yi and variables xik for k = 1, …, p is defined by (14):
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The value of fi(yi) can be expressed by (15) using the auxiliary variables xik, which meet 
conditions xik ≥ xik+1 for each k = 1, …, p-1:
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After these preliminaries, the non-linear problem (3) can be rewritten into the following 
linear form:
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The model has several special properties, which might make the problem solving easier. 
First, the constraints (18) can be relaxed due to the strict convexity of the functions fi(y). 
Furthermore, the model (16)–(19) obviously has integral property, which means that the 
demand for integrality in constraints (19) can be also relaxed and then, constraints (20) can 
be applied instead of (19):

 [0, 1] for 1, ..., , 1, ...,ikx i m k p∈ = = . (20)

This way, the problem (15)–(19) is reduced to a simple linear programming problem 
(16), (17), and (20).

Using the above-defined constants cik and zero-one variables xik and substitution (15), 
the non-linear problem (4) can be reformulated to the following linear one. To complete the 
min-max model, a variable h is introduced to model upper bound of the values fi(yi).

 Minimize h (21)
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Subject to  (17), (18), (19) and  
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This model does not have an integral property at all, but the constraints (18) can be also 
released due to convexity. Thus the model (21), (17)–(19), (22) and (23) can be reduced to 
the problem of minimizing (21) subject to (17), (19), (22) and (23).

Using the above described linear programming models, both cases of the fair facility 
deployment problem can be solved by any linear programming (LP) or IP solvers.

3. Dynamic programming approach to the fair facility deployment

As the problem (4) belongs to the family of min-sum problems, whose objective functions 
have obviously additive property, the problem can be easily formulated and solved as a dy-
namic programming problem (Janáček & Gábrišová, 2017). The timeline of the computa-
tional process can be modeled by a discrete set of instants i = 1, …, m, which correspond 
to subscripts of clusters and the associated functions fi(y). Let variable yi model the basic 
decision on the number of the additional facilities assigned to the service center i. In addi-
tion, state si of the computational process at the instant i is introduced. The value of si cor-
responds to the total number of facilities allocated by the decisions y1, …, yi-1 forgoing the 
decision yi. The relation between si and si+1 is given by the transition equation si+1 = si+ yi 
for i = 1, …, m-1. In the computational process, two values of further introduced functions 
will be iteratively computed. The formula (24) shows the Bellman’s function Bi(s) that gives 
the optimal objective function value of the problem (24):

 ( ) min{ ( ) : , for , ..., }
m m

i k k k k
k i k i

B s f y y p s y Z k i m+

= =
= = − ∈ =∑ ∑ . (24)

The control function Zi(s) gives the value yi
* of variable yi in the optimal solution of the 

problem (24). The computational process starts with the initialization of Bm(s) and Zm(s) for 
s = 1, …, p. The values are defined by (25) and (26):

 ( ) ( ) for 0, ...,m mB s f s s p= = ; (25)

 ( ) for 0, ...,mZ s p s s p= − = . (26)

Then, a step of the iterative process can be defined by (27) and (28):

 1( ) min{ ( ) ( ) : 0, ..., } for 0,...,i i iB s f y B s y y p s s p+= + + = − = ; (27)

 1( ) arg min{ ( ) ( ) : 0, ..., } for 0,...,i i iZ s f y B s y y p s s p+= + + = − = . (28)

Having performed the iterative steps subsequently for i  =  m-1,  m-2,  …,  1, the value 
B1(0) gives the optimal objective function of (3) and the associated optimal values of yi 
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can be obtained by a backtracking recursive process. In the process, s1 is defined by s1 = 0 
and y1 is determined by y1 = Z1(s1), then the following sequence of steps si+1 = si + yi and 
yi+1 = Zi+1(si+1) are performed for i = 2, …, m–1.

As concerns the min-max problem (4), the dynamic programming approach as a solving 
process can be used also. In this case, the Bellman’s function Bi(s) for a given subscript i and 
a state s are defined by (29):

 ( ) min{max{ ( ) : ,... } : , for , ..., }
m

i k k k k
k i

B s f y k i m y p s y Z k i m+

=
= = = − ∈ =∑ . (29)

The control function Zi(s) gives the value yi
* of variable yi of the optimal solution of the 

problem (29). The values of Bm(s) and Zm(s) at the initial stage m will be defined once more 
by (25) and (26), respectively. To formulate the iterative formulae, the associativity of the 
operation max is made use of, and the iterative step by (30) and (31) is defined:

 1( ) min{max{ ( ), ( )} : 0, ..., } for 0,...,i i iB s f y B s y y p s s p+= + = − = ; (30)

 1( ) arg min{max{ ( ), ( )} : 0, ..., } for 0,...,i i iZ s f y B s y y p s s p+= + = − = . (31)

After the recursive process has been completed, the value B1(0) equals to the optimal 
objective function of (4) and the associated optimal values of y1

*, …, ym
* can be obtained by 

the backtracking recursive process mentioned above. The computational complexity in both 
cases is obviously O(mp2).

4. Alternative polynomial approaches to the fair facility deployment

The properties of convexity and integrality concerning the model (16), (17) and (20) enable 
us to develop a smart exact algorithm for the problem (3). The algorithm makes use of con-
stants cik and zero-one auxiliary variables xik for i = 1, …, m and k = 1, …, p, and it takes 
into account the substitution (14) as the relation between variables yi and xik. The suggested 
algorithm performs according to the following steps.

Step 0. Order all constants cik for i = 1, …, m, k = 1, …, p in descending order and get 
 the associated sequence ci(r)k(r) for r = 1, …, mp. Set yi = 0 for i = 1, …, m.

Step 1. For r = 1, …, p set yi(r) = yi(r) + 1.

The complexity of the algorithm is given by the complexity of Step  0, which is 
O(mplog2(mp)). Realizing that the series of cik are pre-ordered and exactly p biggest members 
of the ordered sequence are used, the complexity could be considerably reduced.

Concerning the problem (4), the model (21), (17), (19), (22) and (23) is made use of. The 
following proposition can be easily derived.

Let us denote pi(h) the minimum integer t, for which inequality (32) holds:

 
1

(0)
t

i ik
k

f c h
=
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If an objective function value of an arbitrary feasible solution of (4) is less than h, then 
yi ≥ pi(h) holds for i = 1, …, m.
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Based on the proposition, the following algorithm can be suggested:

Step 0. Set yi = 0 for i = 1, …, m and order the values of fi(yi) in descending order so that  
 the sequence fi(r)(yi(r)) for r = 1, …, m is obtained. Set s = p.

Step 1. If s = 0, terminate. Otherwise, go to Step 2.
Step 2. Set h = fi(2)(yi(2)) and determine the value of pi(1)(h). 
 If pi(1)(h) – yi(1) < s, then update s = s – (pi(1)(h) – yi(1)) and yi(1) = pi(1)(h) and 

 reorder the sequence fi(r)(yi(r)). Else, update yi(1) = yi(1) + s and set s = 0.
 Go to Step 1.

Ordering at Step  0 has complexity O(mlog2(m)). Reordering in the Step  2 can be re-
peated at most p-times. It follows that the overall complexity of the algorithm is maximum 
of O(mlog2(m)) and O(mp).

5. Numerical experiments

In the previous sections, several approaches to the problem of fair facility distribution among 
service centers were suggested. The problem was formulated in both min-sum and min-max 
variants, where the variance of workloads per one facility over the set of service centers is 
minimized in the min-sum variant. Maximal workload per one facility is minimized in the 
min-max variant. Three new exact methods were developed for each considered variant in 
this paper and another one was taken from Janáček and Gábrišová (2017). The goal of the 
performed numerical experiments was to compare the quadruple of methods developed for 
each variant and decide about the best method for solving a variant problem instance. 

The methods developed for the first (min-sum) variant are successively denoted as FD_
Mpo, FD_MP, FD_DP, and FD_GE, where the first label designates the original method 
(Janáček &  Gábrišová, 2017) based on the mathematical programming model (6) – (9), 
which was solved by an IP solver employing branch-and-bound method. The optimization 
software FICO Xpress 7.9 (64-bit, release 2015) was used to complete this study. The sec-
ond label FD_MP is used for the method based on the mathematical programming model 
(16)–(19), where the associated problem was also solved by the above-mentioned IP solver. 
The label FD_DP denotes the dynamic programming approach, which follows the recursive 
computational process described by (24)–(28). The process was implemented in the program-
ming language Mosel in the environment of FICO Xpress, unless employing any auxiliary 
optimization procedures embedded in the associated IP-solver. The label FD_GE denotes the 
polynomial approach described in the first part of Section 4.

The methods for the min-max variant are successively denoted by FM_Mpo, FM_MP, 
FM_DP and FM_GE, where the first label corresponds with the original method (Janáček & 
Gábrišová, 2017) based on the mathematical programming model (7)–(12) of the problem, 
which was solved by the above-mentioned IP-solver. The method denoted by FM_MP is also 
based on usage of the IP-solver, but, contrary to FM_Mpo, the model (17)–(19), (21)–(23) is 
used for the problem presentation. The method denoted by FM_DP is based on the dynamic 
programming principle, where the associated recursive process is determined by equations 
(29)–(31). The quadruple of methods for the min-max variant ends with the polynomial ap-
proach denoted by FM_GE. An algorithm of the approach is described at the end of Section 4.
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The experiments were run on a PC equipped with the Intel® Core™ i7 4510U processor 
with the parameters: 2.00 GHz and 8 GB RAM. The procedures programmed in language 
Mosel were also run under the FICO Xpress.

The benchmarks used for comparison were derived from the real emergency health care 
system of the Slovak Republic (Jánošíková et al., 2017). Users of the systems are represented 
by cities, villages, and hamlets with the corresponding population, which was rounded to 
hundreds when the workload of individual clusters was computed. The current state of the 
above-mentioned real emergency system is characterized by 273 facilities (ambulance ve-
hicles), which are located at 208 service centers in the Slovak Republic. The maximal value 
of facility workload of this original system equals to 2,526 and the variance of these facility 
workloads is 176.337. Twelve problem instances were derived in the following way. The first 
instance denoted as OptOrg208 was created so that the original service center locations 
were accepted but only one facility to each of the centers was assigned, and p=65 facilities 
remained to be deployed by the tested methods. To create the next eleven instances, the 
number m of service centers was varied in the range {188, 192, 196, 200, 204, 208, 212, 216, 
220, 224, 228} in such a way that some centers were abolished or newly created, and the 
associated weighted m-median problem was solved for the set of possible center locations 
equal to the set of all dwelling places of the Slovak Republic. Various sets of center locations 
were performed by this optimization provided according to (Kvet, 2014, 2015). This way, 
eleven instances denoted by the label OptDerm were obtained, where m corresponds to the 
number of service centers. The number p of additional facilities was determined according 
to p = 273 - m.

The results of min-sum variant methods are displayed in Table 1, which is organized so 
that each row corresponds to one of all solved instances. The first three columns describe 
the instance by its label, number m of service centers and number p of additional facilities, 
respectively. The two-column section FD_Mpo contains the variance of facility workloads 
of the optimal facility deployment obtained by each of the tested methods in the column 
“variance” and computational time of the method in seconds in the column “time[s]”. The 
other one-column sections FD_MP, FD_DP, and FD_GE contain only the columns “time[s]” 
referring computational time of the method in seconds. 

Table 1. Optimal objective function values and associated computational times of the min-sum variant 
methods (source: own calculations)

FD_Mpo FD_MP FD_DP FD_GE

Instance m p variance time[s] time[s] time[s] time[s]

OptOrg208 208 65 96,268 0.219 0.125 0.0997 0.0030
OptDer188 188 85 31,987 0.250 0.141 0.1625 0.0031
OptDer192 192 81 33,174 0.219 0.141 0.1438 0.0047
OptDer196 196 77 35,880 0.219 0.141 0.1359 0.0031
OptDer200 200 73 39,111 0.203 0.125 0.1234 0.0047
OptDer204 204 69 39,757 0.204 0.125 0.1125 0.0032
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FD_Mpo FD_MP FD_DP FD_GE

Instance m p variance time[s] time[s] time[s] time[s]

OptDer208 208 65 42,366 0.203 0.125 0.1016 0.0032
OptDer212 212 61 45,758 0.187 0.125 0.0968 0.0031
OptDer216 216 57 48,502 0.188 0.125 0.0844 0.0016
OptDer220 220 53 51,411 0.172 0.125 0.0734 0.0016
OptDer224 224 49 55,532 0.157 0.110 0.0641 0.0016
OptDer228 228 45 58,353 0.156 0.094 0.0563 0.0015

The results of the min-max variant methods are presented in Table 2, which is organized 
in the same way as Table 1, with the exception that maximal facility workload is reported 
in the column “max  h”. The entries 600* denotes the case, when the branch-and-bound 
process was prematurely stopped unless it proved optimality of the best found solution. The 
process solving instances OptOrg208 and OptDer196 was stopped at the gaps of 1.60643% 
and 0.736842%, respectively.

Table 2. Optimal objective function values and associated computational times of the min-max variant 
methods (source: own calculations)

FM_Mpo FM_MP FM_DP FM_GE

Instance m p max h time[s] time[s] time[s] time[s]

OptOrg208 208 65 1245 0.766 600* 0.1091 0.0019
OptDer188 188 85 941 0.500 0.609 0.1688 0.0016
OptDer192 192 81 941 0.390 0.765 0.1562 0.0031
OptDer196 196 77 950 0.532 600* 0.1453 0.0016
OptDer200 200 73 950 0.453 0.563 0.1375 0.0031
OptDer204 204 69 950 0.469 0.672 0.1203 0.0016
OptDer208 208 65 965 0.360 0.562 0.1110 0.0032
OptDer212 212 61 988 0.375 0.500 0.1015 0.0016
OptDer216 216 57 992 0.359 0.421 0.0907 0.0031
OptDer220 220 53 993 0.344 0.312 0.0812 0.0016
OptDer224 224 49 1043 0.266 0.422 0.0719 0.0031
OptDer228 228 45 1059 0.266 0.312 0.0610 0.0016

Comparing the resulting computational times of the min-sum methods reported in Table 
1, monotonously decreasing values in most instances were observed. It is obvious that the 
new mathematical model solved by IP-solver outperforms the original approach. The dy-
namic programming approach proved to be a bit quicker than the mathematical program-

End of Table 1
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ming approach, but the polynomial approach FD_GE outperformed the other approaches 
in orders. A different situation emerges when the performance of min-max variant methods 
is studied. The new mathematical programming approach showed the worst performance of 
all compared methods and, in addition, it showed some kind of instability of computational 
process convergence, when the best found solution optimality is being proved. As concerns 
the dynamic programming approach and the polynomial approach FM_GE, these methods 
outperformed the mathematical programming ones in the same order as in the first variant 
comparison.

Conclusions

In this study, the problem of fair allocation of additional facilities in the given set of emergen-
cy service centers was investigated. The objective is to deploy the additional facilities in the 
fairest way. The problem formulation was generalized and formulated both the generalized 
min-sum and min-max problems in terms of mathematical programming. In addition, an ap-
proach based on convexity and monotony of decreasing nonlinearities in objective functions 
was presented. Several fast algorithms and dynamic programming procedures were suggested 
to solve not only the min-sum problem but also the min-max one. These approaches were 
tested and compared performing numerical experiments with real-sized problem instances. 
The new mathematical model solved by IP-solver outperforms the original approach. The 
dynamic programming approach proved to be a bit quicker than the mathematical program-
ming approach, but the polynomial approach using the properties of convexity and integral-
ity concerning the constructed model shows the best performance.

Although the contribution was originally devoted to the fair deployment of additional 
facilities in an emergency service system, the suggested methods are able to solve general 
min-sum and min-max problems, in which a limited number of facilities should be assigned 
to individual members from a finite set of providers. The only assumption is that the func-
tions expressing the impact of the number of assigned facilities are monotonically decreasing 
and convex.

The suggested methods, especially those based on dynamic programming or preorder-
ing, may be a significant part of more complex tools for public service system designing. 
The relatively low time-consuming nature of the proposed procedures may be advantageous 
when dealing with problems of designing or rebuilding of emergency service systems in 
geographical larger regions. 

The presented research comes from the assumption that each demand for service is sat-
isfied from the nearest located service centre. This limitation prevents us from taking into 
account a restricted capacity of a service centre. The limited centre capacity may cause that 
a current demand may be satisfied from the second or third nearest service centre instead of 
from the nearest one. Possible generalization of the approach can be included in the further 
research, which will be aimed at further exploitation of the suggested methods for optimal 
dimensioning of service center capacities in service systems.
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