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Abstract. This paper studies a portfolio optimization problem with variance and Entropic 
Value-at-Risk (EVaR) as risk measures. As the variance measures the deviation around 
the expected return, the introduction of EVaR in the mean-variance framework helps to 
control the downside risk of portfolio returns. This study utilized the squared l2-norm to 
alleviate estimation risk problems arising from the mean estimate of random returns. To 
adequately represent the variance-EVaR risk measure of the resulting portfolio, this study 
pursues rescaling by the capital accessible after payment of transaction costs. The results 
of this paper extend the classical Markowitz model to the case of proportional transaction 
costs and enhance the efficiency of portfolio selection by alleviating estimation risk and 
controlling the downside risk of portfolio returns. The model seeks to meet the require-
ments of regulators and fund managers as it represents a balance between short tails and 
variance. The practical implications of the findings of this study are that the model when 
applied, will increase the amount of capital for investment, lower transaction cost and 
minimize risk associated with the deviation around the expected return at the expense of 
a small additional risk in short tails.

Keywords: Value-at-Risk, transaction costs, estimation risk, portfolio optimization, scaled 
and stabilized portfolio, downside risk.
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Introduction 

In finance, a portfolio is a collection of assets such as stocks, bonds, and cash equiva-
lents among others. The core problem in wealth allocation is optimal portfolio selection 
strategy and its concerned with finding a balance between risk and return. The stand-
ard portfolio optimization or mean-variance portfolio optimization model proposed by 
Markowitz (1952) identifies the optimal allocation of assets among a basket of invest-
ments and measures optimality based on expected returns and risk (variance) trade-off.
The celebrated mean-variance (MV) portfolio optimization model is criticized on the ba-
sis of using variance as a risk measure and absence of transaction costs. Variance takes 
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into consideration returns exceeding the mean value. It penalizes positive and negative 
deviations from the mean equally (Markowitz 1968). However, investors are only wor-
ried about negative deviations. Borkovec et al. (2010) found out that 40% of financial 
market participants credit economic loss in abnormal return to transaction costs. Another 
shortcoming of MV model is that it’s impacted by parameter uncertainty and estimation 
errors since the mean and the covariance matrix has to be estimated from historical data 
(Bawa et al. 1979; Merton 1980; Kao, Steuer 2016). The asset returns are regarded as 
deterministic and represented by a single point estimate, which results in estimation risk. 
A small perturbation in the input parameters of Markowitz’s model leads to a major 
structural change of the resulting portfolios (Merton 1980; Best, Grauer 1991; Black, 
Litterman 1992; Ceria, Stubbs 2006; Chopra, Ziemba 2011; Filomena, Lejeune 2012).
The idea of a coherent risk measure was first investigated by Artzner et al. (1999) and 
has since been used as a tool for establishing the properties of a good risk measure. 
Empirical research has led to the proposal of alternative risk measures for portfolio opti-
mization. As a coherent risk measure, Conditional Value-at-Risk (CVaR) provides better 
measures of downside risk than Value-at-Risk, takes into consideration the probability 
and size of the loss and allows for asymmetric distributions aside having desirable 
properties of coherence. Rockafellar and Uryasev (2002) studied a broad description 
of methods for minimizing CVaR and its related optimization problems with CVaR 
constraints. The mean-CVaR (MC) framework has been investigated in recent research 
(Agarwal, Naik 2006; Ahmed 2006; Yao et al. 2013; Dai, Wen 2014; Zhao et al. 2015; 
Moazeni et al. 2016).
Roman et al. (2007) investigated the mean-variance-CVaR (MVC) optimization model 
and concluded that the MVC model does not dismiss both MV and MC models but 
embeds them and that the resulting solutions are efficient for mean-variance-CVaR. 
The mean-variance-CVaR model strikes a balance between obtaining large CVaR from 
portfolios obtained with mean-variance and large variance from portfolios obtained 
with mean-CVaR. One can get a better model of the portfolio by employing the three 
indexes i.e. MVC instead of two parameters (MV or MC) so as to increase the efficiency 
of the model (Roman et al. 2007). Atta Mills et al. (2016a) investigated a combined 
risk measure of variance and a modified safety-first principle based on CVAR and VaR 
and obtained better out-of-sample performance. However, CVaR has a disadvantage of 
depending only on the tail of the distribution, i.e. it is a 0 – 1 risk measure, and as such, 
it is not smooth (Cherny, Madan 2006). Ahmadi-Javid (2012) showed that stochastic 
optimization problems that are computationally intractable with CVaR are efficiently 
deduced when Entropic-Value-at-Risk (EVaR) is considered. Zheng and Chen (2014) 
studied a portfolio selection strategy based on EVaR and compared the results with other 
downside risk measures such as VaR and CVaR. Their results show that EVaR has the 
highest resolution of risk. Various risk measures highlight diverse features of the random 
loss. In this study, we use variance and EVaR indexes. This controls both the symmetric 
risk measure and asymmetric downside risk at the tail part of losses. This practically 
minimizes risk and controls downside risk of portfolio return. An optimal portfolio solu-
tion obtained by the MV model may be considered unacceptable by a regulator, since 
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it may have a large EVaR, resulting in big losses under undesirable scenarios. Fund 
managers may also regard a portfolio obtained with a mean-EVaR model unfavourable 
since it may have a large variance and therefore a small Sharpe index. In this paper, we 
seek to meet the requirements of the regulator and the fund manager. This provides an 
answer as to the necessity for considering variance along with EVaR.
To lessen the undesired effect of estimation risk, models based on robust optimization 
(Goldfarb, Iyengar 2003; Tütüncü, Koenig 2004), factor models (Green, Hollifield 1992; 
Nagai 2003), stochastic programming (Rockafellar, Uryasev 2000), shrinkage estimators 
(Jorion 1986; Ledoit, Wolf 2004), have been studied. Another method is the modifica-
tion of portfolio decision variables by adding regularizers or additional constraints to 
the optimization problem (Jagannathan, Ma 2003; DeMiguel et al. 2009; Brodie et al. 
2009; Atta Mills et al. 2016a; Caccioli et al. 2016). In DeMiguel et al. (2009), an addi-
tion of a convex norm ball constraint to the portfolio weight was done. Results revealed 
that norm ball constrained portfolios have better out of sample performance than the 
portfolio strategies of the naive 1/N diversification. The norm ball constraint employed 
by DeMiguel et al. (2009) acts as a solution to tackle the problems of extreme weights 
and under-diversification of the portfolio aside estimation risk. The weight constrained 
portfolio selection strategy is pursued in this study by specifying the general norm as 
squared l2-norm ball.
We study the weight-constrained portfolio selection strategy by shrinking portfolio 
weights directly. This is prudent for three reasons. First, Fan et al. (2012) demonstrated 
that the estimation risk is bounded by a function of the norm of portfolio weights, and 
therefore constraining portfolio norms is equivalent to constraining estimation risks. 
Second, errors from estimation may arise through mathematical computations in solving 
for portfolio weights. By working on the portfolio weights directly, their desired forms 
and characteristics could be achieved. Furthermore, the magnitude of portfolio weights 
is a proxy for the transaction cost (Brodie et al. 2009).
To rightly represent the consolidated risk measure of the resulting portfolio, this study 
investigates rescaling by funds available after paying transaction costs (Mitchell, Braun 
2013). In this paper, we present a scaled regularized mean-variance-EVaR in which 
the uncertainty in returns is taken into account by considering stock returns as random 
variables. In the real world, setting up a new portfolio or revising an existing portfolio 
requires cost to be incurred and must be inclusive in practical analysis (Chen et al. 
1971). Proportional transaction costs (Kellerer et al. 2000; Muthuraman, Kumar 2006; 
Zhu 2017) which are induced by tax, liquidity costs, brokerage fees (Dumas, Luciano 
1991; Kellerer et al. 2000; Lobo et al. 2007; Wang et al. 2017) are incorporated into 
our scaled regularized mean-variance-EVaR model with an implicit assumption that 
transaction costs are paid at the beginning of the planning period.
The main novelty of this paper is characterized by the combination of variance and 
Entropic Value-at-Risk as risk measures in the presence of proportional transaction 
costs to obtain scaled stable portfolios using squared l2-norm regularization technique. 
This particular perspective and approach have not been explored to the very best of our 
knowledge.
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This paper is organized as follows: in the next sections, the literature review is dis-
cussed, and coherent risk measures are considered. The portfolio selection strategy is 
presented, and convex reformulation derived. Numerical examples and computational 
results of our method are shown in the subsequent section. The last section offers con-
cluding remarks.

1. Literature review

Markowitz’s MV model has been modified and advanced in several directions. Math-
ematically, Markowitz’ MV model produces a quadratic optimization problem:

                                             min         Tx Qx

 subject to  ,T x Rµ ≥   (1)
                 ,Ax b=

                                                           ,Cx d≥  

where m denotes the expected return of assets, Q be the covariance matrix of portfolio 
return and R is a required return level. The set of admissible portfolios is a nonempty 
polyhedral set : { : , }x Ax b Cx dΛ = = ≥ . Specifically, one of the constraints in the set L 
is 1Te x = , where e is a vector of ones. Hester and Tobin (1967) introduced the addi-
tion of risk-free assets in the basic MV model by the concept of separation theorem, 
which states that the optimal risk portfolio can be attained without any understanding 
or knowledge of the investor’s preference in the presence of a risk-free financial asset.
An underlying assumption is that the investor has sufficient historical data and that 
the dynamics of financial assets can be predicted accurately with the historical data. 
Researchers have detailed the high sensitivity nature of the mean-variance estimates 
(Bawa et al. 1979). Jobson and Korbie (1980) elaborate these sensitivity problems and 
propose the application of shrinkage estimators. Random fuzzy models provide some 
approaches in tackling the uncertainty in returns. León et al. (2002) and Vercher et al. 
(2007) employ fuzzy numbers as a replacement for uncertain returns of the financial 
assets. Filomena and Lejeune (2012) made use of probabilistic distributions to model 
asset returns as random variables in an effort to tackle estimation risk. They presented 
the probabilistic constraint

 1
( ) 1

N

k k
k

x R
=

 
ζ ≥ ≥ −  

 
∑  ,  (2)

where zk is the random return of asset k, xk is amount invested in asset k and   is the 
confidence interval. The probabilistic constraint requires the return of the portfolio to 
exceed the required return level R with probability at least 1− .
The single index model studied by Sharpe (1964) and Lintner (1965) ignores the co-
variance between the returns of financial assets. The single index model is based on the 
premise that returns of the financial assets are dependent only on a market index and that 
the covariance estimate is not required. This further paved the way for the introduction 
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of Capital Asset Pricing Model (CAPM). However, CAPM assumes that all investors 
CAPM’s risk measure b does not fully measure the risk of most stocks. CAPM states 
that the expected return of a financial asset or portfolio equals the return on a riskless 
or risk-free asset plus a risk premium. Mathematically, CAPM is given by:

 
[ ] [ [ ] ]k f k M fR R Rζ = + β −  ,  (3)

where, covariance( , )
variance( )

k M
k

M

R
R
ζ

β = , RM is return on market portfolio and Rf is return on 
risk free asset.
Several studies have been done on the MV model and associated risk measures. Konno 
et al. (1993) introduced the mean-absolute deviation (MAD) as an alternative to the use 
of squared deviations in the MV model. Instead of using squared deviations as in the 
MV model, Konno et al. (1993)’s dispersion measure is based on the absolute deviations 
from the mean; that is, the optimization problem is defined as:

                                max          T xµ

 subject to  
1 1

N N

k k k k
k k

x x b
= =

 
ζ − µ ≥  

 
∑ ∑ ,  (4)

                                               1Te x = .

Advancements have led to minimizing semivariance (Huang 2008; Markowitz et al. 
1993). The portfolio semivariance is defined as:

 

2

1 1
,0

N N

k k k k
k k

min x x
= =

  
ζ − µ      

∑ ∑ ,  (5)

where zk is the random return for asset   1, ,k N= … . The concept of skewness in 
the portfolio selection strategy has also been considered (Konno, Suzuki 1995; Chun-
hachinda et al. 1997). Other risk measures considered are entropy (Philippatos, Wilson 
1972), lower partial moments (Price et al. 1982), Gini mean difference (Shalit, Yitzhaki 
1984), Value-at-Risk (Gaivoronski, Pflug 2005) and Conditional Value-at-Risk (CVaR) 
(Rockafellar, Uryasev 2002) among others. Several studies have proposed the fusion 
of two or more risk measures and obtained better portfolios (Roman et al. 2007; Atta 
Mills et al. 2016a) and provided answers to the inconsistencies in the mean-variance and 
mean-CVaR models. Mathematically, Roman et al. (2007)’s approach is presented as:

                                       min         Tx Qx

 subject to (1 )CVaR ( )x b− ≤ ,  (6)

                                                      
T x Rµ ≥ ,

                                                      1Te x = ,

where 1−   denotes confidence level, b and R are real numbers denoting required level 
of risk and required level of returns respectively. CVaR has a disadvantage of depend-
ing only on the tail of the distribution as such; it is not smooth (Cherny, Madan 2006). 
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Ahmadi-Javid (2012) showed that stochastic optimization problems that are compu-
tationally intractable with CVaR are efficiently deduced when Entropic-Value-at-Risk 
(EVaR) is considered. Zheng and Chen (2014) studied a portfolio selection strategy 
based on EVaR and compared the results with other downside risk measures such as 
VaR and CVaR. Their results show that EVaR has the highest resolution of risk. In this 
paper, we seek to meet the requirements of the regulator (small short tails) and the fund 
manager (small variance). This provides an answer as to the necessity for considering 
variance along with EVaR. Employing variance and EVaR helps control symmetric and 
assymetric risk on portfolio returns.
To solve the MV model and its modifications, several methods have been employed 
which includes but not limited to linear goal programming (Sharpe 1967), Genetic Al-
gorithms (Loraschi et al. 1995), Fuzzy modeling (Tanaka, et al. 2000), particle swarm 
optimization (Kendall, Su 2005), stochastic programming (Samuelson 1969; Atta Mills 
et al. 2016b) and evolutionary algorithm (Chiam et al. 2009).
For portfolio management in practice, the standard mean-variance only serves as a start-
ing point. It is reasonable to amend the underlying portfolio selection strategy frame-
work with different types of restrictions that take institutional features and investment 
guidelines into consideration. In practical portfolio management, a portfolio manager 
is faced with some constraints as a result of legal restraints, industrial regulations, 
and client-initiated strategies among others. A portfolio manager may be faced with a 
restriction of the minimum capital allocation to a particular asset. As a result, the un-
derlying portfolio selection strategy must reflect some of these real-world constraints 
such as such as transaction costs, minimum transaction lots, cardinality constraints, and 
thresholds on maximum or minimum investments. The importance of real features in 
a portfolio selection model has been investigated in Kellerer et al. (2000). It is shown 
that the use of fixed transaction costs lowers the number of securities selected and that 
employing transaction lots considerably alters the structure of the resulting portfolio, 
both regarding assets selected and capital invested in the assets. One of the first studies 
on the inclusion of transaction costs in the mean-variance framework was in 1970 by 
Pogue (1970). Further extensions and modifications have been investigated afterwards 
(Schreiner 1980; Lobo et al. 2007; Mitchell, Braun 2013).
When securities are bought and sold, expenses are incurred such as bid-ask spreads and 
fund loads or brokerage fees. The sum of transaction costs for each trade is given by:

 1
( ) ( )

N

i i
i

c x c x
=

= ∑ ,  (7)

where ci is the transaction cost function for asset i. A simple situation for transaction 
cost model is to make the assumption that there exist a perfect market i.e. c(x) = 0. An-
other variant of practical importance is that transaction costs are linear, with the costs 
of each transaction proportional (Kellerer et al. 2000; Muthuraman and Kumar 2006) 
to the tradable amount:

 

, 0
( )

, 0.

b
i i i

i i s
i i i

c x x
c x

c x x

 ≥= 
≤

  (8) 
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Here, b
ic  and s

ic  are the costs incurred when buying and selling asset i respectively. 
Linear costs can be handled with the introduction of new variables 0bx ≥  and 0sx ≥ ,
which represents the portion of capital used to purchase asset i and portion of capital 
obtained by selling shares of asset i. Thus, the total transaction can be expressed as:

b s
i i ix x x= − .

Therefore, the transaction cost function ci is given as:
b b s s

i i i i ic c x c x= + .

A fixed cost per transaction might be imposed as studied by Oksendal and Sulem 
(2002). Transaction costs can be modeled as fixed costs plus proportional costs (Mar-
inger 2006). Let b

iβ  and s
iβ  be the fixed costs per transaction for buying and selling 

asset i respectively. The fixed-plus-proportional costs function is expressed as:

 

0, 0
( ) , 0

, 0.

b b
i i i i i i

s s
i i i i

c x c x x
c x x


= β + >
β + <

  (9)

The function above is non-convex except for when the fixed costs are zero. Alterna-
tively, transaction costs could be modeled as proportional cost with a lower limit being 
the fixed cost. This can be represented by a cost function:

 

0, 0
( ) max{ , }, 0

max{ , }, 0.

b b
i i i i i i

s s
i i i i

c x c x x
c x x


= β >
 β <

  (10)

As already stated in the previous section, this study assumes proportional transaction 
costs. The transaction cost models have no advantages over each other as the assump-
tion and selection of which transaction cost model to employ depends on the researcher.
For a detailed review of risk measures, the basic solvable portfolio models and models 
with real features that are presented in the literature, please refer to Mansini et al. (2014) 
and Ghosh and Mahanti (2014). All these later developments can be categorized into 
three sections: (i) developing models to reflect investor’s preferences, (ii) inclusion of 
real-world market constraints and (iii) using characteristics of diverse disciplines to 
solve practical portfolio selection strategy problems.

2. Coherent risk measure

Consider F∞  as a set of all bounded random variables denoting financial positions.
Definition 1. (Follmer, Schied 2004) For a risk measure : F∞ρ →   to be referred to 
as a coherent risk measure, the following properties must be satisfied given that X and 
Y are random variables:
(1) Monotonicity. If 0X ≥ , then for any X F∞∈ .
(2) Positive homogeneity. ( ) ( )sX s Xρ = ρ  for any X F∞∈ and 0s > .
(3) Sub-additivity. ( ) ( ) ( )X Y X Yρ + ≤ ρ + ρ  for any ,X Y F∞∈ .
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(4) Translational invariance. ( ) ( )X s X sρ + ≤ ρ −  for any X F∞∈ and s∈.
From here on, we discuss CVaR and EVaR. For a comprehensive study on CVaR and 
EVaR, please see Rockafellar and Uryasev (2000) and Ahmadi-Javid (2012) respec-
tively.
Definition 2. Define loss of the portfolio function as ( , )f X ζ  with decision vector 

Nx X∈ ⊆   and random vector which is the actual return of the portfolio. Suppose 
(| ( , ) |)f x ζ  for each Nx∈ and z has a c.d.f ( )p ζ , then under a confidence level 

( )0  1< <   and a threshold z, we define Value-at-Risk (VaR) and CVaR as follows:

{ }(1 ) ( , )
VaR ( ) min | ( ) 1

f x z
x z p d− ζ ≤
= ζ ζ ≥ −∫  .

(1 )
(1 ) ( , ) ( )

1CVaR ( ) ( , ) ( )
1 (1 ) f x VaR x

x f x p d
−

− ζ ≥
= ζ ζ ζ

− − ∫


 
.

Equivalently, Rockafellar and Uryasev (2000) proved that (1 )CVaR ( )x−  can be defined 
as (1 ) (1 )CVaR ( ) min ( , )

z
x F x z− −

∈
=



  ,

where (1 )
1( , ) [ ( , ) ] ( )

1 (1 )
+

−
ζ∈

= + ζ − ζ ζ
− − ∫

N

F x z z f x z p d


 
or for the discrete case 

(1 )
1

1( , ) [ ( , ) ]
(1 (1 ))

+
−

=
≈ + ζ −

− − ∑
N

k
k

F x z z f x z
N 

.

Therefore, minimizing (1 )VaR ( )x− w.r.t x X∈  is equivalent to minimizing (1 ) ( , )−F x z  
w.r.t ( , )x z X∈ ×  i.e.,

(1 ) (1 )( , )
min  CVaR ( )  min ( , )− −
∈ ∈ ×

=
z x y X

x F x z
 

  .

CVaR has a disadvantage as it depends only on the tail of the distribution, i.e. it is a 0 – 1 
risk measure so it is not smooth (Cherny, Madan 2006). Ahmadi-Javid (2012) showed 
that stochastic optimization problems that are computationally intractable with CVaR 
are efficiently deduced when Entropic-Value-at-Risk (EVaR) is considered. According 
to Axelrod et al. (2016), EVaR is a computationally efficient and coherent risk measure 
that can be utilized to quantify risk.
For the purpose of this study, we investigate the Entropic-Value-at-Risk (EVaR) as part 
of a consolidated risk measure with variance in a mean-risk optimization framework to 
help control the downside risk of the portfolio return.
Definition 3. (Ahmadi-Javid 2012) For a given level of confidence (0,1)∈ , the En-
tropic Value-at-Risk of a random variable X whose distribution   belongs to set   of 
distributional ambiguity is defined as

 
(1 ) 0

1EVaR ( )  inf l [ ]n ln−
>

−  =    
zX

z pX e
z  .  (11)

EVaR’s dual representation relates to the concept of entropy. Ahmadi-Javid (2012) in-
vestigates the EVaR with a known distribution and from a risk measure viewpoint. They 
prove EVaR is a coherent risk measure and thus has all the desirable properties defined 
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above. EVaR is a coherent risk measure that corresponds to the tightest possible upper 
bound obtained from the Chernoff inequality for both the Value-at-risk (VaR) and the 
Conditional Value-at-Risk (CVaR). 
We assume that X follows a Gaussian distribution with mean m and standard deviation 
s. This leads to a recast of (11):

 
2( , )(1 ) 0

1EVaR ( )  inf l [ ] nn lµ−
> σ
  = =   

−zX
X Nz

X e
z 

 

                       

2

0

1inf ln
2>

 σ
µ + − = 
 z z z

   (12)

                       

12lnµ + σ


.

3. Constraining portfolio norms

In the next section, this study investigates portfolios resulting from a scaled mean vari-
ance-EVaR strategy but subject to the additional constraint that the norm of the portfolio 
weight vector is smaller than a given threshold, y. One can view these portfolios as 
resulting from shrinking portfolio weights of the scaled mean-variance EVaR portfolio. 
As already stated, shrinking portfolio weights is prudent and by constraining portfolio 
norms, we constrain estimation risks. The general p-norm, p ≥ 1 is defined as 

 

1/

1
|| || | |

pN
p

p i
i

x x
=

 
=   
 
∑ . (13)

When p = 1, we obtain the taxicab norm (l1-norm). For p = 2, we get the Euclidean 
norm (l2-norm). Note that the standard mean-variance or mean-EVaR is the solution the 
norm-constrained problem with ψ = ∞ . The norm-constrained scaled mean-variance-
EVaR is a shrinkage estimator of the scaled mean-variance-EVaR. The difficulty in 
shrinkage estimators is the selection of the amount of shrinkage that generates optimal 
portfolios that reflects the trade-off between returns and risk. DeMiguel et al. (2009) 
provided a general scheme for obtaining optimal portfolios by adding a convex norm 
ball constraint. The numerical results indicated a better out-of- sample performance 
than strategies like 1/N portfolio strategy among others. Atta Mills et al. (2016a) also 
employed the Squared-Euclidean norm ball constraint to alleviate estimation risk and 
obtained better computational results than other strategies.

4. The model

We formulate the scaled regularized MVE portfolio revision model with transaction 
costs as a mathematical optimization problem in this section. This study employs the 
following notation. We denote by R the required return level, N the number of risky 
assets and x0 as the initial risky assets before revision: 0

kx  is the portion of capital ini-
tially allocated to asset k , 1,2,3, ,k N= … . Let , b

kx x  and xs be N-dimensional vectors 
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of controllable variables: xk is the portfolios invested in risky asset k after revision, b
kx  

are purchases (portion used) of risky asset k and s
kx  are sales (portion obtained) of risky 

asset k. The transaction costs incurred when selling risky assets is cs and that of buying 
risky assets is cb. The financial portfolio is characterized by N-dimensional vector of 
random returns z. Let mk denote the expected value of $1 invested in risky asset k at the 
end of the period and 1fµ >  be the value of riskless asset at the end of the period, y0 is 
the fraction invested in a riskless asset before revision and y is the fraction invested in a 
riskless asset after revision. The variance is denoted by 2 2( ) [( ( )) ]E Eσ ζ = ζ − ζ . Denote 
(1 )−   the probability risk level. This research uses historical data of returns rk for each 
risky asset k at T successive time frames to estimate the mean return m the covariance 
matrix, 0 : [( )( )] ]TQ Q E= ζ − µ ζ − µ . For convenience, the notations are listed below:
N – number of risky assets.
R – required return level.
e – vector with entries equal to ones.
x0 – initial risky assets before revision.

0
kx  – portion of capital initially allocated to risky asset k.
kx  – amount invested in risky asset k after revision.
b
kx  – purchases (portion used) of risky asset k.
s
kx  – sales (portion obtained) of risky asset k.

cs – transaction costs incurred when selling a risky asset.
cb – transaction costs associated with purchasing a risky asset.
y – amount invested in the riskless asset before revision.
y – amount invested in the riskless asset after revision.
mk – expected return of $1 invested in risky asset k.
mf – expected return of riskless asset.
Q – covariance matrix of the portfolio return.

4.1. Regularized mean-variance-EVaR model
To this end, we consider the squared l2-norm regularized mean-variance-EVaR portfolio 
optimization model with proportional transaction costs as the optimization problem P0.

                      P0: min    (1 )EVaRTx Qx x−+    (14)

                      subject to  T
f y x Rµ + µ ≥ ,  (15)

   1 1 1
1

N N N
b b s s

k k k
k k k

y x c x c x
= = =

+ + + ≤∑ ∑ ∑ ,  (16)

                                    
0 ,b s

k k k kx x x x k= + − ∀ ,  (17)

                                    0b s
k kx x⋅ = ,   (18)

                                    
2 2
2|| ||x ≤ ψ ,   (19)

                                    , , ,b s Nx y x x +∈ ,  (20)
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where l2-norm of Nx∈  is defined as 222
1

|| || | |
N

k
k

x x
=

= ∑ , the squared l2-norm is 

2 2
2

1
|| ||

N

k
k

x x
=

= ∑  and y is a given threshold.

Problem P0 minimizes the squared l2-norm-constrained variance-EVaR of the portfolio 
and is subjected to a set of constraints (15–20). Constraint (15) guarantees the expected 
portfolio return to be greater or equal to a minimum threshold return level R. Constraint 
(16) represents the budget constraint. Constraint (17) is the balance constraints and rep-
resents the portfolio position to be selected explicitly through purchase xb and sales xs 
that are adjustments to the initial position x0. The complementarity constraint (18) and 
the nonnegative constraint (20) prevent the possibility of simultaneous sales and pur-
chases. Practically, concurrently selling and buying is seen as not optimal because mak-
ing the allocation to one asset or security decreases and increases at the same time, thus 
being subjected to unnecessary transaction costs (Dybvig 2005). Constraint (19) helps 
to alleviate the estimation risk problem in the mean estimate (DeMiguel et al. 2009).
In the MVE approach, given two portfolios say a and b, portfolio a is favoured over 
portfolio b if and only if the following conditions hold: 2 2( ) ( ), ( ) ( )a b a bE Eζ ≥ ζ σ ζ ≤ σ ζ
and EVaR( ) EVaR( )a bζ ≤ ζ  in which EVaR is computed accordingly.
Another alternative is to explicitly model the trade-off between return and risk in the 
objective function using a risk-aversion parameter, a. We refer to the following formula-
tion as the risk aversion formulation of optimization problem P0:

   A0: max   2 (1 1 )EVaRT T
f y x x Qx x−µ + µ − α − α 

                           subject to 
1 1 1

1
N N N

b b s s
k k k

k k k
y x c x c x

= = =
+ + + ≤∑ ∑ ∑ ,

                                         
0 ,b s

k k k kx x x x k= + − ∀ ,                                 (21)

                                        0b s
k kx x⋅ = ,

                                         
2 2
2|| ||x ≤ ψ ,

                                        , , ,b s Nx y x x +∈ .

The risk aversion parameter a is also known as the Arrow-Pratt risk aversion index. 
When a is small (i.e., the aversion to risk is low), the penalty from the contribution of 
the portfolio risk is also small, resulting in risky portfolios. Contrarily, when a is large, 
portfolios with more exposures to risk become more highly penalized. If a is gradually 
increased from zero and for each case compute the optimization problem, it results in 
finding each portfolio along the efficient frontier. Often, a is calibrated via backtests 
with historical data such that a particular portfolio has the desired risk profile.
These formulations P0 and A0 are equivalent as they lead to the same efficient frontier 
and trade expected portfolio risk versus portfolio return in a similar manner. For the 
purpose of this study, we use the risk minimization formulation P0 as it provides an 
avenue to consider varied required returns needed for our numerical examples.
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4.2. Scaled regularized mean-variance-EVaR approach
In a mean-variance framework, Mitchell and Braun (2013) proposed rescaling by capital 
available after incurring transaction costs to obtain an appropriate representation of a 
risk measure of the resulting portfolio. They obtained a frugal optimal solution to the 
MV problem. Based on Mitchell and Braun (2013) approach, we scale the regularized 
variance-EVaR risk measurement by the square of capital amount actually invested.
Earlier, we optimized the regularized variance-EVaR i.e.

(1 )EVaRTx Qx x−+  .

When transaction costs are non-existent in the market, the entire capital ($1) is always 
accessible for investment, but in the presence of transaction costs, costs would have to 
be paid to revise the portfolio, and so the $1 is no more available for investment. The 
suitable objective is therefore represented as

(1 )
2

EVaR
( )

T

T

x Qx x
e x y

−+

+
 .

The transaction costs paid amounts to 1 – (eTx + y), so eTx + y is the actual capital avail-
able for investment. We choose to scale the regularized variance-EVaR measurement 
by the square of the capital actually invested. When the transaction cost is zero, then 
eTx + y = 1 and we regain the regularized variance-EVaR measurement. To this end, we 
consider the scaled squared l2-norm regularized mean-variance-EVaR model

                    S0: min     (1 )
2

EVaR
( )

T

T

x Qx x
e x y

−+

+


                    subject to  T
f y x Rµ + µ ≥ ,

 1 1 1
1

N N N
b b s s

k k k
k k k

y x c x c x
= = =

+ + + ≤∑ ∑ ∑ ,  (22)

 
0 ,b s

k k k kx x x x k= + − ∀ ,  

 0b s
k kx x⋅ = ,

  2 2
2|| ||x ≤ ψ ,

 , , ,b s Nx y x x +∈ .

The above problem S0 is a fractional optimization problem and we will find efficient 
frontiers as shown in the next section. Our fractional model improves the consolidated 
risk measure for transaction cost consumed portfolios and leads to an optimal portfolio 
with lower transaction costs.

Theorem 1. Let x* and y* be the optimal solution to S0. Denote * *1 ( )TC e x y= − +  be 
transaction costs of this portfolio. The portfolio x* and y* is the minimum risk portfolio 
in comparison to all other portfolios with expected return at R and transaction costs no 
greater than C.
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Proof. Let x̂  and ŷ solve S0, then the feasible region to S0
* * *

(1 ) (1 )
* * 2 2

ˆ ˆ ˆEVaR EVaR
ˆ ˆ( ) ( )

T T

T T

x Qx x x Qx x
e x y e x y

− −+ +
≤

+ +
  .

It follows that if * *ˆ ˆT Te x y e x y+ ≥ +  then * * *
(1 ) (1 )ˆ ˆ ˆEVaR EVaRT Tx Qx x x Qx x− −+ ≥ +   

. 
Our model S0 produces Pareto optimal solutions with varied return level R and three-
dimensional efficient frontier. The remainder of the paper is in two folds. First, we ob-
tain a convex formulation equivalent to our proposed model, S0. Secondly, we present 
our results via numerical experiment and make concluding remarks.

4.3. Convex reformulation
Model S0 has complementarity constraint (18), which leads to non-convex optimization 
problem. Some studies do not impose the complementarity constraint (Krokhmal et al. 
2002; Lobo et al. 2007) on the buy and sell variables which results in an unreason-
able portfolio selection strategy. Mitchell and Braun (2004) show that the intractable 
complementarity constraint (18) can be discarded when the portfolio considers a risk-
less asset. Mitchell and Braun (2004) show that in a case where the riskless asset ap-
pears as a nonnegativity constraint, the optimal solution to P0 satisfies the transaction 
cost constraint (5) at equality. Thus, in this case it is not a necessity to consider the 
complementarity constraint. In other words, the optimization problem S0 with explicit 
sell and buy variables can be solved through a convex relaxation. Given any feasible 

solution with 
1 1 1

1
N N N

b b s s
k k k

k k k
y x c x c x

= = =
+ + + ≤∑ ∑ ∑ , an equally good feasible solution with 

1 1 1
1

N N N
b b s s

k k k
k k k

y x c x c x
= = =

+ + + =∑ ∑ ∑  can be achieved through the increment of y. Thus, 

there is an optimal solution to S0 with 
1 1 1

1
N N N

b b s s
k k k

k k k
y x c x c x

= = =
+ + + =∑ ∑ ∑ .

The fractional problem S0 can be recast into convex optimization problem by substitut-
ing the denominator by the square of the reciprocal of a variable. We provide a convex 
equivalent reformulation that is mathematically tractable and suitable for solvers. This 
study employs the technique proposed by Charnes and Cooper (1962) in relation to the 
solving fractional optimization problems. In Schaible (1974)’s study, an extension of 
Charnes and Cooper (1962)’s approach was investigated with fractional convex func-
tions incorporated, a scenario which S0 is inclusive. Denote

 
 :  1 , 1Tw w

e x y
= ≥

+
.  (23)

Note that: 
1

N

k
k

x y
=

+∑  is Te x y+ .

Let’s define
1Te xw yw+ = ,

,x xw y yw= =  ,
,b b s sx x w x x w= =  .
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With the complementarity constraint discarded, all the constraints of S0 are multiplied 
by w and with constraint (20) added to the reformulated optimization problem. We also 

need to impose the constraint 
1

1
N

k
k

y x
=

+ =∑  , which is equivalent to w (see 23). Thus, 

we obtain a new convex optimization problem in the form:
                    S1: min     (1 )EVaRTx Qx x−+  

                    subject to  T
f y x Rwµ + µ ≥  ,

 1 1 1

N N N
b b s s

k k k
k k k

y x c x c x w
= = =

+ + + ≤∑ ∑ ∑    ,

                                   
0 ,b s

k k k kx x w x x k= + − ∀   ,                       (25)

 1
1

N

k
k

y x
=

+ =∑  ,

 
2 2
2|| ||x w≤ ψ ,

 , , ,b s Nx y x x +∈   
 .

From the above problem, we solve for solution * * * *, , ,b sx y x x     and w* and obtain an op-
timal solution to the original problem S0 with the complementarity constraint discarded 

by rescaling * * * *, , ,b sx y x x     so 
* * *

* * *
* * *, ,

b
bx y xx y x

w w w
= = =
  

 and 
*

*
*

s
s xx

w
=


.

5. Numerical example

This section illustrates the applicability of the portfolio strategy presented in the previ-
ous sections. All computations were performed with MATLAB (version 2015a) soft-
ware on a Macbook Pro with 2.3 GHz Intel Core i7 processor and 16GB of RAM. The 
monthly stock price of the top 20 S&P 500 companies by weight on February 22, 2016 
that traded from January 2, 2004 to February 1, 2016 were extracted from Economic 
Research – St. Louis Fed (2016). For the riskless asset, we consider the 4-Week US 
Treasury Bill rate on a monthly basis for the same period.
The initial position of stocks 0 , 1, ,20kx k = …  is computed by using natural logarithm 
of the price ratio for 2 consecutive months from January 2, 2004 to December 1, 2004. 
Assuming the initial position for the 4-Week US Treasury Bill is zero i.e. y0 = 0, the 
initial position of stocks 0 , 1, ,20kx k = …  is obtained by solving the standard mean-
variance problem:
                                        B0: min     Tx Qx

 subject to  T
f y x Rµ + µ ≥ ,  (26)

 1
1

N

k
k

y x
=

+ =∑ ,

 , Nx +∈ ,

where R = min (m) and by setting 0 *x x= , 0 *y y=  with *x  and *y  denoting the op-
timal solution of the above model. Please refer to Table 1 for the results.
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We construct the portfolio invested in the top 20 S&P 500 stocks after revision based 
on natural logarithm of the price ratio for 2 consecutive days from January 3, 2005 to 
February 1, 2016 given that the amount invested in 4-Week US Treasury Bill after revi-
sion is fixed. Descriptive statistics of this data are provided in Table 2.
Considering varied required returns, say, R = (0.0075, 0.0078, 0.0082, 0.0088, 0.0098, 
0.0104, 0.0125, 0.0130), for 0.05,  0.03= ψ =  and transaction costs, 0.02b sc c= = , 
the optimal weights of the 20 stocks are obtained by solving model S1. 

Table 2. Descriptive statistics of 20 S&P stocks log return distributions

Stock k Mean Std. Deviation Variance Skewness Kurtosis
Statistic Statistic Statistic Statistic Std. error Statistic Std. error

1 0.0232 0.09840 0.010 –1.070 0.209 3.227 0.416
2 0.0068 0.06916 0.005 –0.039 0.209 0.685 0.416
3 0.0056 0.05147 0. 003 0.230 0.209 1.204 0.416
4 0.0062 0.03886 0.002 –0.407 0.209 1.257 0.416
5 0.0012 0.08117 0. 007 –0.787 0.209 3.057 0.416
6 0.0060 0.04863 0.002 –0.038 0.209 1.276 0.416
7 0.0070 0.04893 0.002 –0.734 0.209 0.908 0.416
8 0.0053 0.04331 0.002 –0.264 0.209 0.398 0.416
9 0.0055 0.08960 0.008 –1.164 0.209 9.445 0.416
10 0.0051 0.08408 0.007 –0.544 0.209 1.299 0.416
11 0. 0066 0.05070 0.003 –0.100 0.209 –0.077 0.416
12 0.0186 0.11104 0.012 –0.015 0.209 1.904 0.416
13 0.0041 0.05648 0.003 –0.419 0.209 0.524 0.416
14 0.0079 0.04403 0.002 –0.540 0.209 1.997 0.416
15 0.0066 0.05901 0.003 –0.322 0.209 0.074 0.416
16 0.0098 0.06352 0.004 –0.255 0.209 0.305 0.416
17 0.0070 0.04072 0.002 –1.607 0.209 6.912 0.416
18 0.0104 0.06391 0.004 –0.553 0.209 1.166 0.416
19 0.0066 0.06463 0.004 –0.459 0.209 1.253 0.416
20 0.0082 0.07052 0.005 –0.452 0.209 0.325 0.416

Stock k Initial weight x0

1 0.020638
2 0.000004
3 0.241291
4 0.000004
5 0.059342
6 0.000012
7 0.244491
8 0.000004
9 0.128595
10 0.011539

Stock k Initial weight x0

11 0.000003
12 0.000001
13 0.112752
14 0.000721
15 0.000009
16 0.042769
17 0.130161
18 0.000004
19 0.007657
20 0.000003

Table 1. Initial position of stocks
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5.1. Results of the scaled regularized MVE model
The optimal weights of the 20 stocks are obtained by solving model S1 with their cor-
responding EVaR and variance values. Given the characteristics of the riskless asset, 
we restrict the 4-Week US Treasury Bill through this constraint: 0 0.2y≤ ≤ . This re-
striction is imposed because of the riskless nature of the US Treasury Bill. Stocks and 
Treasury Bills are two different asset classes, the model will prefer allocating most of 
the amount invested to Treasury Bills because of its riskfree factor. It is appropriate to 
constrain the Treasury Bills. The Treasury Bills constraint is reflective of y  in con-
straint (18). The results are displayed in Table 3.

Table 3. Optimal weights (xk, y), k = 1, 2, …, 20 with corresponding EVaR and variance values 
among other outputs of the portfolios under varied required returns

R 0.007000 0.007500 0.007800 0.008200 0.008800 0.009800 0.010400 0.012500 0.013000

x1 0.000000 0.000000 0.000000 0.020227 0.054454 0.110908 0.144090 0.227485 0.232383

x2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x3 0.008143 0.025952 0.031475 0.018315 0.007124 0.000000 0.000000 0.003276 0.006802

x4 0.151133 0.150918 0.151362 0.152331 0.151248 0.142105 0.132057 0.078038 0.064679

x5 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x6 0.046299 0.059460 0.063656 0.054745 0.046511 0.034912 0.029932 0.024837 0.023792

x7 0.066640 0.077167 0.080919 0.078278 0.074333 0.067223 0.063074 0.050366 0.046509

x8 0.084901 0.093102 0.095726 0.087109 0.079121 0.065077 0.056732 0.032453 0.027338

x9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x11 0.038283 0.052426 0.057102 0.050217 0.043321 0.034170 0.030781 0.030574 0.030139

x12 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.043486 0.077165

x13 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x14 0.136651 0.138436 0.139940 0.147337 0.150664 0.148778 0.142892 0.098686 0.085997

x15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x16 0.000000 0.002508 0.010056 0.012068 0.011222 0.014613 0.020218 0.052049 0.056563

x17 0.150215 0.150247 0.150998 0.155517 0.156904 0.151341 0.142996 0.090858 0.077103

x18 0.000000 0.007012 0.014568 0.019398 0.020415 0.026047 0.032403 0.063131 0.066840

x19 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

x20 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

y 0.200000 0.200000 0.200000 0.200000 0.200000 0.200000 0.200000 0.200000 0.200000

xTQx 0.000497 0.000596 0.000652 0.000667 0.000699 0.000787 0.000863 0.001300 0.001400

EVaR0.95 0.076600 0.086500 0.091900 0.094800 0.099400 0.108000 0.113700 0.137900 0.145300

1 – (eTx + y) 0.117700 0.042800 0.004200 0.004500 0.004700 0.004800 0.004800 0.004800 0.004700

eTx + y 0.882300 0.957200 0.995800 0.995500 0.995300 0.995200 0.995200 0.995200 0.995300
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From the results displayed by Table 3, the scaled regularized MVE frontier of the port-
folio is graphically shown in Figure 1. A careful observation of Table 3 and Figure 1 
show that as required returns R increases, EVaR0.95 and variance values also increase, 
signifying that a higher return leads to higher risk, which is in line with existing litera-
ture and practice.
To illustrate the characteristic difference between the scaled regularized MVE model 
and the unscaled one, we compare output results such as risk measures, transaction costs 
(1 – (eTx + y)) and capital amount invested (eTx + y) for some given level of R. We can 
clearly see from Table 3 and Table 4 that the transaction costs paid to implement the 
optimal solution to S0 is lower than that of P0. Therefore, the capital amount invested 
in portfolio S0 is much higher than P0 for given levels of R.
In Table 3, the variance is smaller than Table 4 but the EVaR is larger than in Table 3 
when compared to Table 4. Thus, even though the variance is smaller, investors will 
have to be subjected to some additional risk in reducing the probability that the port-
folio will incur large losses in order to pay lower transactions costs and have a chunk 
of their capital invested. In other words, investors would have to incur a small risk in 
controlling the downside risk of portfolio return if they want to pay lower transaction 
costs and have a large portion of their capital invested. Investors will be compensated 
with a smaller risk associated with the deviation around the expected return.

Table 4. Characteristic results of unscaled regularized MVE model

R 0.009800 0.010400 0.012500 0.013000
xTQx 0.000904 0.000983 0.001300 0.001400
EVaR0.95 0.084900 0.094500 0.131500 0.142000
1 – (eTx + y) 0.455400 0.409200 0.188900 0.112900
eTx + y 0.544600 0.590800 0.811100 0.887100

Fig. 1. The scaled regularized mean-variance-EVaR efficient frontier

14

×10–4
12

10
8

6
40.007

0.008

0.009

0.01

0.011

0.012

0.15

0.1

0.05

0
0.013

E
V
aR

R

Variance



578

E. F. E. Atta Mills et al. Scaled and stable mean-variance-EVaR portfolio selection strategy ...

5.2. Additional example
To verify our findings, this study subjects our model to a larger dataset. This research 
uses the same dataset employed by Filomena and Lejeune (2012). The monthly stock 
price of 2570 stocks traded on NYSE, Amex and NASDAQ from January 29, 1999 
to December 31, 2008 extracted via Wharton Research Data Service by Filomena and 
Lejeune (2012) was used. For the riskless asset, we consider the 3-Month US Treasury 
Bill rate on a monthly basis for the same period. 
The initial position of stocks 0 , 1, ,2570kx k = …  is computed by using natural logarithm 
of the price ratio for 2 consecutive months from January 29, 1999 to December 31, 
1999. Assuming the initial position for the 3-Month US Treasury Bill is zero i.e. y0 = 
0, the initial position of stocks 0 , 1, ,2570kx k = …  is obtained by solving the standard 
mean-variance problem B0. 
We construct the portfolio invested in the 2570 stocks after revision based on nat-
ural logarithm of the price ratio for 2 consecutive days from January 31, 2000 to 
December 31, 2008 given that the amount invested in 3-Month US Treasury Bill 
after revision is constrained by 0 0.2y≤ ≤ . Considering varied required returns, 

0.0098,  0.0104,  0.0125,  0.0130R = , for 0.05,  0.03= ψ =  and transaction costs, 
0.02b sc c= = , the optimal weights of the 2570 stocks are obtained by solving model S1.

Table 5. Results of scaled regularized MVE model for 2570 stocks

R 0.009800 0.010400 0.012500 0.013000
Scaled regularized MVE model

xTQx 0.000179 0.000184 0.000231 0.000249
EVaR0.95 0.006610 0.007050 0.008660 0.090500
1 – (eTx + y) 0.003300 0.005100 0.003600 0.003600

eTx + y 0.996700 0.994900 0.996400 0.996400
Unscaled regularized MVE model

xTQx 0.000208 0.000256 0.000231 0.000249
EVaR0.95 0.039000 0.045100 0.006640 0.071500
1 – (eTx + y) 0.627200 0.599100 0.499100 0.475300

eTx + y 0.372800 0.400900 0.500900 0.524700

From Table 5, we observe that as return increases, EVaR and variance values also in-
crease. This signifies that a higher return leads to higher risk and it’s in line with our 
earlier finding. The variance is smaller for the scaled regularized MVE model than the 
unscaled regularized MVE model, but the EVaR is larger than in the scaled regularized 
MVE model when compared to the unscaled one. This observation is in line with our 
earlier observation and confirms that investors would have to incur additional risk in con-
trolling the downside risk of portfolio return if they want to pay lower transaction costs 
and have a significant portion of their capital invested. However, they will be compen-
sated with having a lower risk associated with the deviation around the expected return.
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Conclusions 

In this paper, we presented a scaled regularized mean-variance-EVaR with proportional 
transaction costs portfolio selection model, which selects a solution based on three 
parameters, which are variance, EVaR and the expected return. This model is one of a 
multi-objective type: expected return is maximized, and variance and EVaR are mini-
mized. We chose variance and EVaR because variance measures the deviation from the 
expected return whiles EVaR will help control the downside risk of portfolio return.
In pursuing the solution of this multi-objective model, we reduce it to a minimization 
problem in which variance and EVaR are minimized whiles constraints are imposed 
on the expected return. Random returns are usually represented by the mean estimate, 
which leads to estimation risk. We imposed the squared l2-norm ball constraint to deal 
with this problem.
For a varied level of required returns, we obtain efficient solutions of the scaled regu-
larized mean-variance-EVaR model. In a variance-EVaR space, our scaled regularized 
standard risk minimization formulated model obtains a range of efficient solutions 
which forms a curve that represents an optimal compromise between short tails and the 
risk associated with the deviation around expected return. Our model lowers transaction 
costs and increases the amount of capital to be used for investment. Even though the 
variance is smaller, investors will have to incur some additional risk in reducing the 
probability that the portfolio will incur large losses if they want to pay lower transac-
tions costs and have a chunk of their capital invested.
The scaled regularized mean-variance-EVaR model represents a compromise between 
traditional fund managers’ need for small variance and regulators’ necessity for short 
tails. Our model can also help the investor have a chunk of his capital invested. For a 
given required return, one can obtain the optimal allocation of assets in the portfolio and 
enhance the efficiency of portfolio selection by controlling the overall risk.
The methodology presented in this research is based on some assumptions on asset 
characteristics such as the kind of assets and its distributional properties. One possible 
future research approach would be to consider, instead of Gaussian distributed returns 
of stocks, the more general alpha-stable distributed returns of stocks, which could lead 
to a better understanding from a financial perspective. Our approach may be extended 
for a portfolio that is made of several or different assets under different financial market 
situations with different realistic assumptions. It is also possible to use the results from 
other methodologies to compare results of our model under the scope of computing 
times and efficiency.
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