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Abstract. The paper analyses the trend of global stock market linkages via daily data of
51 stock indices spanning the period 22 July 2005 to 30 June 2016 which covers four
regions: America, Europe, Asia Pacific and Africa. A dynamic conditional multivariate
generalized autoregressive conditional heteroskedasticity (DCC-MVGARCH) approach
was used to calculate dynamic correlation coefficient in order to construct the volatility
networks. The methods of minimum spanning tree (MST) and low pass filter were for
the first time applied to analyze the variable periodicity of the comovement. The original
contribution of this paper is that contrary to previous works, financial events such as
Quantitative Easing (QE) and Bailouts are accounted for rather than only crisis factors
such as the 2008 financial crisis and the European Debt crisis. The main findings of the
paper are as follows: (1) Financial crisis promotes and strengthens global stock markets
linkage in the short run; (2) Linkage cycles post crisis are significantly short, due to the
effect of monetary policy spillover effects caused by QE from developed to developing
countries; and (3) European stock markets are the information transmission hub for global
stock market. The research conclusions would be significant for both government to regu-
late markets as well as for investors to diversify risks.

Keywords: complex network, DCC-MVGARCH, topological properties, minimum span-
ning tree, low pass filter, variable periodicity analysis.

JEL Classification: C15, C61, E32, G01, G14, G15.

Introduction

In the context of financial globalization, the development and policy formulation of
a country’s financial market will have a certain impact on the financial markets of
other countries. Global stock market linkage refers to the common movement of stock
markets. Prices in different stock markets will eventually achieve long-term equilib-
rium with different market yields and price fluctuations have a strong correlation. It is
significant for both securities investors to diversify risks as well as for government to
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regulation market by making an intensive study of the dynamic changes of the relation-
ship between international stock markets.

Complex networks theory is useful in the complexity and non-linear relationships study
of a system (Fan 2014). Network science has its origin in graph theory, topology and
other branches of applied mathematics. In the middle of the 20™ century, Erdés—Rény
(ER) random graph theory, the basic model of stochastic networks, became the most
powerful tool for studying real networks. With the proposal of the small-world and
scale-free network models, the traditional ER theoretical framework has been tran-
scended and real-world statistics has been characterized more effectively (Fang et al.
2007). Subsequently, network science has been applied in many fields, such as sociology
(Porat, Benguigui 2016), biology and medicine (Wang et al. 2016; Huang et al. 2017),
physics (Sui et al. 2016), information dissemination (Carley et al. 2016; Park et al.
2016), interdisciplinary knowledge exchange (Shan et al. 2014), technology integration
(Lee et al. 2014), and art design (Jiang 2016). Almost at the same time, the application
of complex network analysis were introduced into financial markets (Mantegna 1999)
and has been widely applied to many fields as macroeconomic indices (Gao et al. 2013),
business cycles (Caraiani 2013), stock markets (Hwang ef al. 2016; Brida et al. 2016;
Coletti 2016; Majapa, Gossel 2016; Qiao et al. 2016), foreign exchange (Naylor et al.
2007; Brida, Risso 2010) and financial market risk (Huang et al. 2016).

The univariate GARCH model is widely used in the field of market volatility and risk
description due to the heterogeneity of financial time series. However, the univariate
GARCH model cannot satisfy the research on different market or assets with distinguish-
ing influencing factors. Then, the multivariate GARCH models, as a tool which can both
reflect the fluctuation characteristics of univariate GARCH model and describe the inter-
action and correlation between different variables and different factors, were introduced
into the financial market analysis. Dynamic conditional correlation multivariate general-
ized autoregressive conditional heteroskedasticity (DCC-MVGARCH) (Engle 2002) is
the improved model of CCC-MVGARCH (Bollerslev 1990) and BEKK-MVGARCH
(Engle, Kroner 1995). Compared to other GARCH models, DCC-MVGARCH is intui-
tive, concise and stable. The biggest characteristic of the DCC model is that the correla-
tion coefficient is the dynamic correlation coefficient which changes over time. There
are many scholars who apply the model to analyze the dynamic relationship between
economic indicators and financial assets to explore the internal mechanism of economic
phenomena (Chandra 2005; Aslanidis et al. 2010).

In this paper, we use the 51 most representative stock indices to analyze dynamic chang-
es in global stock market linkage. After transforming the 51 indices’ closing price into
log return, the dynamic coefficient correlations are calculated through DCC-MVGARCH
model. Then, we construct the volatility network and analyze their topological features,
such as the network density, average path length and clustering coefficient. Further, by
the algorithm of minimum spanning tree and low pass filter, we analyze the variable
periodicity of the comovement. Finally, using the index of average weighted degree,
we investigate the stability of the network and confirm the cluster structures of global
stock markets with core nodes for every cluster.

The remainder of the paper is organized as follows. Section 1 describes the literature
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on the dynamic analysis of global stock market linkage. Section 2 discusses the data
set and the methodology we applied. In Section 3, we present the principal empirical
results and analyses. Final section summarizes and concludes the paper.

1. Literature review

For theoretical research, the interaction mechanism of global stock market linkage can
be summarized as the “economic fundamental hypothesis” and the “market contagion
hypothesis”. The economic fundamental hypothesis is based on the traditional finan-
cial theory that investors are rational and argues that asset price linkage is caused by
asset fundamentals (Cho et al. 1986; Contessi et al. 2008). For the market contagion
hypothesis, researchers believe that not only macroeconomic factors but also investor
decisions contribute to the linkage of stock markets (Connolly, Wang 2003). At the
empirical research level, studies of international stock market linkage are primarily
on the basis of returns in specific countries or regions through the regression-based
econometric methods, such as the multivariate vector autoregressive (VAR) method
(Eun, Shim 1989; Neaime 2006; Guyot et al. 2014), multivariate generalized autore-
gressive conditional heteroskedasticity (MVGARCH) (Egert, Koéenda 2007; Xu et al.
2010; Neaime 2006), co-integration and error correction models (ECMs) (Bessler, Yang
2003; Mylonidis, Kollias 2010; Neaime 2012, 2016), directed acyclic graphs (DAGs)
(Liang et al. 2015) and the couple method (Gong, Huang 2009). Although the mea-
surement method in global stock market linkage has been applied extensively and has
yielded some meaningful conclusions, there are still some limitations. First, the regres-
sion model is limited by the properties of the sequence, such as autocorrelation, non-
stationarity and heteroskedasticity, which lead the result of parameter estimation might
not be robust. Then, the diversity of parameters and indices in the model might lead to
diversification of the results. Further, the regression-based approach primarily examines
linear Granger causality, but lacks explanatory power for more complex interactions
among actual global stock markets.

With the development of network science, increasing numbers of researchers are at-
tempting to study global stock market linkage from a network perspective. The market
commodities are commonly set as nodes and the interrelationships defined as the cor-
relation coefficient of two stocks’ logarithmic returns as links. Two kinds of correlation
coefficients have been distinguished in previous studies as static and dynamic. Then,
the study of financial variables becomes the study of a network’s topological properties.
Threshold and non-threshold networks are the principal tools for studying a particular
correlation network. The first is typically based on the principal features of networks,
such as degree distribution, clustering coefficient and average path length (Nobi et al.
2014) as well as degree-degree correlations, betweenness and modularity (Boginski
et al. 2005; Huang et al. 2009). The second is based on applying algorithms to the
correlation network, such as minimum spanning trees (MSTs) (Jung et al. 2006; Aste
et al. 2010; Garas, Argyrakis 2007; Majapa, Gossel 2016), hierarchical trees (HTs)
(Tabak et al. 2010; Cheong et al. 2012), planar maximally filtered graphs (PMFGs)
(Tumminello et al. 2005), average linkage-based MSTs (Tumminello et al. 2007) and
dynamic spanning trees (Sensoy, Tabak 2014).
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However, the aforementioned methods can lead to different results as a result of dif-
ferent settings of correlation coefficients. Many researchers have focused on a rolling
correlation process (Buttfield, Bolton 2005) to establish dynamic correlation coefficient
networks (Wang, Xie 2015; Ma et al. 2016), but because of the researchers’ specific
choices regarding parameters such as the length and drift of the estimation window,
there have been multifarious results (Karolyi, Stulz 1996; Chan 2006; Neely, Weller
2000). In addition, as stock markets typically exhibit increased volatility, the correlation
coefficient estimate can be exposed to contortion and encounter severe upward bias.
In this study, we calculate the dynamic correlation coefficient by DCC-MVGARCH
model suggested by Engle (2002). On the one hand, in contrast to the rolling correla-
tion process, the model parameters need not be set, which can eliminate the impact of
subjective parameter settings (Lyocsa et al. 2012). On the other hand, the consequences
calculated by DCC-MVGARCH are based on full samples and the parameter estimation
is unbiased, even if there is heteroskedasticity in the data.

To sum up, firstly, comparing with traditional econometric models, the results of global
stock market linkage research from a global perspective by complex networks are rela-
tively few. Then, scholars focus on the situation before and after the financial crisis
primarily but lack of the detailed study of other financial events, such as Quantitative
Easing (QE) and Bailouts. In addition, there have been a massive research focus on
network analysis without economic analysis. In this paper, we fuse DCC-MVGARCH
volatility network, minimum spanning tree and low pass filter for the first time to do the
trend analysis of global stock market linkage. Through the combination of econometric
model and network, the limitation of single method is overcome. The financial events
such as Quantitative Easing (QE) and Bailouts are also accounted into the analysis in
order to get a more comprehensive conclusion. The evolution of global stock market
volatility linkage network topological properties are studied through the threshold net-
works. Then, by calculating the average distance of minimum spanning tree derived
from non-threshold networks, we make an empirical test on the variable periodicity of
the global stock market linkage. Finally, we investigate the stability of networks and
confirm the core node for every cluster.

2. Data set and applied methodology
2.1. Data set

Our sample consists of daily closing price observations of 51 specific stock indices
which cover four regions: America, Europe, Asia Pacific and Africa for the period July
22 2005 to June 30 2016. The specific distribution of these indices are shown in Table 1.
All of these data sets are taken from the Wind information database. July 22 2005 is
choose as the starting point owing to the sample of China reforms the exchange rate
system on July 21 2005. As different zones have different holidays and the trading days
exist difference, we first match the data according to the date and then fill the missing
data arising from holidays and special events as the average of the recorded previous
price and the next price.
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Table 1. Major elements of global stock indices

Areas Stock Indices
America ISPA, MERYV, SPX, GSPTSE, MXX, IXIC, NYA, IBOVESPA, IBVC
Europe ISEQ, ATX, BLOM, BFX, BUX, PX, KAK, GDAXI, RTS, FCHI, HEX, AEX,

WIG, LUXXX, OSEAX, BVLX, OMXSPI, SSMI, IBEX, ASE, ITLMS, UKX

Asia Pacific  DFM, AORD, KLSE, STI, KS11, HIS, VNINDEX, PSI, SENXEX, N225,
SASEIND, 000001, 399001, SETI, NZ50, JKSE, XU100, TA100

Africa CASE, NGSEINDX

2.2. Applied method

2.2.1. DCC-MVGARCH

We use the DCC-MVGARCH model proposed by Engle (2002) to calculate dynamic
conditional correlation coefficients. First, transform the daily closing price as the daily

logarithmic return by
R(®)=InL;#)-Inl(-1), €))

where /(?) is the closing price of index i on day ¢. Then, the DCC-MVGARCH model
can be set under the assumption that the innovation sequence of & kinds of indices’ re-
turn {e,} is an independent and identically distributed white noise process with a zero
mean, and the covariance matrix /, obeys a multivariate normal distribution as follows:

r=u +e; )

€ | szl ~ N(O: Ht); (3)

H,=DRD,; 4)
M N M ' N

Qt :(1_ Zam _ZBn)Q+ Zam(st—mgt—m)+ZBnQ[—nﬁ (5)
m=1 n=1 m=1 n=1

_ T
where Q, , is the information collection of r, at time 7, Q=T"1> ¢,¢, is the uncondi-

t=1
tional variance matrix of standardized residuals, R, =(Q;)™'Q,(0;)™!, and O} contains
the elements on the diagonal of Q,, as follows:

\/a 0 - 0
. lo \/E e 0 ©

O = : : .. P
0 0 - Jau
then, R, is the matrix of the dynamic correlation coefficient, D, = diag(y/h;, ), where
5 O
by =0; + > ocl-pel-zt_ »t ZBiqhit_q, which means that every index’s return undergoes
p=1 g=1

a GARCH(p, ¢q) process. Finally, the correlation coefficient between indices i and j can
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be expressed as
it

Piji =—F——
N i jjt

The estimation of the DCC-MVGARCH model can be divided into two steps, estimat-
ing the univariate GARCH process for each asset, and then estimating the dynamic
correlation coefficient by the standardized residuals obtained from step 1. A test of
aerial correlation and heteroskedasticity is required before the estimation of the model.
In this paper, we use the R package MTS (Tsay 2014) to perform the DCC-MVGARCH
estimation and derive the dynamic correlation coefficient.

, i, j=1,2,,n, 0 # j. @)

2.2.2. Threshold network

A threshold network removes the weak correlation by setting a threshold, so that the
network is simplified and the structure of the network can be better studied. Previous
studies use different thresholds for different financial markets, such as above 0.7 in a
price index network analysis (Chi et al. 2010; Liu, Tse 2012) or above 0.3 in a static
correlation coefficient stock market network (Nobi et al. 2014). There are few studies
of threshold setting for the dynamic correlation coefficient in the current literature.

In order to find the perfect threshold for the network, given a random variable 7, r €
[0,1], calculate the number of edges £,(r) and the number of non-isolated vertices V(r)
with reference to the static correlation coefficient network threshold. The delta is cal-
culated as

a; = Ei(r) _1’ i:1’25"'5n; (8)
E,(0.3)
V0
Bi - I/l(03) 17 l 1:25 , 1. (9)

As the empirical results, the change of points is always smoothly downward, with the
result that the determinant of the threshold is the change rate of the number of vertices.
The change of vertices change rate is defined as

Bi+1
AB; ==, 10
B B, (10)

and the first obvious jump points is chosen as the threshold.

2.2.3. Network topological properties

To conduct the analysis of network topological properties, the distance between vertex
and vertex is defined as the Euclidean distance,

dj =2(1-1;), (11)

where ry is the correlation coefficient obtained from the DCC-MVGARCH model. This
distance formula is also applicable to the following MST method.

The network density is defined as the ratio of the number of links in a network to the
maximum number of links if every pair of vertices was to have an edge between them,
as follows:
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2M

TN(N-1) (12)

p
where M is the number of edges that actual exist in the network, and /N is the number
of vertices.

The average path length is the shortest distance of all pairs of vertices. The distance here
is defined as the sum of edges’ weights, where the edges constitute the shortest path
from one node to another. The average length path can be expressed as

2

APL=—"—— d;, (13)
N(N—l)l.;g;‘,, v

where d;; is the shortest distance between vertices i and /.

The clustering coefficient is a parameter that measures the degree of a group. For a node
iin ak—group, L= [xli,xzp---,xni],(n > 2) is the n-element set of vertices that have
a connection with node i. For these vertices, there are at most n(n — 1)/2 connections.
The clustering coefficient is the ratio of the number of connections that actually exist in
the network of these vertices to the theoretical maximum of connections between these
vertices. The formula for computing the clustering coefficient is

o (14)
ik — 1)
where E; is the number of edges that exist in the network between the vertices connect-
ing with node 7, and £; is the degree of node i. If there is a node that has no edge or
has only one edge with any of the other nodes, the clustering coefficient is set to zero.
For the entire network, the clustering coefficient is defined as the arithmetic mean of all
nodes’ clustering coefficients, calculated as

Ly
C=—)> G, (15)
N5
where N is the number of nodes.

2.2.4. Minimum spanning tree

The MST used here is the minimum weighted spanning tree. The tree 7 is the MST of
a weighted undirected graph G, expressed as

minw(7T) = Z w(u,v), (16)
(u,v)el
where G=(V,E) is a weighted undirected graph representing the edge connecting
vertices « and v, where w(u,v) is the weight of edge (u,v). An MST is a minimal
connected subgraph of G that has all of the vertices of G with no ring. There are two
algorithm as Prim and Kruskal to structure the minimum spanning tree and the Kruskal
algorithm is chosen in this paper.
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3. Principal results and analyses

We obtain the dynamic correlation coefficient as a 2,855%2,601-dimensional matrix by
DCC-MVGARCH model. The number of rows here means that the time series data
contain 2,855 days and for every line, the 2,601 elements can be transformed into a
51x51-dimensional matrix. Then, dynamic correlation coefficient networks can be es-
tablished with every transformed matrix as the connection matrix. Finally, we obtain
2,855 weighted networks with the value of the correlation coefficient as the weight of
the edge and perform the following analysis.

3.1. Network topological properties analysis

As mentioned above, to perform a better analysis of the relationship and structure
among global stock markets, different from the single network, we try to find the best
threshold all of the networks and simplify them. A rough estimate of our approach is to
calculate the mean of the change of vertices’ change rate for all of the networks with
the threshold set of a sequence from 0.01 to 0.99 in steps of 0.01. Figure 1 shows the
relative changes of the vertices for different thresholds. The first jump point is marked
“*” and the value of 0.48 is chosen as the threshold for our networks. Then, for all
2,855 of the networks, if the correlation coefficient between two stock markets’ indices
is not less than 0.48, there is an edge between them.

0.5
0.45
04
0.35
03
0.25
0.2

0.15 -

Relative Changes of the Vertices

0.1 \

0.05|- M
0 i = ] = 1 L

0 0.1 0.2 0.3 0.4 05 06 07 08 0.9 1
Thresholds

Fig. 1. Relative changes of vertices for different thresholds

3.1.1. Network density

Figure 2 shows the network densities of global stock markets. At the beginning, the
network density is at the mean level of the fluctuation interval. Then, the variable re-
flects a fluctuating upward trend until the end of 2008, because of the accelerated pro-
cess of global integration makes capital flowing freely in international stock markets.
When capital is transferred from one stock market to another, the network density rises
and then gradually decreases, with the result that the network densities show a regular
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Fig. 2. Network densities of global stock markets

fluctuation. The highest point of the curve appears after the financial crisis, just as in
previous studies (Garas, Argyrakis 2007), which is caused by the herd behaviour occurs
when financial markets experience a crisis.

Owing to the continuing impact of the financial crisis and the following European debt
crisis, the level of the network densities is relatively high from the beginning of 2009
to mid-2012. In this period, the first peak value is at approximately that of mid-2010,
reflecting lagging influence and the development of the European debt crisis. The sec-
ond peak value is at approximately the end of 2011. Differently from crisis factors, the
driver here is the European bailout plan. For international capital flows, the crisis and
the stimulus plan play the same role, as both of them cause a capital outflow from one
market to another.

The time interval from mid-2012 to mid-2015 can be regarded as the third part. During
this period, the network densities are at a relatively low level, meaning that the finan-
cial markets are recovering from the crisis, and that the global stock markets are in a
relatively stable state.

From mid-2015 to the end is the fourth part of the network density series which exhibits
a further high and volatile trend. On the one hand, along with the recovery of the world
economy, the network densities return to pre-crisis levels. On the other hand, because
of the European QE, the capital markets again show large capital flows.

3.1.2. Average path length

The global stock markets’ average path length at the threshold of 0.48 is shown in Fig-
ure 3. As one important measure of one network’s transfer efficiency, we calculate it
using the Euclid distance instead of the traditional method of the number of edges. From
mid-2005 to approximately the end of 2008, the average path length shows a fluctuating
downward trend different from the case of network density. It is easy to understand that
the transmission efficiency improves because of the upward trend of network density,
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Fig. 3. Average path lengths of global stock markets

as many researchers regard it as a consequence of intensive economic globalization
(Eryigit M., Eryigit R. 2009). The lowest point after the financial crisis appears at the
end of 2008, indicating the influence of the crisis, with all of the investors becoming
extremely sensitive to the information and the spillover effect of different markets being
obviously enhanced.

As a result of the financial crisis and the following European debt crisis, the average
path length is almost in a continuing low volatility from 2009 to 2011, meaning that
information can reach another market very quickly and that there are strong correlations
among the stock markets.

Compared with the inconspicuous trend of the network density, the average path length
in the third stage from 2012 to mid-2015 is a clear upward trend, meaning that the
global stock markets’ correlation becomes weak, and the efficiency of information dis-
semination between different markets decreases.

From mid-2015 to the end of the time series, the average path length shows a process
of rapid decline and then slow rising. Then, global stock markets gradually become
sparse again.

3.1.3. Clustering coefficient

The clustering coefficients of global stock markets shown in Figure 4 do not show a
clear evolutionary tendency, and the extent of fluctuation is relatively small. As the
clustering coefficient describes the group property of complex networks, the conse-
quence is that the clustering phenomenon does not show a substantial degree of change.
The empirical analysis is that regional stock markets typically constitute a group, and
when a crisis comes, cross-regional market information spillover can add some of the
other areas’ stock markets to the major group of global stock markets, thereby causing
changes in the clustering coefficient.
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Fig. 4. Clustering coefficients of global stock markets

An interesting concept associated with the clustering coefficient is the “small-world”
network, which is determined by the characteristic path length and clustering coefficient.
In this paper, we use the average path length as a substitute variable for the charac-
teristic path length combined with the actual situation. Then, the small-world property
requires an inverse relationship between the average path length and the clustering co-
efficient and a small average path length with a large clustering coefficient. Combining
the two curves above, it is clear that the networks during the financial crisis and the
European debt crisis have the small-world characteristic, meaning that the information
transmission speed is very high, and the performance of the network is greatly changed
with few changes in the global stock market system in this period.

3.2. Global stock market linkage estimates

According to the previous topological studies, there are volatility, tendency, and period-
icity in the dynamic evolution of the global stock market network and financial events
play a key role. To explore the dynamic changes in the global stock market linkage
effects further, we use MSTs to simplify the network structure and then obtain the aver-
age of the edges’ weights, called the average distance, as the indicator for interpreting
dynamic evolution information in a series of networks without a threshold set.

Figure 5 shows the dynamic average distance of global stock markets throughout the en-
tire study period. Here, we refer to the trend line technology in the stock market, marked
in the figure by a long dashed line. Differently from previous research, we consider for
the financial events not only the crisis factor but also the measures of QEs and other
bailout behaviour. All of these events are marked in Figure 5 with the relative number in
the time series by the vertical short dashed line and also by the names of these events.

It is clear that the dynamic average distances of global stock markets have a volatile
nature. Further, low frequency fluctuation plays the dominant role in the wave, and it is
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only on some special occasion or for a short time that the curve shows a high frequency
fluctuation, which can be the key factor in the following periodicity analysis.

There are three obvious trends and one possible trend that can determine four stages
of the time series. The first stage is defined from the beginning to approximately the
8227 observation, the 2008 financial crisis. In this stage, the linkage of the global
stock markets tends to be enhanced as the consequence of economic globalization. One
important financial event in this period is the subprime mortgage crisis in the midterm,
but that did not change the trend of the curve. This phenomenon can be regarded as the
evidence that though the subprime mortgage crisis was the trigger of the financial crisis,
the markets did not respond to the crisis sufficiently.
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Fig. 5. Average distance of global stock markets

The second stage is from the 2008 financial crisis to the 1,627 observation, and the dy-
namic linkage trend in this period is interval fluctuation. Because of the financial crisis,
the linkage of global stock market rise sharp in a short time until the lowest point of the
average distance at the 87274 observation, U.S. QE1. Then, the stock market comove-
ments gradually decrease and form an “M” structure at a relatively high level in the
fluctuation range. However, the European debt crisis undermined this trend and weak-
ened the rising energy. After more than one and a half years, the linkage of the stock
markets returns to the level before the crisis at Point 1, which is also the time that the
Greek government applied for assistance from the International Monetary Fund (IMF)
and the European Union (EU). Together with the influence of the financial crisis and the
European debt crisis, the curve falls fast until the lowest point, Point 2. Differently from
the previous process, the bottoming out this time is rapid, even exceeding the range limit
to Point 3. The key reason for the relatively large setback in this process is U.S. QE2.
Compared with the other three instances of QE for America, the QE2 is special as it
related only to the buy-back and sale of U.S. national debt, which is actually beneficial
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for the market and provides more energy for the rising process. After the peak at Point
3, the European debt crisis continues fermenting, causing global stock market linkage
to rise sharply again. The downward trend is stopped at the lowest point, Point 5.

The third stage can be discerned beginning from the 1,627 observation, Point 5, to
the 2,547™ observation, Europe QE. Point 5 represents the event of the G20 finance
ministers’ meeting in Paris, as the European countries put forward a specific solution
to the crisis, after which, with the U.S. QE3 and QE4, the American economic situa-
tion gradually improves. As the systemic risk is gradually weakened, the global stock
markets slowly become sparse and show a steady recovery process on the curve. The
U.S. withdraws from QE at the 2,420 observation, causing the curve to pass through
the trend line downward as the other markets’ investments transfer to the markets of
America affected by the policy, but then return to above the trend line.

From the Europe QE to the end is the fourth stage. The reason for saying that this is a
possible trend is that the time series here is not sufficiently long to confirm the trend.
Referring to the previous trend of the curve, the trend with a large probability is down-
ward. In addition, it is possible that it will be an interval fluctuation.

To analysis the periodicity, we introduce a low-pass filter to smooth the curve for the
reason mentioned in the research on volatility. First, we examine whether there is a
seasonal trend in this curve and draw the conclusion that this not obvious. Then, we
obtain the smooth curve indicated in Figure 6 by the short dashed line, with the original
curve indicated by the solid line. Combined with the result of the tendency, we defined
the cycle as a process from one lowest point to another, and because the time series
included only the workdays, there are approximately 260 days in a year. The first stage
is from the first to the 871% observation. Especially, we regard the subperiod with the
observations from the 4515t to 559" and observations from the 559™ to 597t as one
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Fig. 6. Low frequency components of average distance
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subcycle, because the subprime mortgage crisis and the following measures induced in
the markets an irrational fluctuation, and merging these two waves can deter reflection
of the trend. Then, there are four subcycles covering 871 days, with the average fluctua-
tion cycle being approximately 0.8375 years, hence we named it the pre-crisis cycle.
Similarly, the second stage’s cycle, the in-crisis cycle, is approximately 1.425 years, and
the third stage’s cycle, the recovery cycle, is approximately 0.8123 years. The cycle of
stage four cannot be calculated as we lack sufficient data.

According to the result, the linkage cycle during the crisis is much longer than the
cycle before and after the crisis, and the cycle before the crisis is also longer than the
one after the crisis. The global stock market linkage cycle represents a “high-low-high”
process. Before the financial crisis, the comovement is at a relatively high level, but
during the period of the crisis, various stimulus policies, such as U.S. QEs, China’s
four trillion stimulus plan, EU rescue measures in Greece, are launched frequently,
leading to different capital markets having individual differences. On the one hand, in
order to withstand the impact of the financial crisis, cooperation in the region has been
strengthened, which cause the regional stock market linkage increased. One the other
hand, different degrees of trade protectionism and other policies make the global mar-
ket divided, leading to a decline in inter-regional linkage. As a result, the comovement
of the global stock market remained at a reduced level for a long time, which leads
the global stock market linkage cycle to be longer. Frequent financial stimulus plans
have made different countries to some extent affected by monetary policy from other
countries. Then, the average distance between the global stock market declines, which
means the linkage gradually increased as the world economy resuscitated slowly, large-
scale market intervention gradually reduced, and the linkage between regional markets
restored. The difference between the cycle before and after the crisis, representing the
linkage of the global stock market increasing, can be explained by the fact that global
capital flows caused by the financial crisis leading to an overflow of the monetary policy
from the developed countries to the developing countries. Besides, there are also reasons
for global economic integration. Although the financial crisis has had a certain impact
on the process of globalization, the trend of global financial integration is still obvious,
and the recovery is faster after the crisis than the real economy.

In addition, we attempt to fit all of our series for the average distance using the trigo-
nometric function and we obtain a fitting equation as

3 =0.0144cos| 2%
2600

(x-so)J+418505. (17)

The image of this equation is also shown in Figure 6 by a long dashed line. This result
means that there exists a larger cycle for the global stock market linkage of approxi-
mately ten years and the trend of the average distances curve will be downward.

3.3. Global stock market network importance measure

The method of average weighted degree is used here to find the important indices, which
is defined as the sum of the weighted degrees divided by the number of the non-zero
correlation coefficients. As we have divided the time series into 13 parts using the set
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of subcycles, the average weighted degrees are also calculated using this partition. The
top ten of the average weighted degrees’ ranking in each period are shown in Table 2.

Comparing the ranking of the 13 stages, the index set is stable, and the change of the
rank is small. As all of the indices are from Europe, the European stock markets have
the biggest influence on global stock markets. Some similar conclusions also appear in
previous studies (Gilmore et al. 2008). However, considering the cluster phenomenon,
the results have occurred because the European stock markets comprise the biggest
connected subgraph of the network. We reveal the hierarchical structure by analyzing
the MST distance matrices using clustering. For every stage, we calculate the average
distance of each node to all of the other points and can observe that stock markets in
the same region have a higher linkage than stock markets in different regions. Then,
ranking the average weighted degree for different areas is more meaningful than for all
the areas. As there are only two indices from Africa, we calculate only the rank of the
other three areas. For America, the main stock indices are NYA and SPX, indicating
that the U.S. stock markets play a key role in America. FCHI, AEX, BFX and GDAXI
are the important indices for European stock markets. Most of the Asia Pacific stock
markets concern STI and HIS.

Table 2. Top ten of the average weighted degree’s ranking in each period

1 2 3 4 5 6 7 8 9 10
Stagel FCHI AEX BFX UKX GDAXI OMXSPI ATX ITLMS HEX IBEX
Stage2 FCHI AEX BFX GDAXI UKX OMXSPI ATX HEX ITLMS IBEX
Stage3 FCHI AEX BFX GDAXI UKX OMXSPI ATX ITLMS HEX IBEX
Stage4 FCHI AEX BFX GDAXI UKX OMXSPI ATX ITLMS HEX IBEX
Stage5 FCHI AEX BFX GDAXI UKX OMXSPI ITLMS ATX HEX IBEX
Stage6 FCHI AEX BFX GDAXI UKX OMXSPI ATX ITLMS HEX IBEX
Stage7 FCHI AEX BFX GDAXI UKX OMXSPI HEX ATX ITLMS IBEX
Stage8 FCHI AEX BFX GDAXI UKX OMXSPI ATX HEX ITLMS IBEX
Stage9 FCHI AEX BFX GDAXI UKX OMXSPI ATX HEX ITLMS IBEX
Stagel0 AEX FCHI BFX GDAXI UKX OMXSPI ATX HEX ITLMS IBEX
Stagell FCHI AEX BFX UKX GDAXI OMXSPI ATX HEX ITLMS IBEX
Stagel2 FCHI AEX BFX UKX GDAXI OMXSPI HEX ATX ITLMS IBEX
Stagel3 FCHI AEX BFX GDAXI UKX OMXSPI ATX HEX ITLMS IBEX

Conclusions

From 2005 to 2016, global financial markets experienced significant volatility, including
major economic crises such as the subprime mortgage crisis, the global financial crisis,
the European debt crisis, as well as strong market intervention policies such as QEs. Fi-
nancial integration has brought the global financial markets together, pushing the market
to a higher level during the boom and increasing the market’s destructive power in times
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of crisis. The global financial crisis of 2008 has greatly affected the development of the
world economy. Today, the developed countries are still growing weak, and the growth
rate of emerging market countries is slowing down. In the process of crisis recovery,
the integration process has been questioned by its infective effects, some countries have
begun to take trade protectionism, and even some European countries out of the EU.

For the global stock market, the direct impact of financial crisis and market intervention
is reflected in the international flow of capital, the injection of capital market liquid-
ity and the monetary policy spillover effect. This paper defined the impact of financial
crises and bailout measures on global stock market linkage. The dynamic correlation
coefficient of the volatility network topological characteristics, such as network density,
average path length, clustering coefficient, can be considered as the parameters of the
global stock market linkage to reflect the dynamic changes. At the same time, through
the trend analysis of the relevant characteristics the influence on the global stock market
linkage by the financial crisis and the major rescue measures can be confirmed. Our
research shows that before the outbreak of the financial crisis, the global stock market
linkage fluctuate violently, the linkage significantly improved when the crisis broke out,
and QEs, as well as other rescue measures will make the global stock market linkage
significantly reduced.

This paper also defined the variable periodicity of the global stock market linkage and
carried on the empirical test. By smoothing the average distance curve calculated by
the minimum spanning tree, the global stock market linkage cycle in different stages
was identified as 0.8375 years before the financial crisis, 1.425 years during the crisis
and 0.8123 years after the crisis. It implied that the after the financial crisis, the global
stock market cycle is shorter than before the financial crisis. Further, we considered to
study the global cycle of the world stock market linkage by using the trigonometric
function curve and drew the conclusion that the global cycle of world stock index link-
age is about 10 years.

In addition, the importance measure showed that even though the network properties are
dynamic, the structure is relatively stable over time. As a result of the average weighted
degree analysis, European stock markets play the key role in global stock markets, and
the indices of NYA and SPX, of FCHI, AEX, BFX and GDAXI, and of STI and HIS are
the important nodes of America, Europe and Asia Pacific, respectively. For the global
stock markets, European stock markets are the information transmission hub, because
the America and the Asia Pacific markets are connected by Europe. However, as the
2008 financial crisis prompted a prominent change in the global stock markets network,
the U.S. is still the key to the global markets, because the U.S. is not the centre just
because most of its information is spread by Europe.

Comparing with the previous researches which adopt a complex network framework
to analyze the relationship between stock markets, this paper provided a globalization
perspective to research the comovement of global stock markets instead of regional
market. It would be a meaningful attempt as we have shown in the paper that different
regional markets are mutually influenced, a biased conclusion may be led if we simply
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considered a regional market. There are also some scholars try to explain the synchroni-
zation in the global stock market by complex network. In their study, the networks were
constructed according to the dynamic correlation coefficient derived from the rolling
window model. Although the authors tried to use different window values to avoid the
error caused by the rolling window, it is still not possible to avoid the impact of human
factors on the results of the analysis. We provided the method of DCC-MVGARCH to
calculate the dynamic correlation coefficient, not only avoids the interference of hu-
man factors, but also solves the problem of Heteroscedasticity in time series. Besides,
instead of dividing the global stock market into developed markets, emerging markets
and frontier markets, we believed it would be more appropriately to partition the market
as European stock market, America stock market, Asia Pacific stock market and MENA
stock market as the global stock markets show obvious regional aggregation.

Another important contribution of this article is that we attempted to study global stock
market comovements from the perspective of not only the financial events regarding the
crisis but also such stimulus measure as QEs and other important international meetings.
In contrast to the classification method that just regards the 2008 financial crisis as the
break point or the 2008 financial crisis and the European debt crisis as the break points
for dividing the time series into two or three parts, we could divide the dynamic curve
into four parts in a more reasonable manner. In addition, we attempted to investigate
the dynamic interaction cycle in terms of networks and image processing instead of
traditional econometrics, which is also a meaningful attempt.

By the methods of MST and low pass filter, we provided a new method to calculate the
variable cycle of the global stock market linkage and got the attractive phenomenon that
the linkage cycle after the crisis became shorter than the linkage cycle before the crisis
which means that this approach may offer a new perspective for studying the relation-
ship between the stock markets linkage and economic cycles. Though the economic
cycle has been extensively explored using econometric methods, we extended cycle
research from being data driven to having data combined with financial events. Con-
sidering the financial events in conducting the analyses of whether there are important
connections between the linkage and economic cycles is meaningful research.

Although analyzing the comovement of the global stock market by a globalization
perspective through DCC-MVGARCH to obtain a dynamic MST and low pass filter
is meaningful, there exists some limitations on the data set and the volatility network.
First of all, using daily closing data from regions in different time zones implies that
the returns are asynchronous and some markets close systematically earlier than other,
which allows more information to be incorporated into the returns. The existing lit-
erature on this subject mainly includes three categories: using daily return data, using
weekly return data and set a lag period. Whether it is the daily return or weekly rate of
return, strictly speaking, errors always exist. A meaningful attempt may be to determine
the lag relationship between different pair of markets. Further, the global stock market
linkage should actually be represented as a directed graph, and the interaction between
the same market pairs should be different, how to determine the influence of each other
is also a meaningful subject.
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The conclusions are enlightening. On the one hand, from the perspective of application,
with the trend and cycle of the linkage, the government can better grasp the trend of the
global stock markets and then pay more attention to the key indices rather than to the
entire system to strengthen the forecast and control of possible risk. On the other hand,
it is also significant for policymakers to confirm the clustering structure that the local
stock market is in, clear the path of information transmission by the network and then
formulate a targeted stock market development program.
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