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Abstract. Multiple uncertainties complicate socio-economic forecasting problems, es-
pecially when relying on ill-conditioned limited data. Such problems are best addressed 
by grey prediction models such as Grey Verhulst Model (GVM). This paper resolves the 
incompatibility between GVM’s estimation and prediction by taking its basic form equa-
tion as the basis of both. The resultant “Basic Form”-focused GVM (BFGVM) is also 
further developed to create Direct Non-equidistant BFGVM (DNBFGVM) and, in turn, 
DNBFGVM with Recursive simulation (DNBFGVMR). Experimental analyses comprise 
19 socio-economic time series with an emphasis on Iranian population, a low-frequen-
cy non-equidistant time series with remarkable strategic importance. Promisingly, the 
proposed DNBFGVM and DNBFGVMR provide accurate in-sample and out-of-sample 
socio-economic forecasts, show highly significant improvements over the best traditional 
GVM, and offer cost-effective intelligent support of decision-making. Final results sug-
gest future trends of studied socio-economic time series. Specifically, they reveal Iranian 
population to grow even slower than anticipated, demanding an urgent consideration of 
policy-makers.
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Introduction

Conventional techniques have become increasingly ineffective in forecasting complex 
socio-economic phenomena (Esfahanipour et al. 2016). Additionally, socio-economic 
researches in less-developed countries often rely on insufficient observations, i.e. low-
frequency time series as well as irregular data collection, i.e. non-equidistant time series. 
Such ill-structured forecasting problems are best addressed by grey prediction.



677

Journal of Business Economics and Management, 2017, 18(4): 676–694

A major drawback in grey prediction is inherent incompatibility between continuous 
prediction (simulation) and discrete estimation. This research gap has been narrowed – 
e.g. Wang, Z.-X. et al. (2007), Xiao and Qin, L.-F. (2012), and Xie and Liu (2009), but 
it persists particularly for GVM.
This paper resolves incompatibility between GVM’s prediction and estimation. It builds 
on basic form equation to equip GVM with cohesive discrete forecasting procedure and 
to establish “Basic Form”-focused GVM (BFGVM). Considering irregularities preva-
lent in socio-economic time series, we create Non-equidistant BFGVM (NBFGVM). 
Then, it is promoted to Direct NBFGVM (DNBFGVM) adaptable to strictly increas-
ing data. Revising forecasting functions to form recursive simulation, we then develop 
NBFGVMR and DNBFGVMR.
19 time series in various socio-economic fields are employed to validate proposed mod-
els. Meanwhile, having roots in Verhulst population model, they can best be validated 
through population time series. The case of the Islamic Republic of Iran is striking 
because of its unique demographic trends (Mahmoodi et al. 2015). After years of fast-
paced social change (e.g. Islamic revolution, Iraqi invasion, and subsequent 8 years’ 
war) and resultant fluctuating demographic behaviour, it has started a long-lasting and 
steady family planning programme. The programme met its official objectives several 
years ago (Vahidnia 2007); albeit, it persists. Preserving the status quo may give rise 
to unintended consequences such as labour shortage (Erfani 2013; Jafari et al. 2017) 
and ageing (Jafari et al. 2017). Reconsidering the strict antinatalist policy (Erfani 2013; 
Jafari et al. 2017; Mahmoodi et al. 2015), authorities require population forecasts as 
necessary decision support. Applying grey models is nearly inevitable since censuses 
provide a sequence limited only to seven non-equidistant points.
Proposed models are expected to make remarkable improvements in socio-economic 
forecasting. They are especially promising where sufficiently knowledgeable experts are 
inaccessible or too costly. Indeed, these models can even provide experts with decision 
support.
The paper is organised as follows. Section 1 reviews the literature of grey prediction and 
emphasises research gaps. Section 2 explains research data followed by computational 
procedure of every (traditional or proposed) model. Section 3 provides performance 
evaluation framework followed by practical comparative analyses in forecasting socio-
economic time series in general and the population in particular. Section 4 integrates 
socio-economic and population results to recommend specific models and then modi-
fies their training to derive applicable extrapolations. Lastly, conclusions are drawn and 
guidelines are issued for future researchers.

1. Literature review

Deng named his theory “grey” (blackish white) because it is particularly aimed at sys-
tems with partially unknown features (Kayacan et al. 2010; Liu, Lin 2010; Tsai et al. 
2017). Grey prediction is a main component of grey system theory having plentiful 
advantages such as easily-interpretable structure (Bezuglov, Comert 2016), simple com-
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putation (Hu, Qin, Y.-L. 2011; Li et al. 2011), adaptability to ill-conditioned data (Hu, 
Qin, Y.-L. 2011; Li et al. 2011; Bezuglov, Comert 2016), minimal assumptions about 
distributions of samples (Tsai et al. 2017), requiring as few as four pieces of data (Li 
et al. 2011; Tsai et al. 2017; Bezuglov, Comert 2016), and superior performance under 
poor information (Wang, X.-Q. et al. 2014; Zhou, He, J.-M. 2013). Thus, it has growing 
popularity among forecasting researchers (Kayacan et al. 2010).
First-order grey models are basic techniques, sacrificing flexibility for simplicity (Hu, 
Qin, Y.-L. 2011). More flexible higher-order models, on the other hand, are hardly 
employed mostly because of their complexity (Kayacan, Kaynak 2011). Grey system 
theorists have dealt with this dilemma by developing nonstandard models incorporating 
nonlinear features into first-order models.
Among such models, Grey Verhulst Model (GVM) is especially popular as Liu and 
Lin (2010), Wang, Z.-X. et al. (2009), and Xiao and Qin, L.-F. (2012) emphasise its 
widespread applications, Wang, Y. et al. (2009) suggest its frequent use as a typical 
grey model, and Xiao and Qin, L.-F. (2012) declare its importance as a nonlinear grey 
model. It is a current area of abundant research as Table 1 outlines.
There is well-recognised incompatibility between prediction (simulation) and estima-
tion of grey prediction models, as mentioned in the Introduction. As far as we know, 

Table 1. Major research trends on grey Verhulst model compared with this research
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Wang, Z.-X. et al. (2007)   

Luo and He, Z.-M. (2009)   

Wang, Y. et al. (2009)    

Wang, Z.-X. et al. (2009)   

Kayacan et al. (2010)   

Xiong et al. (2010)  

Shu et al. (2011)   

Xiao and Qin, L.-F. (2012)  

Guo et al. (2013)     

Evans (2014)   

Wang, X.-Q. et al. (2014) 

Bezuglov and Comert (2016)  

This research   
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Z.-X. Wang and his colleagues are the first to focus on such a drawback in GVM 
(Wang, Z.- X. et al. 2007; Wang, Z.-X. et al. 2009). They diagnose an unjustifiable span 
between GVM’s difference-equation-based parameter estimation and its differential-
equation-based forecasting functions. Consequently, estimated parameters intrinsically 
fail to match forecasting functions. Xiao and Qin, L.-F. (2012) are in perfect agreement 
in that they introduce the same sudden transition between different equations as the 
cause of large errors in GVM. Furthermore, this drawback has also been identified as 
the main source of errors in first-order (Liu, Lin 2010; Xie, Liu 2009; Zhou, He, J.-M. 
2013) and second-order (Li et al. 2011) models.
Xie and Liu (2009) developed Discrete Grey Model to avoid such incompatibility. Un-
fortunately, their technique is hardly applicable to GVM, though some scholars have 
implemented it in an approximate manner (Wang, Z.-X. et al. 2009; Xiao, Qin, L.-F. 
2012). To the best of our knowledge, Guo et al. (2013) are the only researchers who 
discretise GVM without relying on Discrete Grey Model. Nonetheless, they do not 
compensate the lack of an exact discretisation of GVM since they concentrate on a 
completely transformed GVM.
Besides, the classical assumption of regular temporal structure in data is often violated 
in the real-world. Accordingly, scholars have generalised GVM to handle non-equidis-
tant data (Luo, He, Z.-M. 2009; Shu et al. 2011; Xiong et al. 2010).
In addition, not every saturating trend reaches a peak and then declines. In fact, numer-
ous saturating trends continuously approach a limit and never touch it. Accordingly, 
researchers have implemented direct GVM which modifies standard GVM’s computa-
tional procedure to adapt to such alternative trends either increasing (Shu et al. 2011; 
Wang, Z.-X. et al. 2007; Wang, X.-Q. et al. 2014) or decreasing (Luo, He, Z.-M. 2009). 
Nevertheless, Wang, Y. et al. (2009) have managed to apply direct GVM to non-mono-
tonic time series after complicated pre-processing procedure.
Table 1 summarises recent researches on GVM while its last few columns specify how 
this research is placed in the literature.

2. Material and methods

Subsection 2.1 explains research material, focusing on the population time series. We 
also take a glance at socio-economic time series, although their complete description is 
deferred to Supplementary information. Subsection 2.2 defines mathematical structure 
of traditional grey Verhulst model in standard form entitled GVM, its alternative formu-
lation compatible with non-equidistant data identified as NGVM, and direct formulation 
of the latter model labelled DNGVM. The final Subsection 2.3 deals with proposed 
“Basic Form”-focused models. Accordingly, BFGVM, NBFGVM, and DNBFGVM are 
introduced, which stand for the basic proposed model, its non-equidistant alternative, 
and the direct version of the latter respectively. NBFGVMR and DNBFGVMR, im-
proved versions of NBFGVM and DNBFGVM, are also presented.
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2.1. Research material
National censuses are the most reliable source for demographic research in Iran. Start-
ing in 1956, they were administered every ten years, albeit intervals were halved from 
2006 on; accordingly, a seven-point non-equidistant time series is available for Iranian 
population as provided in Table 2.

Table 2. Iranian population data, in millions (Statistical Centre of Iran 2013)

Year 1956 1966 1976 1986 1996 2006 2011

Population 18.954704 25.788722 33.708744 49.445010 60.055488 70.495782 75.149669

Furthermore, our performance analysis also covers numerous domestic socio-economic 
time series. We include the most essential time series, so sub-national data – e.g. sec-
tional (urban/rural), sectoral (primary/secondary/tertiary), and decile time series – as 
well as outdated data – i.e. the ones containing no information from 2006 on – are 
excluded. Moreover, time series that lead to inaccurate predictions from three or more 
models are pinpointed as inappropriate. Similar to Tsai et al. (2017), Lewis’s threshold, 
i.e. a percentage error greater than 50 is adopted to detect inaccuracy. Lastly, time series 
with full linear dependence on others are also omitted to ensure each time series has 
enough statistical value. Final 19 time series are reported in Supplementary information 
in full detail.

2.2. Formulating traditional models
Overall procedure of formulating traditional GVMs is presented in Figure 1, while each 
formulation is described in a separate subsection.

2.2.1. Formulating traditional GVM
A defining characteristic of grey models is utilising sequence operations to reduce noise 
and facilitate information extraction (Hsin, Chen 2016; Wang, X.-Q. et al. 2014). 1st-
order Accumulated Generation Operation (1-AGO) establishes 1st-order accumulated 
sequence X(1) by a simple summation of original sequence X(0). Fst-order Inverse AGO 
(1-IAGO), on the contrary, subtracts two successive values of X(1) to give X(0) (Wang, Y. 
et al. 2009). Finally, mean generation is an averaging operation on two successive se-
quence values:

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1

1 1 2 1
.

2 2
+ − + −

= =
X t X t X t X t

Z t  (1)

Each grey model is based on a differential equation named whitenisation equation. 
GM (M, N) stands for standard grey model with a whitenisation equation of order M 
involving 1 dependent plus N–1 independent variables (Liu, Lin 2010).
Forecasting procedure comprises a bipartite solution of whitenisation equation. First, its 
unknown parameters should be estimated. Least-squares computations necessitate ap-
proximating continuous whitenisation equation into discrete basic form equation. Then, 
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finalised whitenisation equation is utilised at prediction. Its solution, i.e. time response 
function provides accumulated forecasts. Obviously, it should be processed by 1-IAGO 
to create restored values, the function providing non-accumulated forecasts.
Grey models usually rely on training dataset for estimating parameters, while a por-
tion of data at the end called test dataset is excluded from training for validation. After 
getting trained by such data splitting, the grey model provides in-sample and out-of-
sample results termed simulation and prediction respectively (Xiong et al. 2010; Zhou, 
He, J.-M. 2013).
However, GM (M, N) is not all-inclusive; there are nonstandard grey models as well. 
Among such models, nonlinear grey Bernoulli models are especially popular. Assuming 
a power of two, GVM may be considered the basic nonlinear grey Bernoulli model.
Whitenisation equation and basic form of GVM are presented in Eqs. (2) and (3) re-
spectively:

 
( ) ( ) ( ) ( ) ( ) ( )( )
1 21 1 ; 1,  2,   ,  ,= …+ = t

dX t
aX t b

dt
nX t , (2)

 ( ) ( ) ( ) ( ) ( ) ( )( )20 1 1 ; 2,  3,   ,  .+ = …=X t aZ tZ t nt b . (3)

Additional parameter estimation and prediction formulae may be found in Kayacan 
et al. (2010).

2.2.2. Formulating traditional NGVM
Herein, time itself contains non-trivial information. Let tj and Dtj denote the time se-
quence and its 1-IAGO. Dtj is composed of non-constant values as opposed to classi-
cal equidistant models with regular intervals of unity. More importantly, 1-AGO and 
1-IAGO are revised to incorporate Dtj as demonstrated in Wang, Y.-H. et al. (2011).

2.2.3. Formulating traditional DNGVM
Direct NGVM shares its main structure with standard NGVM, but it differs in AGO 
and IAGO. DNGVM takes original input data as X(1)(tk) 

and then applies 1-IAGO to it 
to make up

 
X(0)(tk). Likewise, DNGVM’s time response function derives final forecasts 

directly, i.e. with no need for IAGO (Luo, He, Z.-M. 2009).

2.3. Formulating proposed models
Figure 1 depicts computational procedure shared between all proposed BFGVMs. It also 
distinguishes between traditional and proposed classes of models. This is complemented 
by individual descriptions of proposed models in following subsections.
Both classes discretise whitenisation equation to establish basic form equation, the basis 
of parameter estimation. Differences emerge when utilising estimated parameters. Tradi-
tional GVMs insert parameters back into continuous whitenisation equation and take its 
solution as the forecasting function, whereas proposed BFGVMs insert them into basic 
form itself, avoiding unnecessary skips between continuous and discrete computations. 
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2.3.1. Formulating proposed BFGVM
“Basic Form”-focused GVM resolves incompatibility between estimation and prediction 
processes of traditional GVM by taking discrete basic form equation as the common 
basis of both processes.
Using Eq. (1) to expand Z(1)(t) in GVM’s basic form Eq. (3), we have

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2 20 1 0 1 11 1 1 1 0.

4 2
  − + + − − + − − + − =   

   

b aX t bX t X t b X t aX t  

(4)

Nonlinear right side of GVM’s whitenisation Eq. (2) is the model’s distinguishing char-
acteristic, yet it imposes complications unfolding particularly herein; BFGVM’s second-
order underlying Eq. (4) yields dual solutions, i.e. dual restored values:

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

0
1

2 1 2 2 8 1ˆ ,
− − + + + + − −

=
bX t a a bX t

X t
b

 (5)

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

0
2

2 1 2 2 8 1ˆ .
− − + + − + − −

=
bX t a a bX t

X t
b

 (6)

Final restored values may not be determined unless such duality is resolved. We can 
compute outputs of both functions at all points. Negativity of a single output for a 
function implies that the other (all-positive) one is appropriate. In case non-negativity 
does not apply, we will consider accuracy measures to identify the appropriate function.

2.3.2. Formulating proposed NBFGVM
Being a non-equidistant model, unsurprisingly, NBFGVM involves forming the non-
trivial sequence Dtj. Furthermore, 1-AGO is revised in the same manner of traditional 
NGVM’s. Assuming computational procedure of Subsection 2.3.1 to be approximately 

Fig. 1. General computational procedure of traditional GVMs versus proposed BFGVMs 
Note: orange and blue boxes denote continuous and discrete computations respectively.
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valid in non-equidistant settings, we make use of BFGVM’s restored values with mini-
mal modifications as follows:

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 10
1

2 2 2 8ˆ ,− −− + + + + −
= k k

k
bX t a a bX t

X t
b

 (7)

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 10
2

2 2 2 8ˆ .− −− + + − + −
= k k

k
bX t a a bX t

X t
b  

(8)

2.3.3. Formulating proposed NBFGVMR
NBFGVMR is established by equipping NBFGVM with recursive simulation. It com-
prises employing time response function ( ) ( )1

1 1
ˆ

−kX t  or ( ) ( )1
2 1

ˆ
−kX t  instead of original 

accumulated time series ( ) ( )1
1−kX t  to compute subsequent simulated values, as

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 1 1 10
1

ˆ ˆ2 2 2 8ˆ ,− −− + + + + −
= k k

k
bX t a a bX t

X t
b

 (9)

 ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

2 1 2 10
2

ˆ ˆ2 2 2 8ˆ .− −− + + − + −
= k k

k
bX t a a bX t

X t
b  

(10)

At prediction, differences between NBFGVMR and NBFGVM disappear since original 
data are non-available.

2.3.4. Formulating proposed DNBFGVM
Direct NBFGVM inherits standard NBFGVM’s overall framework, although it makes 
two distinctions. First, same as DNGVM, original input data are taken as X(1)(tk), while 
X(0)(tk) is derived through 1-IAGO. Second, restored values are accumulated into time 
responses to derive final forecasts since the original time series was considered X(1)

(tk) 
beforehand. Hence, we apply 1-AGO to NBFGVM’s restored values to establish 

DNBFGVM’s forecasting functions

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 11 1
1 1 1

2 2 2 8ˆ ˆ ,− −
−

− + + + + −
= + ∆k k

k k k
bX t a a bX t

X t X t t
b

   (11)

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 11 1
2 2 1

2 2 2 8ˆ ˆ .− −
−

− + + − + −
= + ∆k k

k k k
bX t a a bX t

X t X t t
b

  (12)

2.3.5. Formulating proposed DNBFGVMR
DNBFGVMR’s computational procedure is identical to DNBFGVM’s, while recursive 
simulation is the distinction. Similar to Subsection 2.3.3, ( ) ( )1

1−kX t  is replaced by 
( ) ( )1

1 1
ˆ

−kX t  or ( ) ( )1
2 1

ˆ
−kX t  at simulation, whereas prediction remains intact.

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

1 1 1 11 1
1 1 1

ˆ ˆ2 2 2 8ˆ ˆ ,− −
−

− + + + + −
= + ∆k k

k k k
bX t a a bX t

X t X t t
b   

(13)

 ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )21 1

2 1 2 11 1
2 2 1

ˆ ˆ2 2 2 8ˆ ˆ .− −
−

− + + − + −
= + ∆k k

k k k
bX t a a bX t

X t X t t
b  

(14)
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3. Results

This section compares traditional and proposed models. Aiming at ill-structured fore-
casting problems, we disregard equidistant models, i.e. simple GVM and BFGVM.
Subsection 3.1 explains our performance evaluation framework, i.e. error measures as 
well as short-term and long-term validation techniques, while Subsection 3.2 comprises 
actual comparative analyses.

3.1. Performance evaluation method
Numerous socio-economic time series are input to forecasting models, while we con-
centrate on Iranian census data, as discussed in Subsection 2.1.
Data splitting is applied with 65%  and 35% quotas set for training and test datasets re-
spectively, yet quotas are modified in Time Series 1 and 2 (Supplementary information) 
to keep the required minimum of four training data.
Multiple time series are analysed through nonparametric statistical tests. Wilcoxon 
signed-ranks and Friedman tests are selected for paired and multiple comparisons re-
spectively as Demšar (2006) recommends. Both tests are conducted as two-way analyses.
Mean Absolute Percentage Error (MAPE) is widely employed in grey system research 
to measure simulation accuracy (Guo et al. 2013; Hsin, Chen 2016; Wang, Y.-H. et al. 
2011; Xiao, Qin, L.-F. 2012), prediction accuracy (Wang, Y. et al. 2009), or both (Kaya-
can et al. 2010; Wang, Z.-X. et al. 2009; Wang, X.-Q. et al. 2014). Additionally, scale 
independence makes it preferable for analysis of multiple time series (Bergmeir, Benítez 
2012). Hence, both simulation and prediction performance are measured in terms of 
MAPE.
However, data splitting cannot validate beyond two upcoming periods due to limited 
case study data. Accordingly, UN projections are taken as the benchmark (Table 3); 
they are substituted for non-available original data to validate population forecasts at 
farther horizons.

Table 3. World Population Prospects’ projections for Iranian population,  
in millions (UN Population Division 2013)

Year 2016 2021 2026 2031 2036 2041 2046 2051 2056 2061

Projection 80.460 84.995 88.764 91.938 94.746 97.242 99.327 100.850 101.690 101.851

Nonparametric tests eliminate the need for benchmarking; accordingly, short-term and 
long-term predictions are not differentiated therein.

3.2. Evaluating the performance of forecasting models
Herein, comparative analyses are reported. Subsection 3.2.1 shows the overall picture 
of socio-economic results while deferring much information to Supplementary infor-
mation; conversely, Subsection 3.2.2 describes results of the case study in more detail.



685

Journal of Business Economics and Management, 2017, 18(4): 676–694

3.2.1. Performance in socio-economic time series
Performance of all six models in socio-economic time series is summarised in Table 4 
and Table 5 as well as Figure 2. These are subsequently input to nonparametric tests.
Table 6 through Table 9 followed by Table 10 and Table 11 briefly present results of 
Wilcoxon signed-ranks and Friedman tests respectively. Noticeably, average ranks of 
Friedman test are exactly consistent with scores of Wilcoxon paired comparisons in both 
simulation (Table 6 and Table 10) and prediction (Table 8 and Table 11).
Concerning simulation performance, Friedman test strongly rejects null hypothesis of 
equal medians among six models as Friedman and Iman-Davenport statistics are 67.99 
and 45.32 respectively. Accordingly, post-hoc tests are performed to investigate superi-
ority of the best simulator, i.e. DNBFGVM over others. Such tests reveal DNBFGVM 
to be better than all standard models, i.e. NGVM, NBFGVM, and NBFGVMR at least at 
a = 3e – 6 according to Finner’s and a = 2e – 6 according to Li’s procedure. Moreover, 
it is proved superior to DNGVM at a = 0.024 (Finner) or a = 0.021 (Li), though its 
advantage over runner-up DNBFGVMR is not verified.

Table 4. Simulation MAPEs in socio-economic time series

Time series NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR
1 9.47 9.24 9.05 93.33 0.31 0.56
2 31.89 31.31 56.02 1.45 1.41 1.40
3 24.02 31.16 37.46 79.48 10.38 52.33
4 69.08 32.99 86.20 4.64 4.16 3.98
5 34.91 18.48 28.46 17.24 12.10 14.24
6 12.05 13.00 12.25 1.08 0.96 1.09
7 15.78 15.01 15.58 1.88 1.14 1.77
8 15.86 16.04 14.85 3.96 3.99 3.95
9 15.36 15.49 15.23 2.13 3 1.91 2.13 2

10 15.34 14.50 15.10 1.75 2 1.59 1.75 3

11 14.87 13.88 14.66 0.98 3 0.91 0.98 2

12 17.04 14.86 16.61 2.57 2 2.41 2.57 3

13 17.13 14.95 16.69 2.40 2 2.33 2.40 3

14 16.27 14.86 16.17 2.52 2 2.33 2.52 3

15 16.39 14.94 16.24 2.35 2 2.30 2.35 3

16 18.40 16.95 18.24 0.19 0.16 0.12
17 42.22 16.13 41.27 5.76 6.02 5.86
18 22.53 18.36 22.32 5.512 5.29 5.513

19 48.39 24.03 48.20 6.59 6.52 6.58
Mean 24.05 18.22 26.35 12.41 3.49 5.90

Median 17.04 15.49 16.61 2.52 2.33 2.40

Note: Superscript numbers indicate exact ranks to disambiguate apparent ties.
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Table 5. Prediction MAPEs in socio-economic time series

Time series NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR
1 38.08 40.25 38.54 100.00 6.92 5.89
2 45.51 78.17 7.26 1.60 0.29 0.14
3 10.15 41.02 21.21 97.33 26.84 88.19
4 25.43 48.12 55.64 3.32 0.60 0.59
5 48.61 67.70 57.69 33.32 32.80 32.71
6 47.06 62.51 59.50 1.69 1.92 1.67
7 43.31 61.58 54.89 5.91 5.87 5.90
8 39.21 55.00 48.68 5.87 5.94 5.90
9 42.74 59.40 52.93 8.00 7.82 7.92
10 41.23 59.91 53.96 5.56 6.03 5.55
11 37.66 56.34 50.04 6.26 6.42 6.29
12 40.48 59.15 50.33 6.08 6.61 6.06
13 40.77 59.59 50.73 6.48 6.91 6.47
14 41.26 60.28 51.61 6.67 7.29 6.65
15 41.56 60.85 52.12 7.57 7.94 7.56
16 46.56 69.81 61.40 6.69 2 6.69 3 6.69 1

17 24.96 53.30 33.25 11.93 11.88 11.89
18 28.61 57.51 40.79 4.43 2 4.71 4.43 1

19 25.52 60.94 32.27 13.56 13.53 13.55
Mean 37.30 58.50 45.94 17.49 8.79 11.79

Median 40.77 59.59 50.73 6.48 6.69 6.29

Note: Superscript numbers indicate exact ranks to disambiguate apparent ties.

Fig. 2. Box plots of models’ performance in socio-economic time series  
Note: Parts (a) and (b) summarise in-sample and out-of-sample performance respectively.
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Table 6. Scores of Wilcoxon test for simulation performance

NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR

NGVM 25 60 36 0 15

NBFGVM 165 175 37 0 17

NBFGVMR 130 15 35 0 13

DNGVM 154 153 155 16 54

DNBFGVM 190 190 190 174 163

DNBFGVMR 175 173 177 136 27

Table 7. P values of Wilcoxon test for simulation performance

NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR

NGVM 3.3 e–3


0.169 0.016


3.8 e–6


5.2 e–4


NBFGVM 3.3 e–3


5.2 e–4


0.018


3.8 e–6


7.9 e–4


NBFGVMR 0.169 5.2 e–4


0.014


3.8 e–6


3.4 e–4


DNGVM 0.016


0.018


0.014


6.4 e–4


0.104

DNBFGVM 3.8 e–6


3.8 e–6


3.8 e–6


6.4 e–4


4.6 e–3


DNBFGVMR 5.2 e–4


7.9 e–4


3.4 e–4


0.104 4.6 e–3


Note: Paired comparisons with significant differences at 0.001, 0.01, and 0.02 levels are indicated by 
three, two, and one star(s) respectively.

Table 8. Scores of Wilcoxon test for prediction performance

NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR

NGVM 190 171 37 4 19

NBFGVM 0 8 31 0 4

NBFGVMR 19 182 37 1 19

DNGVM 153 159 153 91 23

DNBFGVM 186 190 189 99 38

DNBFGVMR 171 186 171 167 152
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Table 9. P values of Wilcoxon test for prediction performance

NGVM NBFGVM NBFGVMR DNGVM DNBFGVM DNBFGVMR

NGVM 3.8 e–6


1.2 e–3


0.018


2.7 e–5


1.2 e–3


NBFGVM 3.8 e–6


9.5 e–5


8.2 e–3


3.8 e–6


2.7 e–5


NBFGVMR 1.2 e–3


9.5 e–5


0.018


7.6 e–6


1.2 e–3


DNGVM 0.018


8.2 e–3


0.018


0.891 2.4 e–3


DNBFGVM 2.7 e–5


3.8 e–6


7.6 e–6


0.891 0.020


DNBFGVMR 1.2 e–3


2.7 e–5


1.2 e–3


2.4 e–3


0.020


Note: Paired comparisons with significant differences at 0.001, 0.01, and 0.02 levels are indicated by 
three, two, and one solid star(s) respectively. Outline stars specify a 0.05 significance level.

Table 10. Sorted average rankings of 
Friedman test for simulation performance

Model Ranking

DNBFGVM 1.3684

DNBFGVMR 2.3158

DNGVM 2.7895

NBFGVM 4.2632

NBFGVMR 4.8421

NGVM 5.4211

Table 11. Sorted average rankings of 
Friedman test for prediction performance

Model Ranking

DNBFGVMR 1.5263

DNBFGVM 2.3684

DNGVM 2.6842

NGVM 3.8421

NBFGVMR 4.7895

NBFGVM 5.7895

Regarding prediction performance, Friedman test, once again, rejects the null hypothesis 
strongly as Friedman and Iman-Davenport statistics are 69.83 and 49.93 respectively. 
Post-hoc analyses confirm DNBFGVMR’s prediction to surpass all standard models’ at 
least at a = 2.3e – 4 (Finner) or a = 1.6e – 4 (Li). In addition, it is proved more accurate 
than DNGVM at a = 0.070 (Finner) or a = 0.063 (Li), even though it lacks meaningful 
advantage over runner-up DNBFGVM.
Furthermore, Wilcoxon test reveals each direct model to be superior over its standard 
alternative at simulation as well as prediction. It holds at a = 0.02 for traditional models 
and at a = 0.002 for proposed models.
It is hard to select between superior models, i.e. DNBFGVM and DNBFGVMR. Never-
theless, if we are to make a choice, it will be DNBFGVMR as prediction performance 
comes first.
Apparently, Friedman tests derive fewer significant results, but they are valuable veri-
fication of Wilcoxon tests as they control family-wise error of multiple pairwise com-
parisons (Demšar 2006).
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3.2.2. Performance in the population case study
Table 12 outlines results of the Iranian population case.
Between traditional NGVM and DNGVM, the latter is absolutely preferred.
Among proposed models, yet again, direct models are entirely preferable. Between di-
rect proposed models, DNBFGVM excels at long-term prediction, while DNBFGVMR 
has simulation advantage.
Therefore, making a selection requires an eventual comparative analysis of traditional 
DNGVM as well as proposed DNBFGVM and DNBFGVMR.
As Table 12 and Figure 3 signify, proposed DNBFGVM and DNBFGVMR are far better 
population predictors with the former having edge in the long-term. Simulation results 
support superiority of these proposed models, albeit by smaller margins.

Table 12. MAPEs in forecasting Iranian population

Model Class Simulation Short-term prediction Long-term prediction
NGVM Traditional 69.08 25.43 54.67
DNGVM Traditional 4.64 3.32 1.42
NBFGVM Proposed 32.99 48.12 95.86
NBFGVMR Proposed 86.20 55.64 61.15
DNBFGVM Proposed 4.16 0.60 0.90
DNBFGVMR Proposed 3.98 0.59 0.98

Fig. 3. Forecasts of Iranian population by direct models 
Note: Part a) demonstrates forecasts as a whole, while parts b) through d) are its simulation, 

short-term prediction, and long-term prediction components respectively.
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4. Discussion

Results strongly support each direct model over its standard alternative, especially in the 
case study. Among direct models, traditional DNGVM is totally outperformed by pro-
posed DNBFGVM and DNBFGVMR particularly in predicting the population. Socio-
economic evidence for significant excellence of two proposed models is even stronger 
as it covers not only prediction but also simulation.
Besides, nonparametric tests prove that recursive simulation typically improves pre-
diction accuracy. Despite degrading simulation performance, it is recommended for 
standard and direct models alike.
To sum up, one can anticipate the best simulation from DNBFGVM and the most ac-
curate prediction from DNBFGVMR. A comprehensive comparison may offer a selec-
tion in each case.

Fig. 4. Extrapolations of Iranian population by recommended models  
with all original data introduced into training 

Note: Part a) draws the whole picture of forecasts, whereas parts b)  
and c) illustrate its simulation and prediction elements respectively.
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Having DNBFGVM and DNBFGVMR validated, we may remove data splitting to 
train them by all-data. The resulting couple of extrapolations establish upper and lower 
bounds of an interval forecast. For recently updated time series, they provide insights 
into upcoming years, yet for others, they estimate non-available recent and current data. 
Whereas Supplementary information details all extrapolations, Figure 4 depicts them 
for the case study.
Figure 4 depicts a gap between projections and forecasts which widens over time, while 
there is almost no such gap when data splitting is executed (Fig. 3). Whether projec-
tions have not taken full advantage of recent data or the gap has been formed otherwise 
should be investigated.

Conclusions and recommendations

Inherently affected by multiple uncertainties, socio-economic forecasting problems are 
not typically well-defined, especially when relying on poor data.
Herein, grey prediction was focused mainly due to its robustness to limited historical 
data. More specifically, Grey Verhulst Model (GVM) was concerned because it is adapt-
able to specific nonlinear trends.
The main contribution was to develop “Basic Form”-focused GVM (BFGVM), co-
hesive discrete forecasting procedure coordinating GVM’s estimation and prediction.  
As far as we know, it was the first to bridge that gap while keeping GVM’s configura-
tion. BFGVM itself was then incrementally improved to suit a variety of ill-structured 
problems. It was adapted firstly to irregular time structure and secondly to violation of 
standard GVM’s assumptions to establish Non-equidistant BFGVM (NBFGVM) and 
then Direct NBFGVM (DNBFGVM) respectively. Moreover, NBFGVM and DNBF-
GVM were equipped with “Recursive” simulation to develop NBFGVMR and DNBF-
GVMR respectively.
Models were applied to 19 socio-economic time series and examined by Wilcoxon 
signed-ranks and Friedman tests. The case of Iranian population was underlined due to 
its great strategic significance as well as its compatibility with parent Verhulst model 
setting a particularly appropriate foundation for testing GVM formulations.
Results were in favour of applying recursive simulation to either standard or direct 
models since prediction performance comes first.
More importantly, each direct model showed clear superiority over its standard alterna-
tive especially in the population case. It was true for both traditional – Non-equidistant 
GVM (NGVM) vs Direct NGVM (DNGVM) – and proposed – NBFGVM vs DNBF-
GVM or NBFGVMR vs DNBFGVMR – classes of models.
Consequently, DNGVM, DNBFGVM, and DNBFGVMR were qualified for the eventu-
al comparative analysis. Population results signified that DNBFGVM and DNBFGVMR 
were far better than DNGVM in short-term and long-term prediction. More importantly, 
nonparametric tests revealed that even DNGVM’s simulation was significantly outper-
formed by DNBFGVM. As a result, traditional DNGVM becomes obsolete by proposed 
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DNBFGVM and DNBFGVMR, models recommended for socio-economic forecasting 
and particularly population forecasting.
Results imply that developed forecasting models can adapt to a variety of socio-eco-
nomic time series with considerable accuracy even when they comprise ill-conditioned 
data. Thus, these models are invaluable tools for decision-makers especially when they 
cannot afford to appoint experts.
Extrapolations reveal that the population grows much slower than UN projects. UN 
projects, implying that implies that demographic consequences of the current family 
planning programme in Iran may be faced quite soon. These as well as other socio-
economic extrapolations provide precious practical implications.
This research has its limitations. Not every ill-structured socio-economic forecast-
ing problem can be addressed by proposed models as it should roughly conform with 
GVM’s structure. Additionally, the research was focused on specific gaps in GVM re-
search, so the other gaps remain open. Finally, resolving the duality of forecasting 
functions for each proposed model incurs extra computational costs.
Future research is suggested to incorporate independent variables or parametric mean 
generation formulae into developed models, or to hybridise them with other forecasting 
techniques. Extending our core idea to nonlinear grey Bernoulli models is also promis-
ing. Developing systematic selection procedure between dual forecasting functions may 
realise much higher computational efficiency. Eventually, exploring proposed models 
may disclose other fields of their application.
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