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Abstract. Socioeconomic development requires meeting the goals of food security. Yield 
risk constitutes an important factor of farming business viability. As the Central and East-
ern European countries have been affected by both economic and environmental transfor-
mations, there is a need to develop a robust methodology for assessment of yield risks in 
order to propose convincing guidelines for both farmers and government institutions in 
regards to risk management and viability of agricultural business in general. This paper 
attempts to devise non-parametric measures of yield risk for Lithuanian crop farming. The 
research covers the period of 2000–2015. County-level data from Statistics Lithuania are 
employed for the analysis. The non-parametric analysis of yield risk relies on information 
diffusion theory and linear moving average. The results indicate that there exist differences 
in yield trends, yield loss rates and yield risk among crops and regions. Maize, buckwheat 
and winter rape exhibited the highest yield risk. These results shed light on the extent of 
yield risks underlying crop farming in Lithuania and, to a certain extent, can be contrasted 
to situation in Central and Eastern European countries. Indeed, the obtained results can 
be applied in decision making at different levels of management.

Keywords: risk management, yield risk, Lithuania, crop farming, diffusion theory, non-
parametric analysis.

JEL classification: C14, Q15.

Introduction

Agricultural business depends on multiple external factors affecting both crop yields 
and prices. As agricultural sector is related to such important issues as food security and 
viability of rural areas, public support aims to manage or reduce the agricultural risks 
and thus ensure implementation of the goals of sustainable rural development (Breustedt 
et al. 2008; Bokusheva 2011; Shi, Jiang 2016; Bokusheva et al. 2016). By managing 
agricultural risks, farmers are able to streamline their activities and ensure stability of 
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their income. In the European Union (EU), the Common Agricultural Policy (CAP) also 
includes measures aimed at managing agricultural risks (e.g., income risk). 
Among different types of agricultural risks, yield risk is important as it captures the fluc-
tuations in agricultural output (Shi et al. 2013; Chavas et al. 2014; Chhatre et al. 2016; 
Ker et al. 2016). Such shocks constitute an immediate factor for fluctuations in farm 
income. Therefore, farmers need to fathom the level of risk they are to face, whereas 
government can use the estimates of risk in order to adjust public support schemes. 
Direct payments under the CAP are not differentiated across the regions of Lithuania. 
The payments for less favoured areas, though, can be used to increase attractiveness 
of farming in certain areas. All in all, appraisal of yield risk is likely to contribute to 
decision making in farming business (Peleckis et al. 2015). 
Central and East European countries face certain additional circumstances that stress the 
need for risk management, among other implications. Specifically, these countries are 
the new Member States of the EU. Following the accession to the EU, these countries 
faced serious structural adjustments in terms of farm size and specialisation. In addi-
tion, climate change has altered the farming conditions (IPCC 2014; Povilaitis et al. 
2013). Therefore, there is a need to assess the impacts of such shifts in regards to the 
agricultural risks. 
The estimation of yield risk can be based on different approaches. In principle, one can 
follow the classification by Yuan et al. (2015), who made a distinction among probabil-
ity-based and indicator-based measures of risk. Indicator-based measures are basically 
the aggregates of various indicators describing the extent and/or likelihood of the haz-
ard. For instance, Girdziute et al. (2014) applied factor analysis to derive a composite 
indicator of agricultural risk. As regards the probability-based indicators, these are based 
on the estimation of statistical distributions (Kuziak 2016; Piontek 2016). The latter type 
of measures allows to draw conclusions about the extreme events which would be hard 
to estimate otherwise. Probability-based measures can further be divided into parametric 
and non-parametric ones. Parametric measures rely on parameterized statistical distribu-
tions, while non-parametric measures follow distribution-free approach and require no 
assumptions about the family of the underlying distributions. These approaches might 
yield different results. Accordingly, there is a need to apply different approaches to 
obtain more robust results. 
Among the non-parametric approaches, information diffusion theory (Huang 1997, 
2005) can be employed to estimate the yield risk as well as other types of risk. The lat-
ter approach has been applied in different areas. Hao et al. (2012) and Xie et al. (2016) 
applied the diffusion theory for analysis of drought risk in China. Liu et al. (2013) em-
ployed the diffusion theory approach to estimate and combine risks for multiple hazards. 
Hao et al. (2014) utilised the same approach in order to estimate the risk of biological 
disasters in grasslands. Chen et al. (2015) followed the same vein when identifying risks 
associated with rice production in China. 
This paper seeks to estimate the yield risk for different crops in Lithuania. Indeed, 
Lithuania is endowed with the largest area of agricultural land if opposed to the other 
Baltic States. Specifically, the areas of agricultural land amounted to 2.95 million ha, 
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1.87 million ha, and 0.97 million ha in Lithuania, Latvia, and Estonia, respectively, 
as of 2014 (FAO 2017). Due to geoclimatic conditions, Lithuania is rather similar to 
the other CEE countries (which does not fully apply for Estonia and Latvia) in terms 
of crop yields. However, Lithuania still lags behind the Western and some Northern 
European countries. For instance, the data from Farm Accountancy Data Network (Eu-
ropean Commission 2017) show that the average wheat yield for 2004–2013 amounted 
to 7 t in Germany, 5 t in Poland, 4.3 t in Lithuania, 3.7 t in Latvia, and 3.2 t in Estonia. 
Baležentis and Kriščiukaitienė (2016) looked into the issue of yield risk in Lithuanian 
crop farming by means of parametric analysis, namely by estimation of probability-
based measures. The current paper applies the non-parametric approach to gain further 
insights into the issue of yield risk in Lithuanian crop farming under the changing 
environmental and economic situation. The research covers the period of 2000–2015. 
County-level data from Statistics Lithuania (2016) are employed for the analysis. 

1. Methods

This section presents the key concepts for the analysis of yield risk. Specifically, the 
non-parametric analysis of yield risk relies on the three main elements: 1) information 
diffusion theory; 2) yield loss rate; and 3) trend estimation via linear moving average 
(LMA). 

1.1. Information diffusion approach and non-parametric modelling of risk
Parametric modelling of yield risk requires assumptions regarding the shape of the 
underlying statistical distribution (e.g., Gaussian, log-normal, Burr etc.). Such a choice 
involves a kind of uncertainty as the chosen distribution might not be flexible enough 
to capture certain peculiarities of the phenomenon analysed. Therefore, another type of 
models, viz. non-parametric ones, can be applied in order to describe the probabilities 
of extreme events, which, indeed, one of the most important measures of risk. The 
non-parametric models allow for a less restrictive analysis in the sense of the shape of 
statistical distributions. Indeed, the analysis can be made more robust by employing and 
comparing multiple techniques. 
Huang (2005) proposed a non-parametric information diffusion approach, which is 
closely related to kernel density estimation. The said approach has been applied in 
modelling agricultural risks (Hao et al. 2012, 2014; Chen et al. 2015). Let X be a 
sample, which is diffused to set U, which, indeed, can be regarded as the universe of 
discourse of X. Specifically, let X = (x1, x2, …, xm) and U = (u1, u2, …, un). Furthermore, 
let indexes i = 1, 2, …, m and j = 1, 2, …, n be used to index the elements of X and U, 
respectively. The likelihood to observe the value of uj at a certain sample point, xi, is 
defined as follows (Huang 2005; Chen et al. 2015):
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where h is diffusion coefficient (bandwidth parameter). The diffusion set can vary with 
respect to the choice of the step size. In our case, we follow Chen et al. (2015) and 
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define U = {0, 0.01, 0,02, …, 1}. Huang (2005) proposed the following procedure to 
determine the value of the diffusion coefficient:
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where max= i
i

b x  and min= ii
a x  are upper and lower bounds of the sample X, respec-

tively. 
Chen et al. (2015) argued that information entropy theory can provide theoretical basis 
for calculation of the diffusion coefficient h. They defined h as follows:
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X, respectively. Having determined the value of h, one can proceed with estimation of 
the points of the density function. First, Eq. 1 is employed to estimate the likelihoods 
of observing sample values for a given diffusion vector ( )i jf u , for ,∀i j. Second, for 
each element of the sample, normalised likelihood is computed by considering all the 
elements of the diffusion vector:
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Value ( )μ
ix ju , thus, indicates the relative likelihood to observe value of xi given the 

diffusion vector. Then, the likelihood of observing a certain value of the diffusion vec-
tor can be obtained by considering the normalised likelihoods associated with all the 
elements of the sample:
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Next, let us define the sum of the likelihoods associated with the elements of the dif-
fusion vector as:
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The latter value allows for computation of the relative frequencies (probabilities) of 
observing particular values within the diffusion vector given the observed sample:
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By looking at the probabilities rendered by Eq. 7, one can define an instance of the 
survival function, which indicates the probability to observe values exceeding uj:

 1
( ) ( ).

=
> = ∑

j

j k
k

p u u p u  (8)

The probabilities resulting from application of Eq. 8 can be used to measure the risk 
of different degrees of hazard. Specifically, by adjusting value j and thus moving along 
the elements of the diffusion vector, one can look at probabilities of observing different 
values (intervals within the universe of discourse) of the variable under consideration. 
In order to provide an overall measure of risk, one can consider the average hazard:
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1.2. Yield loss rate
In this research, we focus on yield loss risk. In order to obtain comparable measures of 
risk, we consider a dimensionless measure of yield loss, i.e. yield loss rate (Chen et al. 
2015). The yield loss rate, rt, is defined in terms of the observed yield, xt, and expected 
yield, E(xt):
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1.3. Linear moving average and trend analysis
In order to facilitate the risk analysis, one needs to obtain the expected value of a certain 
variable (e.g., yield). Such techniques as ordinary least squares, autoregressive-moving 
average models, splines or kernel smoothing (Goodwin, Mahul 2004; Ye et al. 2015) 
can be applied in order to estimate the expected values. In this research, we rely on the 
linear moving average (LMA) approach, as defined by Zhang and Wang (2010). Indeed, 
LMA is employed in order to estimate of expected yields. In its essence, LMA relies on 
the two well-known techniques, viz. linear regression and moving average. Combination 
of the said technique allows one to obtain a non-linear trend.
LMA is similar to the moving average approach as it is carried out for sub-samples of a 
certain length (length of the sub-sample time series is referred to as step). To formally 
present the approach, let k stand for the step size. As a result, the original time series is 
partitioned into n – k + 1 sub-samples, with n being the number of observations within 
the original sample. 
Index i = 1, 2, …, n – k + 1 is then introduced to keep track of the sub-samples. Further 
on, t stands for the time period within a certain sub-sample. The time index then serves 
in construction of the linear trend within each sub-sample:

 ( ) ,= + + t
i ii ia b t ey t   (11)

where yi(t) represents the variable modelled (e.g. yield, price) and t indicates time pe-
riods which, indeed, differ across sub-samples: 
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As one can note from Eq. 12, different time periods enter different numbers of sub-
samples. More specifically, observations at the two endpoints of a time series are repre-
sented in fewer sub-samples if opposed to those located in the middle of a time series. 
Indeed, the quantity of fitted values associated with each observation relies on both 
sample size and step size. Let us define q so that it represents the quantities of fitted val-
ues for each observation. Depending on the sample size, the values of q are as follows: 
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The LMA renders the (overall) fitted values given the sub-sample fitted values. Recall-
ing that q captures the number of fitted values for each time point, the trend is estimated 
as the average of q values: 
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where ˆ̂ ( )y t  is the trend for the t-th time period and ˆ( )y t  is the sub-sample fitted value 
from Eq. 11. In our case, ˆ̂ ( )y t  serves as the expected yield in Eq. 10.

2. Results

In general, there have been increasing trends in crop yields observed in Lithuania during 
2000–2015. This can be attributed to several intertwisted factors. First, increasing rates 
of application of fertilizers and other agrochemicals contributed to a persistent increase 
in crop yields. Second, climate change has resulted in higher mean annual temperatures 
(Povilaitis et al. 2013), which has also contributed to increasing yields. Third, accession 
to the EU meant implementation of the CAP in Lithuania along with deeper integration 
into the global markets. These have resulted in improved farming practices (including 
increased rates of application of agrochemicals) and expansion of areas sown in general. 
While the improved farming practices are likely to reduce the yield risk, the effect of 
expansion in areas sown is rather arbitrary. Therefore, we will further quantify the yield 
risk by means of non-parametric modelling in order to identify its variation across crops 
and regions.
Table 1 presents the dynamics in yields of different crops in Lithuania during 2000–
2015. As one can note, all the crops followed upwards trends in yields. However, the 
rates of growth varied across the crops significantly. The lowest rate of growth is ob-
served for potatoes (3.3%). The two crops cultivated in less fertile regions, namely 
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winter rye and buckwheat, exhibited relatively low rates of growth of 19.2% and 11.6%, 
respectively. Another group of crops comprised winter triticale, spring triticale, oats, 
mixed cereals, and spring rape. The rates of growth ranged in between 32% and 46.6% 
for the latter group of crops. Finally, the third group of crops encompasses winter wheat, 
winter barley, spring wheat, spring barley, maize, legumes, and winter rape. The rates of 
growth in yields fluctuated around 60% for most of these crops, whereas that for winter 
barley stood at 106.4%. Coefficient of variation (CV) enables to compare the crops in 
terms of temporal fluctuations in yields. Most of the crops showed the CVs ranging in 
between 0.18 and 0.23. The exceptions include winter rye (0.15), buckwheat (0.25), leg-
umes (0.27), and maize (0.4). Therefore, in spite of the generally positive change in the 
yields, certain crops featured relatively higher volatility in the yields during the period 
of 2000–2015. This calls for further analysis of crop-specific trends in yield variation. 
As it was described in Section 1.3, the analysis relies on application of the LMA. The 
step size is a crucial parameter for the analysis. Different step sizes were tested in order 
to ensure both the smoothness and flexibility of the trend. As a result, the value of 6 
years was for chosen for the LMA. Figure 1 presents the case of mixed cereal yield in 
Vilnius county. Clearly, the LMA trend allows for flexibility in the direction of change, 
as represented by a kink at year 2006. Suchlike modelling is particularly relevant to 
Lithuania, where less fertile areas experienced declining yields prior to accession to 
the EU as agricultural production there had not followed the modern practices due to 
insufficient investments. The LMA was applied for each crop and county in order to 
obtain the expected yields. 

Table 1. Yield change for selected crops in Lithuania, 2000–2015

Crop
Yield, t/ha

Growth, % Std. Dev. Mean CV
2000 2004 2008 2012 2015

Winter wheat 3.56 4.12 4.76 5.17 5.71 60.5 0.83 4.0 0.21
Winter triticale 2.77 3.18 3.27 3.80 4.07 46.6 0.56 2.9 0.19
Winter rye 2.34 2.54 2.76 2.80 2.79 19.2 0.35 2.3 0.15
Winter barley 2.13 3.78 3.94 4.42 4.39 106.4 0.75 3.3 0.23
Spring wheat 2.62 3.45 3.01 3.87 4.20 60.6 0.59 3.3 0.18
Spring barley 2.43 2.93 2.88 3.36 4.00 64.3 0.56 2.9 0.19
Spring triticale 2.32 2.72 2.33 2.90 3.06 32.0 0.46 2.4 0.19
Oats 1.87 2.23 2.07 2.27 2.54 35.8 0.37 2.0 0.19
Buckwheat 0.89 0.59 0.76 0.83 0.99 11.6 0.19 0.8 0.25
Mixed cereals 1.79 2.08 1.91 2.16 2.43 35.6 0.37 1.9 0.19
Maize 2.85 2.20 4.25 5.65 4.71 65.2 1.75 4.4 0.40
Legumes 1.84 1.88 1.70 1.83 2.89 57.2 0.48 1.8 0.27
Winter rape 2.22 2.70 2.72 3.38 3.51 58.0 0.56 2.4 0.23
Spring rape 1.38 1.82 1.58 1.99 1.91 38.3 0.29 1.6 0.18
Potatoes 16.39 12.88 14.79 16.96 16.93 3.3 2.67 14.0 0.19
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The expected values of yields serve as means to compute the yield loss ratios (Eq. 10). 
These variables can describe the degree of loss experienced during a certain time period. 
CVs for the average loss rates resemble the spatial differences in this variable. Table 2 
summarizes the yield loss ratios for each crop and county. 

Table 2. Mean yield loss rates for different counties, 2000–2015
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Winter wheat 0.06 0.07 0.11 0.06 0.10 0.07 0.06 0.08 0.09 0.08 0.08 0.02 0.24

Winter triticale 0.07 0.06 0.11 0.07 0.11 0.08 0.08 0.07 0.12 0.09 0.09 0.02 0.25

Winter rye 0.08 0.06 0.09 0.05 0.07 0.08 0.07 0.03 0.07 0.06 0.07 0.02 0.25

Winter barley 0.18 0.10 0.14 0.10 0.15 0.06 0.10 0.11 0.22 0.11 0.13 0.05 0.36

Spring wheat 0.07 0.05 0.07 0.04 0.06 0.06 0.04 0.06 0.06 0.05 0.06 0.01 0.18

Spring barley 0.09 0.05 0.05 0.04 0.06 0.05 0.05 0.03 0.08 0.07 0.06 0.02 0.33

Spring triticale 0.11 0.06 0.08 0.07 0.07 0.09 0.07 0.06 0.11 0.08 0.08 0.02 0.22

Oats 0.08 0.07 0.07 0.09 0.09 0.08 0.08 0.08 0.09 0.10 0.08 0.01 0.10

Buckwheat 0.13 0.13 0.19 0.13 0.13 0.30 0.13 0.25 0.14 0.11 0.16 0.06 0.38

Mixed cereals 0.11 0.10 0.12 0.06 0.11 0.09 0.08 0.06 0.09 0.12 0.09 0.02 0.23

Maize 0.09 0.09 0.43 0.06 0.20 0.17 0.13 0.20 1.28 0.31 0.30 0.36 1.23

Legumes 0.13 0.07 0.10 0.08 0.11 0.08 0.04 0.09 0.11 0.12 0.09 0.03 0.28

Winter rape 0.15 0.10 0.18 0.12 0.15 0.07 0.14 0.10 0.23 0.12 0.14 0.04 0.33

Spring rape 0.08 0.06 0.10 0.04 0.11 0.07 0.05 0.08 0.14 0.09 0.08 0.03 0.35

Potatoes 0.10 0.07 0.11 0.08 0.06 0.12 0.10 0.08 0.08 0.06 0.09 0.02 0.24

Fig. 1. Dynamics in mixed cereal yield in Vilnius county  
and the corresponding LMA trend, 2000–2015
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The data in Table 2 suggest that the mean yield loss rates varied in between 0.06 for 
spring wheat and spring barley and 0.3 for maize. This indicates that the shocks in crop 
yields (if compared to the expected values) vary across the crops. Looking at the CVs, 
the highest regional variation is observed for maize (CV of 1.23). Oats exhibited the 
lowest CV of 0.1, which indicates relatively low differences in yield loss rates across 
the counties. Maize showed the highest value of the CV. Table 1 has shown that the 
trend sin yields varied across the counties and crops. The analysis of Table 2 once again 
confirmed that the differences in yield loss rates also prevail along regional and tempo-
ral dimensions. Thus, it is important to quantify yield risks in order to develop proper 
policies and business decisions. 
The information diffusion model was then applied on the yield loss rates in order to 
non-parametrically estimate the underlying probability densities. Indeed, Eq. 7 can be 
employed to compute the probabilities associated with each element of the diffusion 
vector. In our case, the elements of the diffusion vector correspond to the values of the 
yield loss rate. Eqs. 2 and 3 present the two options for determination of the bandwidth 
parameter h. We follow the two approaches for calculation of the bandwidth parameter 
in order to ensure robustness of the results. Therefore, the two models are considered: 
Model 1 employs Eq. 2, whereas Model 2 employs Eq. 3. Thereafter, the measures of 
yield risk are based on the two aforementioned approaches. 
The differences between the two approaches for estimation of the bandwidth parameter 
can be illustrated by considering the resulting densities. Figure 2, thus, depicts the two 
densities for yield loss ratio for potatoes in Vilnius county. The densities are based on 
Eq. 7. As one can note, the shape of the probability densities are rather similar, yet 
Model 1 shows somewhat increased probabilities to observe values of 0.45–0.55. These 
differences can also induce changes in the measures of risk.
The probabilities associated with different degrees of yield loss can be used to compute 
the expected yield loss rate (Eq. 9). Figure 3 presents the mean values of the expected 
yield loss for each crop. Again, the two models have been applied to estimate these 
values. As one can note, there exist differences between the levels of the expected yield 
loss rates rendered by the two models. Anyway, these differences do not render decisive 
changes in ranking of the average values. 
Irrespectively of the model applied, the lowest expected yield loss rate is observed 
for spring barley. Indeed, the expected yield loss rate amounted to 9.2% and 11.2%, 
depending on the model applied. However, the latter crop does not play an important 
role in the farming business in Lithuania. The second lowest expected yield loss rate is 
observed for spring wheat. Depending on the model used, the expected yield loss rate 
was 9.5% or 11.6%. The latter crop has gained more popularity in Lithuania as it can be 
seen from an increasing share of areas sown under this crop (Baležentis, Kriščiukaitienė 
2016). Winter rye also showed low value of the expected yield loss rate under both ap-
proaches. The expected loss amounted to 10% and 11.8%, depending on the model used. 
However, the share of area sown under the latter crop has dropped significantly during 
2000–2015. Spring triticale showed the fourth lowest level of yield risk, as represented 
by the mean expected yield loss rate (12.1% and 14.3%). 
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The ranking of winter wheat and potatoes varied across the two approaches, yet the 
latter two crops still showed the 10th or 11th largest values of the expected yield loss 
rates. Specifically, the expected yield loss rate amounted to 12.9% and 15.6% for winter 
wheat, and 13.1% and 15.5% for potatoes. Indeed, winter wheat remains as the main 
crop cultivated in Lithuania and even increased its share in the total area sown during 
2000–2015. As regards potatoes, area sown under this crop has shrunken significantly 
during the said period. Spring rape exhibited somewhat higher yield risk. The mean 
expected yield loss rate was 13.6% or 16.3% for Models 1 and 2, respectively. 
Winter triticale featured the 8th highest level of yield risk among the crops analysed. 
Depending on the model used, the mean expected yield loss rate was 14.3% or 17.3%. 
Oats followed with mean expected yield loss rates of 14.7% and 18.1%. Mixed cereals 
showed higher yield risk under both models. Specifically, the mean expected yield loss 
rates were 15.8% and 19.2% depending on the model applied. Legumes followed with 
mean loss rates of 16.4% and 20.2%. Winter barley was specific with even higher mean 

Fig. 3. Expected yield loss rates for different crops in Lithuania
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expected yield loss rates of 18.2% and 21.4%. Winter rape has seen an increasing share 
of the area sown during 2000–2015, yet this crop also exhibited rather high yield risk 
of 18.2% or 21.4%, depending on the model used.
As regards the results based on Model 1, buckwheat was the second most risky crop 
(mean expected yield loss rate of 26.6%), whereas maize appeared as the most risky 
crop (mean expected yield loss rate of 27%). The order is reversed if Model 2 is applied: 
maize and buckwheat show the mean expected yield loss rates of 29.6% and 32.1%, 
respectively. 
As the previous analysis has suggested the presence of spatial variation in yields and 
yield loss rates, we compute CVs for the expected yield loss rates. This variable, thus, 
identifies the extent of spatial variation in yield risk. The results are presented in Figure 
4. Note that the values are presented for the two models, as it was explained before. 
As Figure 4 suggests, maize showed the highest regional variation in yields risk un-
der both models applied. More specifically, the CV under Models 1 and 2 were 0.56 
and 0.48, respectively. Spring rape and winter barley came next with CVs fluctuating 
around the values of 0.4. The crops with the highest regional differences in the yield 
risk deserve additional attention in terms of their re-allocation and identification of va-
rieties adapted to the conditions of certain regions (e.g. different soil types). The lowest 
regional variation in yield risk is observed for oats. This finding is supported by both 
models used for the information diffusion approach. In order to further demonstrate the 
applicability of the information diffusion theory for analysis of yield risk and discuss 
the regional differences in yield risk, we will further discuss the county-level results for 
crops featuring the highest CVs. 
Following Zhang and Wang (2010), we define the four classes of hazard associated 
with different degrees of yield loss. Low-level hazard is defined for cases where yield 
loss rate exceeds 5%, yet remains 15% at most. Medium-level hazard is defined for 
yield loss rates above 15% and less or equal to 25%. High-level hazard is defined for 

Fig. 4. Coefficients of variation (CVs) for expected yield loss across different crops
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yield loss rates above 25% and less or equal to 35%. Finally, the catastrophic hazard is 
associated with yield loss rates exceeding 35%. The mean hazard can be calculated by 
assigning mean hazard levels to each level of hazard and summing up the products of 
probabilities and mean levels. We define the mean hazard in lines with Zhang and Wang 
(2010) by assigning mean hazard levels of 10%, 20%, 30%, and 40% to probabilities 
of low, medium, high, and catastrophic hazards, respectively. Basically, the measure of 
the mean hazards indicates the degree of yield risk without considering low levels of 
hazard (below 5%).
As maize showed the highest regional variation in yield risk, Table 3 presents the 
county-level data on different levels of hazards. Vilnius, Utena, and Klaipėda counties 
showed the highest level of yield risk. Specifically, the expected yield loss rates ranged 
in between 0.45 and 0.52 according to Model 1 and in between 0.48 and 0.51 accord-
ing to Model 2. The mean hazard indicator ignores extremely low hazard and thus 
shows lower values if opposed to the expected yield loss rate. For instance, the highest 
expected yield loss rate value under Model 1 is 0.46 (the one observed for Klaipėda 
county), whereas the corresponding mean hazard indicator is 0.3. Looking at Model 2, 
the corresponding values for Utena county are 0.51 and 0.32.
As one can note, the non-parametric diffusion approach is quite sensitive to extreme 
values of yield loss. Counties specific with the highest yield risk show rather high prob-

Table 3. County-level measures of yield risk for maize
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Model 1

Low 0.37 0.38 0.12 0.41 0.25 0.30 0.37 0.30 0.09 0.12

Medium 0.12 0.16 0.12 0.13 0.20 0.17 0.23 0.15 0.09 0.12

High 0.04 0.06 0.11 0.03 0.13 0.09 0.08 0.08 0.10 0.12

Catastrophic 0.12 0.10 0.58 0.06 0.26 0.22 0.08 0.23 0.66 0.57

Mean 0.12 0.13 0.30 0.10 0.21 0.18 0.14 0.18 0.32 0.30

Expected loss 0.14 0.15 0.46 0.11 0.28 0.22 0.16 0.22 0.52 0.45

Model 2

Low 0.35 0.33 0.10 0.38 0.20 0.27 0.31 0.27 0.10 0.11

Medium 0.18 0.21 0.11 0.20 0.17 0.19 0.24 0.19 0.10 0.11

High 0.08 0.10 0.10 0.07 0.14 0.12 0.13 0.12 0.10 0.11

Catastrophic 0.13 0.13 0.62 0.07 0.37 0.25 0.13 0.25 0.65 0.61

Mean 0.15 0.16 0.31 0.13 0.24 0.20 0.17 0.20 0.32 0.31

Expected loss 0.17 0.18 0.49 0.14 0.33 0.24 0.19 0.25 0.51 0.48
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abilities of the catastrophic risk. This is caused by a flexible shape of the estimated prob-
ability distribution. Indeed, this phenomenon is also related to low quantities of maize 
output and areas sown under maize there. The carried out analysis can be reiterated for 
different crops thereby identifying the most risky regions. 
In order to check the robustness of the results, we contrast the non-parametric approach 
to the parametric one. Specifically, Baležentis and Kriščiukaitienė (2016) applied the 
normal and logistic distributions to estimate the measures of risk for different crops. 
However, the two approaches cannot be compared directly as different yield loss ratios 
were defined in the aforementioned study and this one. We therefore use ranks rather 
than exact values of indicators reflecting the degree of expected loss. Specifically, the 
average relative risk premia are used for the parametric approach, whereas the expected 
yield loss rates are considered for the non-parametric approach. The averages for the 
country are used for the anlaysis (Table 4). 

Table 4. Rankings of the crops based on the average measures of risk according  
to parametric and non-parametric approaches

Crop Normal 
distribution

Logistic 
distribution

Non-parametric 
Model 1

Non-parametric 
Model 2

Winter wheat 12 13 11 10
Winter triticale 8 9 8 8
Winter rye 13 10 13 13
Winter barley 4 3 4 4
Spring wheat 14 14 14 14

Spring barley 15 14 15 15
Spring triticale 10 5 12 12
Oats 10 12 7 7
Buckwheat 2 2 2 1
Mixed cereals 6 8 6 6
Maize 1 1 1 2
Legumes 5 5 5 5
Winter rape 3 4 3 3
Spring rape 8 10 9 9
Potatoes 7 7 10 11

Rank Correlation
Normal distribution 1
Logistic distribution 0.91 1
Non-parametric Model 1 0.96 0.81 1
Non-parametric Model 2 0.94 0.78 0.99 1

Note: the results for the normal and logistic distributions (average relative risk premia) are based on 
Baležentis and Kriščiukaitienė (2016); expected yield loss rates are used for the non-pramateric ap-
proach. 
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The six most risky crops coincide across the non-parametric and parametric approaches. 
Further on, the rank correlation indicates that the results are highly consistent across the 
two approaches. The lowest values of rank correlation are observed among the results 
for the logistic distribution and the two non-parametric models (0.78 and 0.81). There-
fore, the results obtained can be considered as rather robust ones. 

Conclusions
The carried out analysis indicates that crops show different levels of yield risk in Lithu-
ania. What is more, there exist differences in spatial variation of the yield risk for 
different crops. Specifically, winter rape shows the highest yield risk irrespectively of 
the region considered. Therefore, these crops require improved varieties and farming 
practices to be applied in order to ensure stability of income flows.
As regards regional variation of the yield risk, maize and spring rape and winter barley 
show the highest discrepancies. Therefore, the cropping patterns of these crops can be 
further improved by considering movement towards different regions and introducing 
varieties that are more suitable for certain regions.
The indicators of risk can be applied to support decision making facilitated by both 
farmers and public bodies. Farmers can be informed of the yield risk in their region in 
order to adapt their crop-mix. Indeed, suchlike analysis can also be carried out at lower 
level of aggregation if data are available. As regards government institutions, the scope 
of the support schemes can be adjusted in regards to the spatial differences in yield risk. 
There have been certain limitations pertinent to the present study. First, the analysis was 
focused on yield risk. Indeed, yield risk can be offset by price fluctuations. However, 
this depends on crops and situation in international markets. Second, a single country 
was considered in this research. Therefore, further research could seek for a number 
of extensions. The analysis can be supplemented by applying different techniques for 
estimation of yield risks. Furthermore, yield and price risks can be considered simul-
taneously in order to reflect the income risk. Finally, more regions could be included 
in the analysis.
The carried out analysis contributes to the literature by unveiling the patterns of yield 
risk in Lithuania, which has faced serious transformations in terms of economic transi-
tion, institutional shifts, and climate change. These results can be compared to other 
regions in Central and Eastern Europe in order to devise the tailored policy measures 
aimed at ensuring viability of the farming business. The evidence-based policy meas-
ures can ensure effective use of public funds and increase the viability of rural areas in 
general. These results are important in regards to adjusting national and international 
food security policies with regards to risk mitigation. The management of risk is even 
more important in the presence of the climate change. 
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