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Article History:  Abstract. The application of evolutionary computing in architecture has advanced beyond active feedback 
to designers by integrating natural processes with computation to synchronize input from the final solution. 
Following knowledge in digital morphogenesis, new approaches can be formed by examining design issues 
deemed non-pragmatic and abstract, such as function in spatial programming. The study presented in this 
paper explores an approach based on the principle of modularity, which describes a biological system’s ability 
to organize distinct, independent units to increase the system’s adaptability. By employing modularity in evo-
lutionary computation, we can characterize function as an abstract feature of phenotypes. The basic modular-
ity method is simulated by developing a spatial program with dynamic programmatic functions to see how 
adaptable units are as spatial program components.
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1. Introduction 

Morphogenesis can be seen as “the origin of form,” in-
cluding the processes of evolution and development that 
culminate in the formation of an organism’s structure and 
form (Gökmen, 2020; Rees, 2018). According to Leach 
(2009), the application of morphogenesis in architecture 
has led to a paradigm shift known as “Digital Morphogen-
esis.” Architects used simulations of development process-
es across micro to macro dimensions to understand natu-
ral and computer domains as distinct ontologies. The goal 
of merging digital morphogenesis with natural processes 
continues to drive computational-nature integration within 
architectural design. Despite initial challenges, the devel-
opment of modeling tools that allow for real-time input is 
consistently promoted. It is evaluated whether evolution-
ary computing, particularly genetic algorithms, can offer 
a sophisticated and flexible technique akin to biological 
systems (Kamaoğlu, 2023; Miikkulainen & Forrest, 2021). 

The addition of evolutionary development compo-
nents enriches this architectural design methodology 
even more. The principles of Digital Morphogenesis rep-
resent a paradigm change as they have evolved from the 
pre-Darwinian Lamarckian trial-and-error method to a 
Darwinian strategy emphasizing natural selection (Leach, 
2009; Leach et al., 2004). A new paradigm for phenotypic 
investigation is introduced by Navarro-Mateu and Co-
cho-Bermejo (2019) through a case study that combines 

Darwin’s ideas alongside Gregor Mendel’s genetic inher-
itance theory, mutations, and population genetics. This 
framework emphasizes growth through form and trans-
formation by integrating ideas like body plan, allometry, 
and homeobox genes. However, it does not elucidate 
the morphological evolution within the context of the 
functional system of the phenotypes since this is deemed 
impracticable and therefore not prioritized. Interestingly, 
building programmatic functions is naturally flexible due 
to their non-rigidity and abstract nature, which opens up 
new possibilities for improving genetic algorithm uses for 
layout optimization.

This study explores the potential of evolutionary al-
gorithms to improve optimization systems by integrating 
morphogenesis mechanisms. Specifically, this study aims 
to understand better how spatial programming can be in-
vestigated through phenotypes. A deeper understanding 
of the development of functional aspects of phenotypes 
is proper because, although abstract, the notions of emer-
gence, change, and self-organization have been consist-
ently used to determine functions in building programs. 
Focusing on interior applications as a basis for introducing 
fundamental rules can form a combination of mechanics 
that can be applied to the full programmatic function of 
a building, as in the projects carried out by Canestrino 
et al. (2020) and Suharjito and Muslim (2023). Evolutionary 
algorithms have the potential to be a system to optimize 
layouts in interior settings, focusing on compliance with 
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established regulatory rules. This system encompasses 
self-organization mechanisms that have not been applied 
to analyze other dynamic mechanisms of programmatic 
functions, including emergence or transformation that 
can occur in building programs. The capacity to translate 
these mechanisms using genetic algorithms can be used 
to develop sustainable design solutions that can adapt to 
changing social, environmental, technological, and eco-
nomic situations.

2. Current development of morphogenesis 
in architecture

2.1. Mechanism of morphogenesis
Morphogenesis is a basic biological phenomenon in biol-
ogy that is defined by the dynamics of self-organization in 
living things. This complex process, which controls the for-
mation and development of a living organism’s anatomical 
form and structural organization, is regulated by an inter-
action of environmental stimuli and genetic instructions. 
From the early stages of embryonic development, known 
as embryogenesis, to the later development of specialized 
organs during organogenesis, morphogenesis integrates 
evolutionary, differentiative, transformative, and distribu-
tive interactions among the constituent parts of an organ-
ism (Gökmen, 2020; Kasyanov, 2020). The primary purpose 
of morphogenesis is to clarify the underlying mechanisms 
that control the molecular events that occur during de-
velopment and adaptation, resulting in morphological 
changes in organisms (Kasyanov, 2020; Roudavski, 2009). 
The mechanisms underlying morphogenesis drive an in-
terdisciplinary approach that unifies many fields of study 
to advance scientific inquiry. Alan Turing’s contributions to 
computer systems have made it possible to simulate the 
evolutionary processes found in nature. Through the study 
of organic laws, mathematical and physical frameworks us-
ing algorithms clarify the development and structure of 
organisms (Kamaoğlu, 2023; Thompson, 1992). 

Throughout history, people have attempted to under-
stand how nature works and have used their newfound 
understanding to create objects. Nature is an endless 
source of inspiration and solutions, fostering creativity and 
connections across many interdisciplinary fields, including 
architecture (Kamaoğlu, 2023; Kasyanov, 2020). Nature has 
many hidden aspects only revealed by careful examina-
tion; therefore, several viewpoints are required to produce 
complex results. This research goes beyond merely draw-
ing inspiration for formative processes; it explores natural 
systems’ mechanical and functional characteristics as pos-
sible sources of architectural innovation (Ball, 2009; Harani 
et al., 2021; Riskiyanto et al., 2021). Morphogenesis is a 
broad category of digital processes that includes genera-
tive and speculative design techniques. Computational ge-
ometry, mathematics, properties of materials, fabrication 
procedures, and algorithms are all integrated into these 
techniques. As generative algorithms progress, it is pos-
sible to simulate self-organizing behavior and achieve op-

timal design solutions. Architectural applications based on 
biological sciences, specifically in comprehending emer-
gent behavior in multi-agent systems, represent a process-
oriented methodology associated with several ideas such 
as form-finding, emergence, and self-organization (Gök-
men, 2020; Roudavski, 2009). It’s possible that architectural 
design is not directly impacted by the mechanisms driving 
morphogenesis. However, the fundamental ideas behind 
these procedures may be used to create control systems 
that can effectively handle intricate and dynamic architec-
tural configurations (Roudavski, 2009).

2.2. Exploration and exploitation within 
evolutionary algorithm
Using parametric and generative methods in computation-
al design and high-quality mass production capabilities 
allows geometry to be thoroughly examined. The notion 
of morphogenesis in architecture employs several digital 
methods to conjecture and produce designs, combining 
computational geometry, mathematics, materials char-
acteristics, fabrication methods, and algorithms (Dixit & 
Stefańska, 2023; Gökmen, 2020). Formation processes may 
now be simulated using evolutionary methods, develop-
mental growth models, and reaction-diffusion mechanisms 
thanks to the development of complexity theory and the 
accessibility of computing power. Due to the algorithm’s 
ability to “grow” and change, this method allows for devel-
oping design concepts through a formative process similar 
to the production of biological entities (Kamaoğlu, 2023). 
Within computational intelligence, Evolutionary Compu-
tation (EC) uses artificial systems with lifelike qualities to 
mimic natural evolutionary processes. When it comes to 
using Evolutionary Algorithms (EAs) to solve scientific and 
engineering problems, EC includes a variety of approaches, 
including Genetic Algorithms (GA), Evolutionary Program-
ming (EP), Evolutionary Strategies (ES), and Genetic Pro-
gramming (GP). 

Evolutionary programming was first developed to 
develop finite automata. Later, its use was extended to 
include solving numerical optimization problems (Fogel, 
1999). Genetic algorithms were first developed by Hol-
land in 1973. They are mainly used to solve combinatorial 
problems and use binary strings influenced by the genetic 
code found in real organisms. In the early 1990s, genetic 
programming became a targeted program optimization 
technique (Bartz-Beielstein et al., 2014). These techniques 
work by applying selection, recombination, and mutation 
to populations of digital entities iteratively to produce 
unique solutions (Miikkulainen & Forrest, 2021).

Since Darwin’s hypothesis was put forth 160 years ago, 
the fundamentals of biological evolution have become re-
fined and defined. The current agreement acknowledges 
that the primary mechanisms guiding evolutionary pro-
cesses are random drift, recombination, mutation, and 
natural selection (Miikkulainen & Forrest, 2021). Rather 
than using a single solution, these evolutionary approach-
es operate by managing individual populations. For future 
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generations to have better traits, these systems integrate 
and retain the genetic representations of possible individ-
uals. In this case, “genes” represent problem parameters, 
and their values are equivalent to “alleles”. These tech-
niques improve solution performance iteratively through 
this mechanism. Each individual is given a “fitness” score 
by evaluation, which guides evolution toward the intend-
ed solution domains. This strategy makes parallel search 
operations possible, which is necessary for effectively 
handling large combinatorial problem spaces. Given the 
enormous parameter variances, serial examination of all 
options would be unfeasible, if not impossible. The time 
needed for exploration is drastically cut down to a man-
ageable level using parallel search.

2.3. Implementation of modularity through 
genetic algorithm
A standard evolutionary algorithm for optimizing objective 
functions with ambiguity, noise, and discontinuity is the 
Genetic Algorithm (GA). Genetic algorithms perform at the 
genotypic level, selecting populations according to their 
phenotypic expressions after altering populations through 
mutation and crossover procedures (Baden & Taghizadeh, 
2023; Bartz-Beielstein et al., 2014; Harding & Brandt-Olsen, 
2018; Katoch et al., 2021). As an optimization technique, 
GA begins with a starting set of chromosomes represent-
ing potential solutions. Then, the new set of chromosomes 
is created to perform better than the original by using 
genetic operators such as crossing, mutation, and selec-
tion. This iterative process continues until the termination 
requirements are met, usually achieved by obtaining a par-
ticular level of convergence or a satisfactory solution. The 
optimal answer is typically acknowledged to be the chro-
mosome with the highest performance from the preceding 
generation (Baden & Taghizadeh, 2023; Katoch et al., 2021; 
El-Shorbagy & El-Refaey, 2020). 

Application in the field of architecture is firmly rooted 
in the development of digital morphogenesis, a system of 
computation closely interwoven with its role as an archi-
tect’s collaborator and its integration with the processes 
of nature. This cooperative model with architects lays out 
the authority and responsibility for addressing various is-
sues, including construction, environmental, and financial 
aspects, in addition to the more ethereal fields of dwell-
ings, aesthetics, and programmatic considerations (Davis, 
2009; Leach, 2009). There remains a tendency in genetic 
algorithm implementations to give practical problems a 
higher priority than less practical ones, especially when 
it comes to programming difficulties in developing pro-
grams. These programming efforts are closely associated 
with configurations intended to meet specific needs within 
building constructions, closely related to setups designed 
to satisfy particular requirements inside building struc-
tures. Analyzing geometry as a typology for defining spa-
tial functions in a building program presents a new way of 
thinking about phenotypic optimization problems, which 
are typically less practical in digital morphogenesis. Un-

derstanding the mechanism of phenotypes’ interaction in 
the system is made possible by classifying and describing 
them according to different typologies. This system is the 
cornerstone of a dynamic building program that puts us-
ers’ needs first and embraces emerging opportunities to 
help with decision-making. This system forms the foun-
dation for a dynamic building program that prioritizes 
user-centric adaptations, facilitating decision-making by 
embracing emergent possibilities.

Modularity is applied to explain the manifestation of 
functionality in the phenotype. Here, “modularity” refers 
to a biological system’s ability to organize distinct, inde-
pendent parts, which increases the system’s overall flex-
ibility. This feature tends to encourage selective pressures, 
whereas integration helps to bring these modules together 
and make them more cohesive. This idea is fundamental 
to evolutionary biology since it examines the relationships 
between relatively independent parts of a system. Drawing 
on Darwin’s concept of “correlations of growth, modularity 
is about adaptation, which gives rise to modular variation-
al structures and allows for the emergence of complex-
ity and diversity found in nature. Additionally, it provides 
insights into the anticipated patterns of species diversity 
under genetic drift and directed selection. It can be used 
to explore the macroevolutionary scale of evolutionary 
drivers of diversification (Melo et al., 2016).

Modularity extends to adult functional relationships, 
wherein modules comprise components that collaborate 
in executing specific physiological functions. Traits that 
are developmentally and functionally linked tend to ex-
hibit relatively strong intercorrelation. This principle is a 
framework for categorizing phenotypes based on their 
functional attributes as modules. These modules are classi-
fied into two categories: developmental modularity, which 
influences phenotype formation, and variational modular-
ity, which contributes to phenotypic diversity (Melo et al., 
2016; Minter et al., 2012).

3. Method

Several experiments were carried out in constructing a 
modularity-based evolutionary computation methodology 
by selecting issues on programmatically dynamic build-
ings, which is an office space programming. The method-
ology constructs phenotypes based on a catalog of furni-
ture modules as units divided according to function, size, 
and modularity categories, including developmental and 
variational modularity. The module catalog imposes rules 
on population and zoning to provide sufficient restrictions 
for the simulation to work. From the simulations that have 
been carried out, programmatic functions can be observed 
from several types of solution selection resulting from the 
evolutionary algorithm, such as through Pareto front se-
lection, fittest solution selection, and relative difference & 
average fitness solution selection. 

The variety of solutions in selecting the ideal office pro-
gram can be seen from two types of solution selection: the 



90 R. Riskiyanto et al. Exploring spatial programming through modularity based evolutionary computation

all-population Pareto front selection and the relative dif-
ference selection. The function of office programs, which 
are starting to diversify due to the decline in unit popula-
tion and the formation of dominated zones, can be ob-
served through the latest Pareto front selection and fittest 
solution selection. Finally, function programs that drasti-
cally change with the emergence of variational modularity 
or the formation of total zones can be observed through 
the latest Pareto front selection, fittest solution selection, 
and average fitness solution selection. These experiments 
were divided into phases as follows.

3.1. Experimental setup I – evolutionary and 
selection strategy
This study aims to determine whether it is feasible to 
design an associative framework that incorporates evo-
devo’s qualities to handle specific problems that fall under 
the scope of the building’s programmed functions. The 
process involves creating interior object prototypes in an 
exploratory manner to clarify the functional links between 
their morphologies and the building’s spatial arrangement. 
The programmatic role of office buildings was selected as 
the experiment’s topic. This subject was chosen due to the 
typological nature of office buildings, which enables differ-
ent changes in the operation of a single program within 
or between various departments within a corporation. Of-
fice building occupancy can also decline due to new work 
patterns, such as remote working, potentially replacing 
the office work paradigm as technology advances. These 
circumstances may lead to complete or dynamic modifi-
cations to the office building’s program, an appropriate 
setting for using the modularity model inside evolutionary 
computation.

Several plugins for the modeling program Rhinoceros 
3D were used in experiments to create a model that might 
simulate the dynamic nature of an office building’s pro-
grammatic function. Kangaroo, Human, and Wallacei pri-
marily use the Grasshopper3D platform (visual algorithmic 
modeling). The model’s parametric and algorithmic strate-
gies are built using this plug-in. The circle packing feature 
is implemented using Kangaroo, which can automatically 
pack as many circles as possible inside the boundaries of 
space without causing them to collide. This system mimics 
the spatial conditions of interior objects within the given 
area. Then, Human is used to display inside objects based 
on each circle’s size and position parameters, to better 
visualize the phenotypes within the circle packing bounds. 
Wallacei is utilized in the algorithmic simulation to exam-
ine and model the growth of the multi-objective optimiza-
tion of office interior objects, which are broken down into 
five main objectives:

 ■ S, a high number of interior objects in the sociability 
function;

 ■ P, a high number of interior objects in the productiv-
ity function;

 ■ HW, high number of interior objects in health and 
wellness functions;

 ■ PO, low population of all interior objects;
 ■ ZO, a low number of existing zones.
This simulation is run with the following settings:
 ■ Generation size: 25;
 ■ Generation count: 50 (1 + 49);
 ■ Crossover Probability: 0.9;
 ■ Mutation Probability: 1/n;
 ■ Mutation Rate: 20;
 ■ Crossover Rate: 20.
The objectives for numbers 1, 2, and 3 are set to maxi-

mize the number of furniture units present in each zone. 
These conflicting criteria can give better variation of com-
binations within the system, depending on how develop-
mental and variational modularity are present in the solu-
tion. On the contrary, the objectives for numbers 4 and 
5 are set to minimize the total amount of unit furniture 
and the number of existing zones in the given space. This 
converging criterion is introduced to provide the optimal 
scenarios for the emergence of variational modularity as a 
balance condition considered unfavorable for the simula-
tion to occur more often. Also, with these objectives, the 
combination of the present zone within the space can be 
better selected and analyzed as balanced, dominated, and 
total zones.

As for selection strategy, three methods are used: Pa-
reto front selection, fittest solution selection, and relative 
difference & average fitness solution selection. This meth-
od of selection is being used to observe the phenotype 
regarding the function of each of the solutions that are 
being selected and to give helpful and well-versed feed-
back to the designer to better understand which solution 
is better suited to the particular design consideration.

3.2. Experimental setup II – modules
To incorporate modularity into the simulation, furniture as 
units combined to make a module must be identified in a 
module library (Figure 1). The module library is separated 
into three criteria, namely function, size, and modularity 
categories. To define the primary purpose for furnishing 
the office, function groupings are created according to the 
ideal function of furniture in an office building. However, 
this will not limit how the furniture’s function is gener-
ated or updated; it will clarify the module’s zoning. Each 
furniture unit’s size will be determined by measuring its 
floor area, with a radius starting from the center point and 
adding a 0.6-meter-wide region for circulation around the 
outside. To construct the function of a module, the extent 
of this unit will create a hierarchy according to its occur-
rence level. 

Developmental modularity and variational modularity 
make up the two divisions of the modularity categories. 
The furniture elements that comprise developmental mod-
ularity are frequently seen in office spaces, making them 
the primary source for figuring out how an office pro-
gram operates. Variational modularity is characterized by 
furniture units that serve purposes not often seen in office 
settings. The modularity of variations is directed towards 
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furniture from other programs, namely for health & well-
ness towards the gym program, for productivity towards 
the co-working space program, and sociability towards the 
cafeteria program. The size of units in variational modu-
larity is larger than that of developmental modularity, al-
lowing it to better express its role as a module that clari-
fies changes in the system’s overall function while adding 
variation. A special grouping is also established for the 
productivity function, which serves as the primary stimu-
lus in the developmental modularity category. This special 
grouping is based on its intended use, particularly for staff, 
managers, or executives.

3.3. Experimental setup III – population
The population establishes the most minor and significant 
number of furniture units that can be incorporated into 
the system based on the unit size. To initiate the circle 
packing function, the floor space of the unit is calculated 
as a circle area, which determines the population groups 
used for the initialization procedure. The population mod-
el that is being used in this evolutionary algorithm simula-
tion contains two distinct gene types, which are as follows:

1. The population of furniture units is known as the 
initial population and will be addressed following 
the established restriction.

2. The unit appears randomly in the designated loca-
tion, which is known as the population seed.

The maximum and minimum number of genes in the 
initial population will be restricted due to the drawbacks of 
the circle packing feature (Figure 2). The ratio of available 
space area to the ratio of units produces the maximum 

population, while the minimum population is set at one. 
These limitations will ensure that the simulation operates 
smoothly and provide flexibility so that it can be applied to 
different regions of space. This ratio is used as the upper 
bound for the two modularity categories that follow one 
another, which are as follows:

1. The foundation of developmental modularity con-
sists of unique classifications that apply to every 
unit in these categories, which are separated into 
⅓ for manager and executive units and ⅓ for staff 
units. To ensure that high density in circle packing 
is given priority, the tolerance limit with this ratio is 
two times the area of each population.

2. Variational modularity happens when the population 
of modular units used for development is less than ⅔ 
of the total space and more than ⅓ of the total space.

Another limitation is placed on both categories: ran-
domly removing a portion of the group’s population until 
the ratio is fit. This prevents the simulation from reaching 
the null solution. These limitations will enable develop-
mental modularity in all simulation scenarios and reach 
high population densities per zone without reducing the 
diversity of unit types. One of the requirements for how 
developmental and variational modularity can be articu-
lated into building programming functions is the set of 
units that will be created based on this modularity.

3.4. Experimental setup IV – zoning
Zoning occurs when the unit is produced and dynamic 
borders are placed inside the available space, with the cen-
tral point of the unit’s representative circle being assigned 

Figure 1. The module library catalog contains furniture units divided based on function, size, and 
modularity categories

Figure 2. The rules of the initial population define the phenotype construction process
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to those boundaries (Figure 3). This zone is formed by the 
two inner projections of the available space at different 
scales, and it is bounded by the grouping of functions in 
the preset module library. With a minimum restriction of 
0.2 times the initial size, this scale will be the third gene 
utilized for simulations in evolutionary algorithms. It can 
adjust to more complicated geometries and prevent the 
simulation’s null solution from arising from a failure to 
specify boundaries by utilizing the scale of each relative 
boundary formed by available space. Two restrictions are 
applied to the formation of zoning boundaries:

1. A defined zone order on the dynamical limits, rang-
ing from the inner to the outside region of the avail-
able space, should be imposed: sociability, produc-
tivity, health, and wellness. The degree of access to 
the central core area and the surrounding views/
outside locations determines this arrangement.

2. The circulation zone within each unit, along the perim-
eter of the space area and core area, has a tolerance 
of 0.6 m for collision restriction to available space.

The simulation will count the number of circles that 
occur within the dynamic bounds and omit any circles that, 
while changing dynamically, happen to develop outside 
of the space region and core area. Depending on the size 
of the zone generated, these constraints will also enable 
the available space to be realized as balanced, dominated, 
and total zones. This quality is one of the requirements 
for expressing variational and developmental modularity 
in developing programmed functions.

4. Result 

4.1. Data flow
Several processes are established, including development, 
genetic algorithm, and result, based on the constructed 
experimental setting. Therefore, the following data flow 
shown in Figure 4 is recommended by the authors for use 
in replicating modularity.

Figure 3. Rules of zoning define the construction process

Figure 4. Proposed data flow to parametrize modularity within the digital genetic algorithm (GA) framework in 
visual programming
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4.2. Algorithm result
As one of the essential aspects of constructing the phe-
notypes, the overview of the simulation needs to be ana-
lyzed to see the interaction between each setup that will 
influence the algorithm’s result. Figure 5 shows that each 
of the five fitness functions exhibits a different degree of 
convergence towards local optima, with Fitness Functions 
2, 3, and 4 (productivity population, sociability popula-
tion, and total population) exhibiting a more noticeable 
increase in fitness throughout developed generations. By 
comparison, the two other Fitness Functions (health and 
wellness population and existing zone) are relatively less 

so. Overall, they show better fitness, but their convergence 
towards an optimum is slower. Figure 6 demonstrates that, 
despite the simulation aim being designed to prioritize 
a lower total population, this objective can fall to a no 
longer desirable level, and the frequency of occurrence of 
a total population below 300 m2 is relatively low. These 
two analyses revealed that the design was incorrectly for-
mulated, making it difficult to select for the emergence of 
variational modularity appropriately. Even so, the simula-
tion’s results can still be applied and deemed successful 
because they demonstrate how the algorithm repeatedly 
reformulates the design problem to find a balance be-
tween the fitness function, phenotypes, and chromosomes. 

Figure 5. The evolutionary algorithm’s output. Four important metrics were examined independently for each 
fitness function (from left to right): fitness values, standard deviation, mean value trendline, and standard 
deviation trendline

Figure 6. Parallel coordinate plot graph and the projection of the number solution in the total 
population below 300 m2 repeats less and occurs less frequently
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4.3. Pareto front selection
Using two approaches, the Pareto front’s 25 solutions from 
the latest generation (generation 49) were compared to 
the 192 solutions that comprised the population’s whole 
Pareto front. Using an average cluster size of nine solu-
tions over the Pareto front and a K-value of 20, hierarchical 
(average linkage) clustering was performed. This is done 

to simplify the 192 options by choosing the one closest 
to the center of each cluster. Figures 7 and 8 depict the 
occurrence of dominance in solutions that emphasize de-
velopment modularity, with the frequency of occurrence 
ordered from most frequent, namely in the balanced, 
dominated, and total zones. Out of the 20 solutions, three 
exhibit variational modularity. These three solutions are 

Figure 7. The selected phenotypes from the solution closest to each cluster with Pareto front solutions’ 
hierarchical clustering with a K-value of 20 are displayed using the objective space and dendrogram

Figure 8. The description of each solution from the selected phenotypes of the Pareto front in all populations is 
presented as a list and a diamond diagram to make it easier to observe each vitality value
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found in the balanced, dominated, and total zones, each 
of which is a solution from generation 28 individual 25, 
generation 43 individual 11, and generation 47 individual 
25. From the Pareto front for the entire population, more 
varied results were obtained to determine the level of 
emergence of ideal office programs and drastic changes 
in office programs.

The Pareto front solution in generation 49, seen in 
Figures 9 and 10, shows the same dominance in develop-
mental modularity, with half of it emerging in total zones. 
The emergence of variational modularity increases to 9 
types, with four solutions appearing in total zones, four 
in dominated zones, and one in balanced zones. Subop-
timal solutions can also be identified in populations that 

Figure 9. The selected phenotypes from the Pareto front solution in generation 49 are also displayed 
in the objective space

Figure 10. The description of each solution from the selected phenotypes of the Pareto front solution in generation 
49 is presented as a list and a diamond diagram to make it easier to observe each vitality value
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are too low, namely less than 200 m2, which is caused by 
the failure of the emergence of variational modularity in 
5 solutions. From the Pareto front in the last generation, 
more drastic variations appeared in the function of office 
programs, characterized by variational modularity and 
dominated and total zone types.

4.4. Fittest solution selection
As shown in Figure 11, the best-fit solution is chosen for 
every fitness function. The fittest solution for one func-
tion typically shows low fitness for other tasks because 
the fitness functions in the design challenge clash. The 
Fitness Function 1, 2, 3 (health & wellness, productivity, 
and sociability unit) that represents the maximum total of 
units in each function does come from the total zones in 
each of the respective objectives. This can indicate how 
drastic changes can happen within office programs with 
no variational modularity. However, it is still considered a 
change from one office program to another. With reverse 
input, Fitness Function 4 and 3 (total population and ex-
isting zone) can be identified to maximize the population 
with balanced zones.

4.5. Relative difference and average fitness 
solution selection
This selection uses the relative difference between rank-
ings and fitness average ranking to sort the Pareto front 
individuals using the Parallel Coordinate Plot. The solution 
was selected based on the highest rank in each category, 
which was sorted into different solutions. Individuals with 
relative differences tend to find an equilibrium between 
all the fitness criteria. The relative difference between in-
dividuals usually helps achieve a balance between all fit-
ness requirements. Meanwhile, the fitness average has the 
potential to introduce extreme individuals who specialize 
in one criterion. By weakening the other criteria, this spe-
cialisation enables the individual to achieve high ranks. 

In Figure 12, four solutions can be found that have a 
balanced number of units in each of the functions, which 
can also be found in balanced zones. However, the total 
population is considered small because fitness function 4 
(total population) is optimized to have a small unit popu-
lation. Still, it can be regarded as an ideal office program 
variation. In Figure 13, three solutions can be found: 3 so-
lutions with a drastic number of units in each function that 
can also be found in total zones. As with the solution for 
the relative difference, the total population is considered 
small. However, in this condition, variational modularity 
appears and becomes a variation of drastic changes in the 
office program into another program.

Figure 11. The selected phenotypes from the fittest solution 
on each of 5 objectives that are present in the simulation 
and the description of the details on each solution that are 
presented in the list and diamond chart

Figure 12. The selected phenotypes from the relative 
differences between fitness rank present in the simulation 
and the description of the details on each solution are 
presented in the list and diamond chart
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5. Discussion

The study’s results above show a meaningful interrelated 
relationship between the use of the algorithm concept in 
the morphogenesis framework to explore optimization 
variations. The modularity concept and algorithms form 
a close relationship, as shown by several forms of phe-
notypes selected through Pareto front, fittest Solution, 
relative difference, and Average Fitness Solution Selec-
tion. This relationship becomes stronger when placed in 
the morphogenesis framework, where form is not seen 
as a static end product, but rather as a result of growth, 
adaptation, and selection in a dynamic parameter envi-
ronment. Morphogenesis places form as it grows through 
responses to internal and external pressures. The pheno-
types produced in this study are real expressions of modu-
lar configurations that have gone through an algorithmic 
selection process in a multi-objective space. Several phe-
notypes manifest physical or morphological forms as end 
products resulting from the interaction between genotype 
(population parameters and zoning) and basic modules, 
as performative feedback that occurs during the morpho-
genesis process.

The modularity concept used in this study is building 
a system through small units that can be rearranged or 
combined to produce various optimization variations. The 
application of modularity increases the possibility of in-
terior configurations in space programming to determine 
the optimum quality produced. The more modules used, 
the wider the optimization variations must be evaluated. 

However, not all modular combinations produced show 
optimal variations against the desired criteria related to 
space efficiency and functional flexibility. This is where the 
role of evolutionary algorithms becomes crucial. Multi-ob-
jective optimization algorithms explore, evaluate, and filter 
these complex optimization variations. The algorithm used 
in this study allows for systematic and efficient variation 
searches, considering more than one objective at a time.

Several experiments in building a modularity-based 
evolutionary computing methodology by selecting prob-
lems in programmed dynamic construction show that the 
genetic algorithm’s optimization results (phenotype) are 
more than the extent to which it succeeds in meeting its 
design objectives. Evolutionary computing methods gen-
erally focus more on the shape of the resulting phenotype 
to produce the desired optimization. At the same time, 
the characteristics are only additional data to describe 
each objective. This method can facilitate more abstract 
problems, such as space programming, where the objec-
tive factors are essential as a benchmark for combinations 
between several types of units, where form only plays a 
role in facilitating the observation process.

The genetic algorithm used in this experiment only 
functioned as a “tool” system. However, the entire frame-
work (data flow) obtained can be reconstructed to develop 
other evolutionary development (evo-devo) theories and 
produce forms that are more than just the evolutionary 
process results. The modularity-based evolutionary devel-
opment applied in this experiment must be seen from how 
it works regarding the relationships between components 

Figure 13. The selected phenotypes from the average fitness rank that are present in 
the simulation and the description of the details on each solution that are presented 
in the list and diamond chart
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to form a system. So, it depends more on which scale you 
want to choose, for example, a space program that in-
cludes furniture as part of the unit, or even smaller if the 
furniture is seen as a separate system with various other 
components that make it up.

The result of the algorithmic process in this study is 
shown through identifying phenotypes as a set of modular 
variations that dominate each other. Each phenotype repre-
sents an optimal balance between various objectives, where 
no single solution can be satisfied in one aspect without 
sacrificing other aspects. Thus, the relationship between 
modularity and algorithms in the morphogenesis frame-
work is essential in multi-criteria design and decision mak-
ing. Modularity enriches the possibilities, algorithms process 
and optimize, and phenotypes become visual and concep-
tual representations of the optimal variations available.

6. Conclusions 

Developing a mechanism combining evolutionary com-
putation with natural processes to obtain direct feedback 
has become essential in applying digital morphogenesis to 
enrich architectural design methods. By exploring design 
solutions that can be optimized with evolutionary comput-
ing in architecture, a type of problem that is not consid-
ered pragmatic but is very important in the architectural 
design process, such as the programmatic function of the 
building, can be developed and optimized. By applying 
the theory of morphological integration in biology, name-
ly modularity, a method can be constructed to optimize 
more abstract problems in phenotypes and enrich the use 
of evolutionary computation step by step in synchronizing 
feedback with natural processes.

This study demonstrated that an evolutionary algo-
rithm that focuses on the relationship between modular-
ity and algorithms played an essential role in shaping the 
process of morphogenesis, namely the process of growth 
and formation of form through dynamic interactions be-
tween parts of the system. Modularity becomes the foun-
dation for morphogenesis by providing flexible units that 
can be combined, reconfigured, or transformed as context, 
functional needs, and form aspirations change. Through 
this relationship, design is no longer simply looking for 
one “best” form, but rather celebrating a spectrum of re-
sponsive, adaptive, and diverse phenotypes following the 
dynamics of complex goals.

The simulation results show a series of configurations 
made from small unit components with large spatial pro-
gramming functions that can adapt to changes in other 
programs, both significant and insignificant. These vari-
ous options can be used to support the needs of space 
programming in controlling internal operations and esti-
mating the use of different existing units so that they can 
be reused for other program initiatives. This research is 
limited to its application on the scale of the interior space 
of the building. Still, it does not rule out the possibility that 
this evolutionary algorithm can be applied to other stud-
ies, such as studying interior programs in an urban con-

text. However, the larger the modular categorization used, 
the more variations will be produced. As knowledge, the 
results of this study have the potential to be developed 
as a modular-based generative design method to define 
adaptive architecture.
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