A horizon on the evolution of machine learning applications in real estate
DOI: https://doi.org/10.3846/ijspm.2026.25981Abstract
Machine learning (ML) in the real estate industry has transformed property assessment, administration, and promotion, tackling significant issues including market instability and pricing precision. Notwithstanding considerable progress in predictive, descriptive, prescriptive analytics, and automation, current research mostly emphasises technological and operational efficiencies, overlooking the integration of environmental, social, economic, and governance (ESEG) sustainability dimensions. This monitoring constrains the advancement of comprehensive and accountable real estate solutions corresponding to sustainable development objectives. This study aims to address these gaps by systematically analyzing publication trends, key contributors, and thematic clusters, incorporating sustainability principles via a combination of bibliometric and content analysis approaches. The study uncovers publication trends, key research themes, and their alignment with ESEG criteria. The results highlight significant research clusters in predictive and descriptive analytics while revealing a notable deficiency in sustainability-focused studies. Implications of this study underscore the necessity for incorporating ESEG dimensions into ML-driven real estate practices, promoting resilient, equitable, and environmentally responsible industry advancements. This study provides actionable insights for stakeholders to enhance sustainable ML adoption, fostering long-term viability and societal well-being in the real estate sector.
Keywords:
machine learning, real estate, sustainability, bibliometric analysis, content analysis, ESEG frameworkHow to Cite
Share
License
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Akinjole, A., Shobayo, O., Popoola, J., Okoyeigbo, O., & Ogunleye, B. (2024). Ensemble-based machine learning algorithm for loan default risk prediction. Mathematics, 12(21), Article 3423. https://doi.org/10.3390/math12213423
Alkhaldi, F. (2023). Maximizing business potential: A framework for implementing prescriptive analytics. In S. G. Yaseen (Ed.), Cutting-edge business technologies in the big data era (pp. 251–259). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-42455-7_23
Altarturi, H. H. M., Nor, A. R. M., Jaafar, N. I., & Anuar, N. B. (2025). A bibliometric and content analysis of technological advancement applications in agricultural e-commerce. Electronic Commerce Research, 25, 805–848. https://doi.org/10.1007/s10660-023-09670-z
Altarturi, H. H. M., Saadoon, M., & Anuar, N. B. (2020). Cyber parental control: A bibliometric study. Children and Youth Services Review, 116, Article 105134. https://doi.org/10.1016/j.childyouth.2020.105134
Altarturi, H. H. M., Saadoon, M., & Anuar, N. B. (2023). Web content topic modeling using LDA and HTML tags. PeerJ Computer Science, 9, Article e1459. https://doi.org/10.7717/peerj-cs.1459
Asif, M., Naeem, G., & Khalid, M. (2024). Digitalization for sustainable buildings: Technologies, applications, potential, and challenges. Journal of Cleaner Production, 450, Article 141814. https://doi.org/10.1016/j.jclepro.2024.141814
Bechina, K., & Arntzen, A. A. (2022). A system of systems approach to smart building management: An AI vision for facility management. In 2022 17th Annual System of Systems Engineering Conference (SOSE) (pp. 452–456). IEEE. https://doi.org/10.1109/SOSE55472.2022.9812696
Bhattacharyya, S., Bhattacharyya, S., & Kaur, P. (2018). System and method for performing descriptive analysis in data mining (United States Patent No. US20180225390A1). https://patents.google.com/patent/US20180225390A1/en
Boz, H. A., Bahrami, M., Balcisoy, S., & Pentland, A. (2023). Footfall prediction using graph neural networks. In 2023 31st Signal Processing and Communications Applications Conference (SIU) (pp. 1–3). IEEE. https://doi.org/10.1109/SIU59756.2023.10224021
Breuer, W., & Steininger, B. I. (2020). Recent trends in real estate research: A comparison of recent working papers and publications using machine learning algorithms. Journal of Business Economics, 90(7), 963–974. https://doi.org/10.1007/s11573-020-01005-w
Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023). A systematic literature review on identifying patterns using unsupervised clustering algorithms: A data mining perspective. Symmetry, 15(9), Article 1679. https://doi.org/10.3390/sym15091679
Chen, W., Farag, S., Butt, U., & Al-Khateeb, H. (2024). Leveraging machine learning for sophisticated rental value predictions: A case study from Munich, Germany. Applied Sciences, 14(20), Article 9528. https://doi.org/10.3390/app14209528
Cheng, S., Blanco, M. N., Larson, T. V., Sheppard, L., Szpiro, A., & Shojaie, A. (2024). Principal component analysis balancing prediction and approximation accuracy for spatial data (No. arXiv:2408.01662). arXiv. https://doi.org/10.48550/arXiv.2408.01662
Cholaraja, K., M, V., B, S., Vishal S, R. M., & S, R. N. (2024). Justrent (a house rental management system). In 2024 10th International Conference on Advanced Computing and Communication Systems (ICACCS) (pp. 2483–2487). IEEE. https://doi.org/10.1109/ICACCS60874.2024.10717280
Conway, J. (2018). Artificial intelligence and machine learning: Current applications in real estate [Master’s thesis, Massachusetts Institute of Technology]. DSpace@MIT. https://dspace.mit.edu/handle/1721.1/120609
Darko, A., Glushakova, I., Boateng, E. B., & Chan, A. P. C. (2023). Using machine learning to improve cost and duration prediction accuracy in green building projects. Journal of Construction Engineering and Management, 149(8), Article 04023061. https://doi.org/10.1061/JCEMD4.COENG-13101
Elias, R., & Issa, R. R. A. (2024). Machine learning-based generative design optimization of the energy efficiency of Florida single-family houses. In Computing in Civil Engineering 2023 (pp. 640–648). ASCE. https://doi.org/10.1061/9780784485224.077
Filippi, F. D., & Carbone, C. (2025). Digital technologies for urban and social innovation in affordable, smart, and sustainable neighbourhoods. In Recent advances and prospects in urban e-planning (pp. 349–382). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-5956-3.ch014
Gadipudi, S. B., & Kalpana Kalaimani, R. (2024). Reinforcement learning for dynamic pricing under competition for perishable products. In 2024 28th International Conference on System Theory, Control and Computing (ICSTCC) (pp. 297–302). IEEE. https://doi.org/10.1109/ICSTCC62912.2024.10744760
Galante, M., Giove, S., & Rosato, P. (2024). Neural networks and linear models in real estate appraisal: The impact of sets selection procedures. https://doi.org/10.48264/VVSIEV-20243505
Ganguly, P., & Mukherjee, I. (2024). Enhancing retail sales forecasting with optimized machine learning models. In 2024 4th International Conference on Sustainable Expert Systems (ICSES) (pp. 884–889). IEEE. https://doi.org/10.1109/ICSES63445.2024.10762950
Ghasemi, M., & Ebrahimi, D. (2024). Introduction to reinforcement learning (No. arXiv:2408.07712). arXiv. https://doi.org/10.48550/arXiv.2408.07712
Gupta, S., & Agarwal, S. (2024). Applications of machine learning and artificial intelligence in environmental, social and governance (ESG) sector (SSRN Scholarly Paper No. 5086611). Social Science Research Network. https://doi.org/10.2139/ssrn.5086611
Huang, S. (2024). Advancing portfolio optimization: The convergence of machine learning and traditional financial models. Applied and Computational Engineering, 57, 206–211. https://doi.org/10.54254/2755-2721/57/20241335
Hung, M.-T., & Lo, H.-C. (2024). Risk analysis of mortgage loan default for bank customers and AI machine learning. Journal of Applied Finance & Banking, 14(6), 33–50. https://doi.org/10.47260/jafb/1463
Iyelolu, T. V., Agu, E. E., Idemudia, C., & Ijomah, T. I. (2024). Driving SME innovation with AI solutions: Overcoming adoption barriers and future growth opportunities. International Journal of Science and Technology Research Archive, 7(1), 36–54. https://doi.org/10.53771/ijstra.2024.7.1.0055
Jafary, P., Shojaei, D., Rajabifard, A., & Ngo, T. (2024). Automating property valuation at the macro scale of suburban level: A multi-step method based on spatial imputation techniques, machine learning and deep learning. Habitat International, 148, Article 103075. https://doi.org/10.1016/j.habitatint.2024.103075
Khandaskar, S., Panjwani, C., Patil, V., Fernandes, D., & Bajaj, P. (2023). House and rent price prediction system using regression. In 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS) (pp. 1733–1739). IEEE. https://doi.org/10.1109/ICSCSS57650.2023.10169290
Kuppan, K., Bhaskar Acharya, D., & B, D. (2024). Foundational AI in Insurance and real estate: A survey of applications, challenges, and future directions. IEEE Access, 12, 181282–181302. https://doi.org/10.1109/ACCESS.2024.3509918
Leng, R. (2024). Exploring AI’s role in enhancing risk assessment models in financial quantitative trading. Journal of Applied Economics and Policy Studies, 12, 1–5. https://doi.org/10.54254/2977-5701/12/2024110
Lubis, A. S., Zulfan, Chania, M. F., & Adha, I. M. (2024). Analysis of the use and application of mathematics in economics: Demand and supply functions. Journal of Research in Mathematics Trends and Technology, 6(1), 16–23. https://doi.org/10.32734/jormtt.v6i1.17603
Malik, N., & Manzoor, E. (2023). Does machine learning amplify pricing errors in the housing market? -- The economics of machine learning feedback loops (No. arXiv:2302.09438). arXiv. https://doi.org/10.48550/arXiv.2302.09438
Mandati, R., Anderson, V., Chen, P., Agarwal, A., Dokic, T., Barnard, D., Finn, M., Cromer, J., Mccauley, A., Tutaj, C., Dave, N., Besharati, B., Barnett, J., & Krall, T. (2024). Integrating artificial intelligence models and synthetic image data for enhanced asset inspection and defect identification (No. arXiv:2410.11967). arXiv. https://doi.org/10.48550/arXiv.2410.11967
Mukherjee, A., Nambiar, R., & Choudhury, D. (2024). Machine learning based real estate price prediction. In 2024 8th International Conference on Inventive Systems and Control (ICISC) (pp. 351–358). IEEE. https://doi.org/10.1109/ICISC62624.2024.00067
Nur, M. F., & Siregar, A. (2024). Exploring the use of cluster analysis in market segmentation for targeted advertising. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 5(2), 158–168. https://doi.org/10.34306/itsdi.v5i2.665
Panda, A. R., Rout, P., & Gautam, A. (2024). Optimizing marketing strategy by performing customer segmentation. In 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET) (pp. 1–6). IEEE. https://doi.org/10.1109/ACROSET62108.2024.10743643
Piao, J. (2023). Portfolio optimization based on deep learning and factor constraints. Advances in Economics, Management and Political Sciences, 48, 264–273. https://doi.org/10.54254/2754-1169/48/20230454
Purushotham, K., Bangarappa, Kodipalli, A., & Rao, T. (2024). Real-time house price predictions with regression analysis. In 2024 IEEE Recent Advances in Intelligent Computational Systems (RAICS) (pp. 1–4). IEEE. https://doi.org/10.1109/RAICS61201.2024.10689962
Ram, K. S. R., Selvaganapathy, M., Nandhini, I., Tamilselvi, M., Kalaivani, M., & Natarajan, B. (2024). Enhanced investment decision making with a reinforcement learning-based multi-agent portfolio management system. In 2024 International Conference on Data Science and Network Security (ICDSNS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICDSNS62112.2024.10691210
Rane, N., Choudhary, S., & Rane, J. (2024). Artificial intelligence driven approaches to strengthening environmental, social, and governance (ESG) criteria in sustainable business practices: A review (SSRN Scholarly Paper No. 4843215). Social Science Research Network. https://doi.org/10.2139/ssrn.4843215
Rao, S. N., & Ravi, S. C. (2018). System and method for identifying, monitoring and mitigating risks (United States Patent No. US20180308174A1). https://patents.google.com/patent/US20180308174A1/en
Rodriguez-Serrano, J. A. (2025). Prototype-based learning for real estate valuation: A machine learning model that explains prices. Annals of Operations Research, 344(1), 287–311. https://doi.org/10.1007/s10479-024-06273-1
Sahran, F., Altarturi, H. H. M., & Anuar, N. B. (2024). Exploring the landscape of AI-SDN: A comprehensive bibliometric analysis and future perspectives. Electronics, 13(1), Article 26. https://doi.org/10.3390/electronics13010026
Sangarya, V., Bradford, R., & Kim, J.-E. (2024). Estimating environmental cost throughout model’s adaptive life cycle. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 7, 1281–1291. https://doi.org/10.1609/aies.v7i1.31723
Skovajsa, Š. (2023). Review of clustering methods used in data-driven housing market segmentation. Real Estate Management and Valuation, 31(3), 67–74. https://doi.org/10.2478/remav-2023-0022
Sobana, P., Balakumaran, M., Bharathkumar, S., Boopathi, P., & Harish, J. (2024). House price prediction using machine learning. In Challenges in information, communication and computing technology. CRC Press. https://doi.org/10.1201/9781003559085-121
Sridharan, K., & Maddern, C. R. (2022). Methodology for realising ESG performance of corporate real estate assets through digital data architectures. Corporate Real Estate Journal, 11(4), 347–362. https://doi.org/10.69554/ZBNP5967
Stroparo, T. R., Guerra, A. de L. e R., Cordeiro, E. da S., Bochniak, B., Bortolotti, M. A., & Júnior, O. da S. L. (2023). Objetivos de desenvolvimento sustentável (ODS), environmental, social and governance (ESG) e artificial intelligence (AI): Tríplice abordagem para a sustentabilidade corporativa. AKRÓPOLIS - Revista de Ciências Humanas da UNIPAR, 31(2), Article 2. https://doi.org/10.25110/akropolis.v31i2.2023-11369
Tekouabou, S. C. K., Gherghina, Ş. C., Kameni, E. D., Filali, Y., & Idrissi Gartoumi, K. (2024). AI-based on machine learning methods for urban real estate prediction: A systematic survey. Archives of Computational Methods in Engineering, 31(2), 1079–1095. https://doi.org/10.1007/s11831-023-10010-5
Tin, T. T., Wei, C. J., Min, O. T., Feng, B. Z., & Xian, T. C. (2024). Real estate price forecasting utilizing recurrent neural networks incorporating genetic algorithms. International Journal of Innovative Research and Scientific Studies, 7(3), 1216–1226. https://doi.org/10.53894/ijirss.v7i3.3220
Vergara-Perucich, J.-F. (2023). A systematic bibliometric analysis of the real estate bubble phenomenon: A comprehensive review of the literature from 2007 to 2022. International Journal of Financial Studies, 11(3), Article 106. https://doi.org/10.3390/ijfs11030106
Vivekananda, M. N., & Shidlyali, P. A. (2024). Enhancing housing price prediction using AI and machine learning: A stacked regression meta-modeling approach. In 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC) (pp. 1954–1960). IEEE. https://doi.org/10.1109/I-SMAC61858.2024.10714734
Walacik, M., & Chmielewska, A. (2024). Real estate industry sustainable solution (environmental, social, and governance) significance assessment—AI-powered algorithm implementation. Sustainability, 16(3), Article 1079. https://doi.org/10.3390/su16031079
Wang, F. (2023). The present and future of the digital transformation of real estate: A systematic review of smart real estate. Business Informatics, 17(2), 85–97. https://doi.org/10.17323/2587-814X.2023.2.85.97
Yadav, V., Bhatnagar, R., & Kumar, U. (2024). Innovative computational techniques for DSSCs using machine learning: A review. Discover Electronics, 1(1), Article 17. https://doi.org/10.1007/s44291-024-00022-1
Yang, J. (2024). Data-driven investment strategies in international real estate markets: A predictive analytics approach. International Journal of Computer Science and Information Technology, 3(1), 247–258. https://doi.org/10.62051/ijcsit.v3n1.32
Zaman, M., Al Islam, M., Zohrabi, N., & Abdelwahed, S. (2024). A machine learning-based temperature control and security protection for smart buildings. In 2024 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 290–295). IEEE. https://doi.org/10.1109/SMARTCOMP61445.2024.00070
Zheng, L., Mueller, M., Luo, C., & Yan, X. (2024). Predicting whole-life carbon emissions for buildings using different machine learning algorithms: A case study on typical residential properties in Cornwall, UK. Applied Energy, 357, Article 122472. https://doi.org/10.1016/j.apenergy.2023.122472
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2026 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.