Urban flood disaster risk management using multi-criteria decision-making methods: A scoping review
DOI: https://doi.org/10.3846/ijspm.2025.25478Abstract
Statistical data indicates a rising trend in the frequency and unpredictability of floods globally. Regions traditionally less affected by flooding are reportedly experiencing an increased impact, underscoring the widespread nature of this phenomenon. Over the past decade, the overall incidence of floods has significantly increased, affecting billions of people worldwide. If appropriate measures are not taken, floods driven by climate change, urbanization, and the consequences of human activities will continue to increase in frequency and intensity, leading to even greater economic, social, and environmental losses. Proper selection of management strategies and risk reduction measures is becoming particularly important for reducing flood risks. Multi-Criteria Decision Making (MCDM) methods are well-suited for addressing such complex, multi-criteria problems. Therefore, this study aims to explore the research fields of MCDM application in flood management and identify the most widely used methods. This is done to clarify their benefits and enhance their applicability. The Systematic Literature Review (SLR) revealed that the research field is broad and dynamic, evolving over the decades. However, the application of MCDM remains popular and, according to current trends, continues to gain popularity. New research fields are also emerging, such as “Identification and/or Mapping of Flood-Prone Areas” and “Sustainable Infrastructure Assessment”, highlighting scientist growing concern about the importance of evaluating vulnerable areas and applying sustainable solutions to address flood management challenges. The findings are particularly relevant to real estate and property management, as they support the development of evidence-based frameworks for assessing property-level flood resilience and for guiding investment decisions to protect built assets.
Keywords:
urban sustainability, infrastructure, flood disaster management, nature-based solutions, low impact development, multi-criteria decision-making (MCDM), geographic information systems (GIS)How to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abd-el-Kader, M. M., El-Feky, A. M., Saber, M., AlHarbi, M. M., Alataway, A., & Alfaisal, F. M. (2023). Designating appropriate areas for flood mitigation and rainwater harvesting in arid region using a GIS-based multi-criteria decision analysis. Water Resources Management, 37(3), 1083–1108. https://doi.org/10.1007/s11269-022-03416-6
Abdullah, L., Goh, C., Zamri, N., & Othman, M. (2020). Application of interval valued intuitionistic fuzzy TOPSIS for flood management. Journal of Intelligent and Fuzzy Systems, 38(1), 873–881. https://doi.org/10.3233/JIFS-179455
Adebimpe, O. A., Proverbs, D. G., & Oladokun, V. O. (2021). A fuzzy-analytic hierarchy process approach for measuring flood resilience at the individual property level. International Journal of Building Pathology and Adaptation, 39(2), 197–217. https://doi.org/10.1108/IJBPA-10-2019-0094
Adger, W. N. (2006). Vulnerability. Global Environmental Change, 16(3), 268–281. https://doi.org/10.1016/J.GLOENVCHA.2006.02.006
Aggarwal, G., Ahuja, H., Narang, S., & Aggarwal, S. (2024). Flood vulnerability index to aid decision making. Telkomnika (Telecommunication Computing Electronics and Control), 22(6), 1431–1442. https://doi.org/10.12928/TELKOMNIKA.v22i6.26272
Ahmadisharaf, E., Kalyanapu, A. J., & Chung, E.-S. (2016). Spatial probabilistic multi-criteria decision making for assessment of flood management alternatives. Journal of Hydrology, 533, 365–378. https://doi.org/10.1016/j.jhydrol.2015.12.031
Ahmadisharaf, E., Tajrishy, M., & Alamdari, N. (2016). Integrating flood hazard into site selection of detention basins using spatial multi-criteria decision-making. Journal of Environmental Planning and Management, 59(8), 1397–1417. https://doi.org/10.1080/09640568.2015.1077104
Akay, H., & Baduna Kocyigit, M. (2020). Flash flood potential prioritization of sub-basins in an ungauged basin in Turkey using traditional multi-criteria decision-making methods. Soft Computing, 24(18), 14251–14263. https://doi.org/10.1007/s00500-020-04792-0
Akbulut Basar, A. (2024). Participatory urban planning for social sustainability: A combination of the analytic hierarchy process, with strengths, weaknesses, opportunities, threats analysis, and the technique for order preference by similarity to ideal solution (A’WOT-TOPSIS). Sustainability, 16(24), Article 10862. https://doi.org/10.3390/su162410862
Aldlbahi, S. M. M. (2024). Environmental adaptation tools as an approach to meet challenges in urban planning in the Kingdom of Saudi Arabia. IOP Conference Series: Earth and Environmental Science, 1283(1), Article 012003. https://doi.org/10.1088/1755-1315/1283/1/012003
Aloui, S., Zghibi, A., Mazzoni, A., & Elomri Adel and Al-Ansari, T. (2024). Identifying suitable zones for integrated aquifer recharge and flood control in arid Qatar using GIS-based multi-criteria decision-making. Groundwater for Sustainable Development, 25, Article 101137. https://doi.org/10.1016/j.gsd.2024.101137
Amadi, A. (2024). Toward disaster resilience in property management: The nomenclature of structural and non-structural building adaptation measures relative to flood exposure. Property Management, 42(5), 771–793. https://doi.org/10.1108/PM-06-2023-0052
Anderau, G. (2023). Fake news and epistemic flooding. Synthese, 202(4), Article 106. https://doi.org/10.1007/s11229-023-04336-7
Ashofteh, P.-S., & Pourali Dougaheh, M. (2024). Ranking the optimal combination of low-impact urban development systems under climate change with the TODIM multi-criteria decision-making method. Journal of Cleaner Production, 434, Article 140108. https://doi.org/10.1016/j.jclepro.2023.140108
Azizi, E., Nikoo, M. R., Mostafazadeh, R., & Hazbavi, Z. (2023). Flood vulnerability analysis using different aggregation frameworks across watersheds of Ardabil province, northwestern Iran. International Journal of Disaster Risk Reduction, 91, Article 103680. https://doi.org/10.1016/j.ijdrr.2023.103680
Bakhtiari, V., Piadeh, F., Chen, A. S., & Behzadian, K. (2024). Stakeholder analysis in the application of cutting-edge digital visualisation technologies for urban flood risk management: A critical review. Expert Systems with Applications, 236, Article 121426. https://doi.org/10.1016/j.eswa.2023.121426
Balaji, M., Dinesh, S. N., Vetrivel, S. V., Kumar, P. M., & Subbiah, R. (2021). Augmenting agility in production flow through ANP. Materials Today: Proceedings, 47, 5308–5312. https://doi.org/10.1016/j.matpr.2021.06.053
Balogun, A.-L., Sheng, T. Y., Sallehuddin, M. H., Aina, Y. A., Dano, U. L., Pradhan, B., Yekeen, S., & Tella, A. (2022). Assessment of data mining, multi-criteria decision making and fuzzy-computing techniques for spatial flood susceptibility mapping: a comparative study. Geocarto International, 37(26), 12989–13015. https://doi.org/10.1080/10106049.2022.2076910
Banihabib, M. E., Chitsaz, N., & Randhir, T. O. (2020). Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans. SN Applied Sciences, 2(1), Article 6. https://doi.org/10.1007/s42452-019-1695-6
Barredo, J. I., Saurí, D., & Llasat, M. C. (2012). Assessing trends in insured losses from floods in Spain 1971-2008. Natural Hazards and Earth System Science, 12(5), 1723–1729. https://doi.org/10.5194/nhess-12-1723-2012
Beake, N., & Mackintosh, T. (2024). Spain floods: Málaga evacuates thousands as more flood alerts issued. https://www.bbc.com/news/articles/c80lxd9kne0o
Bibi, T. S., Reddythta, D., & Kebebew, A. S. (2023). Assessment of the drainage systems performance in response to future scenarios and flood mitigation measures using stormwater management model. City and Environment Interactions, 19, Article 100111. https://doi.org/10.1016/j.cacint.2023.100111
Birgani, Y. T., & Yazdandoost, F. (2018). An integrated framework to evaluate resilient-sustainable urban drainage management plans using a combined-adaptive MCDM technique. Water Resources Management, 32(8), 2817–2835. https://doi.org/10.1007/s11269-018-1960-2
Bitarafan, M., Amini Hosseini, K., & Hashemkhani Zolfani, S. (2023). Evaluating natural hazards in cities using a novel integrated MCDM approach (Case study: Tehran City). Mathematics, 11(8), Article 1936. https://doi.org/10.3390/math11081936
Bolaños, F., Salatino, A., Osborne, F., & Motta, E. (2024). Artificial intelligence for literature reviews: Opportunities and challenges. Artificial Intelligence Review, 57(9), Article 259. https://doi.org/10.1007/s10462-024-10902-3
Boultif, M., Kheloufi, B., Hachemi, A., & Mimeche, L. (2024). GIS-based multi-criteria decision-making techniques and analytical hierarchical process for flash flood risk assessment due to a possible dam break in urban Arid environment: Case study of Biskra City, Southern Algeria. Journal of the Indian Society of Remote Sensing, 52(5), 1085–1097. https://doi.org/10.1007/s12524-024-01860-y
Briguglio, L., Cordina, G., Farrugia, N., & Vella, S. (2009). Economic vulnerability and resilience: Concepts and measurements. Oxford Development Studies, 37(3), 229–247. https://doi.org/10.1080/13600810903089893
Bryan-Smith, L., Godsall, J., George, F., Egode, K., Dethlefs, N., & Parsons, D. (2023). Real-time social media sentiment analysis for rapid impact assessment of floods. Computers and Geosciences, 178, Article 105405. https://doi.org/10.1016/j.cageo.2023.105405
Burnham, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3, 1–8. https://doi.org/10.1186/1742-5581-3-1
Butturi, M. A., Lolli, F., & Gamberini, R. (2025). Set up a supply chain observatory through the comparison of multi-criteria parsimonious methods. Benchmarking, 32(11), 1–27. https://doi.org/10.1108/BIJ-02-2023-0089
Cea, L., & Costabile, P. (2022). Flood risk in urban areas: Modelling, management and adaptation to climate change. A review. Hydrology, 9(3), Article 50. https://doi.org/10.3390/hydrology9030050
Chandole, V., Joshi, G. S., & Srivastava, V. K. (2024). Flood risk mapping under changing climate in Lower Tapi river basin, India. Stochastic Environmental Research and Risk Assessment, 38(6), 2231–2259. https://doi.org/10.1007/s00477-024-02677-4
Chaube, S., Pant, S., Kumar, A., Uniyal, S., Singh, M. K., & Kotecha, K. (2024). An overview of multi criteria decision analysis and the applications of AHP and TOPSIS methods. International Journal of Mathematical, Engineering and Management Sciences, 9(3), 581–615. https://doi.org/10.33889/IJMEMS.2024.9.3.030
Chiu, Y. Y., Raina, N., & Chen, H. E. (2022). Evolution of flood defense strategies: Toward nature-based solutions. Environments, 9(1), Article 2. https://doi.org/10.3390/environments9010002
da Silva, L. B. L., Alencar, M. H., & de Almeida, A. T. (2022). A novel spatiotemporal multi-attribute method for assessing flood risks in urban spaces under climate change and demographic scenarios. Sustainable Cities and Society, 76, Article 103501. https://doi.org/10.1016/j.scs.2021.103501
Dadrasajirlou, Y., Karami, H., & Mirjalili, S. (2023). Using AHP-PROMOTHEE for selection of best low-impact development designs for urban flood mitigation. Water Resources Management, 37(1), 375–402. https://doi.org/10.1007/s11269-022-03378-9
Dadrasajirlou, Y., Karami, H., Rezaei, A., Mirjalili, S., Kalantari, Z., & Ferreira, C. S. S. (2025). Chapter 1.4—A new framework for urban flood volume estimation using low-impact development methods and intelligent models. In H. Pan, Z. Kalantari, C. Ferreira, & C. Cong (Eds.), Nature-based solutions in supporting sustainable development goals (pp. 83–109). Elsevier. https://doi.org/10.1016/B978-0-443-21782-1.00006-3
Dang, T. Q., Tran, B. H., Le, Q. N., Tanim, A. H., Bui, V. H., Mai, S. T., Thanh, P. N., & Anh, D. T. (2025). Integrating intelligent hydro-informatics into an effective early warning system for risk-informed urban flood management. Environmental Modelling & Software, 183, Article 106246. https://doi.org/10.1016/J.ENVSOFT.2024.106246
Das, S., & De, S. (2023). Strengths, weaknesses, opportunities and threats determination and strategy prioritization using hesitant fuzzy decision-making approach for better energy sustainability: Demonstration with Indian data. Energy Conversion and Management, 281, Article 116847. https://doi.org/10.1016/j.enconman.2023.116847
De Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016
Debnath, J., Sahariah, D., Mazumdar, M., Lahon, D., Meraj, G., Hashimoto, S., Kumar, P., Singh, S. K., Kanga, S., Chand, K., & Saikia, A. (2023). Evaluating flood susceptibility in the Brahmaputra River basin: An insight into Asia’s Eastern Himalayan floodplains using machine learning and multi-criteria decision-making. Earth Systems and Environment, 7(4), 733–760. https://doi.org/10.1007/s41748-023-00358-w
Directive 2014/24. (n.d.). Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on public procurement and repealing Directive 2004/18/EC. EUR-Lex. Retrieved November 15, 2024, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014L0024
Dordi, T., Henstra, D., & Thistlethwaite, J. (2022). Flood risk management and governance: A bibliometric review of the literature. Journal of Flood Risk Management, 15(2), Article e12797. https://doi.org/10.1111/jfr3.12797
Douglas, J. (2007). Physical vulnerability modelling in natural hazard risk assessment. Natural Hazards and Earth System Science, 7(2), 283–288. https://doi.org/10.5194/nhess-7-283-2007
Dutta, P., & Deka, S. (2024). A novel approach to flood risk assessment: Synergizing with geospatial based MCDM-AHP model, multicollinearity, and sensitivity analysis in the Lower Brahmaputra Floodplain, Assam. Journal of Cleaner Production, 467, Article 142985. https://doi.org/10.1016/J.JCLEPRO.2024.142985
Edamo, M. L., Ukumo, T. Y., Lohani, T. K., Ayana, M. T., Ayele, M. A., Mada, Z. M., & Abdi, D. M. (2022). A comparative assessment of multi-criteria decision-making analysis and machine learning methods for flood susceptibility mapping and socio-economic impacts on flood risk in Abela-Abaya floodplain of Ethiopia. Environmental Challenges, 9, Article 100629. https://doi.org/10.1016/j.envc.2022.100629
Ekmekcioğlu, O. (2024). Discovering the perception differences of stakeholders on the sustainable and innovative stormwater management practices. Water Resources Management, 38(7), 2527–2544. https://doi.org/10.1007/s11269-024-03783-2
Ekmekcioğlu, Ö., Koc, K., & Özger, M. (2022). Towards flood risk mapping based on multi-tiered decision making in a densely urbanized metropolitan city of Istanbul. Sustainable Cities and Society, 80, Article 103759. https://doi.org/10.1016/j.scs.2022.103759
Esangbedo, M. O., & Bai, S. (2019). Grey regulatory focus theory weighting method for the multi-criteria decision-making problem in evaluating university reputation. Symmetry, 11(2), Article 230. https://doi.org/10.3390/sym11020230
Fabian, P. S., Kwon, H. H., Vithanage, M., & Lee, J. H. (2023). Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environmental Research, 225, Article 115617. https://doi.org/10.1016/j.envres.2023.115617
Guerra, M., & Abebe, Y. (2019). Pairwise elicitation for a decision support framework to develop a flood risk response plan. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 5(1), Article 011004. https://doi.org/10.1115/1.4040661
Guerrin, J., Fernandez, S., Drapier, L., Serra-Llobet, A., & Roche, C. (2023). Que font les solutions fondées sur la nature aux politiques de gestion des risques liés à l’eau? [Nature-based solutions: Implications on water-related risk policies]. Développement Durable et Territoires, 14(2), Article 22788. https://doi.org/10.4000/developpementdurable.22788
Guo, D., Zhao, Q., Chen, Q., Wu, J., Li, L., & Gao, H. (2021). Comparison between sentiments of people from affected and non-affected regions after the flood. Geomatics, Natural Hazards and Risk, 12(1), 3346–3357. https://doi.org/10.1080/19475705.2021.2012530
Hamidifar, H., Yaghoubi, F., & Rowinski, P. M. (2024). Using multi-criteria decision-making methods in prioritizing structural flood control solutions: A case study from Iran. Journal of Flood Risk Management, 17(3), Article e12991. https://doi.org/10.1111/jfr3.12991
Hassan, A. M., & Lee, H. (2015). The paradox of the sustainable city: Definitions and examples. Environment, Development and Sustainability, 17(6), 1267–1285. https://doi.org/10.1007/s10668-014-9604-z
He, R., Tiong, R. L. K., Yuan, Y., & Zhang, L. (2024). Enhancing resilience of urban underground space under floods: Current status and future directions. Tunnelling and Underground Space Technology, 147, Article 105674. https://doi.org/10.1016/j.tust.2024.105674
Holgate, O., & Ruddy, A. (2023). Potential impacts of large-scale seaweed farming on global warming: A review. In Oceans 2023 – Limerick (pp. 1–6), Limerick, Ireland. https://doi.org/10.1109/OCEANSLimerick52467.2023.10244624
Hosseinzadeh, A., Behzadian, K., Rossi, P., Karami, M., Ardeshir, A., & Torabi Haghighi, A. (2023). A new multi-criteria framework to identify optimal detention ponds in urban drainage systems. Journal of Flood Risk Management, 16(2), Article e12890. https://doi.org/10.1111/jfr3.12890
Huang, L., Wu, J., & Yan, L. (2015). Defining and measuring urban sustainability: A review of indicators. Landscape Ecology, 30(7), 1175–1193. https://doi.org/10.1007/s10980-015-0208-2
Huang, W., Park, E., Wang, J., & Sophal, T. (2024). The changing rainfall patterns drive the growing flood occurrence in Phnom Penh, Cambodia. Journal of Hydrology: Regional Studies, 55, Article 101945. https://doi.org/10.1016/J.EJRH.2024.101945
Idowu, D., & Zhou, W. (2023). Global megacities and frequent floods: Correlation between urban expansion patterns and urban flood hazards. Sustainability, 15(3), Article 2514. https://doi.org/10.3390/su15032514
Jodhani, K. H., Patel, D., Madhavan, N., Gupta, N., Singh, S. K., & Rathnayake, U. (2024). Unravelling flood risk in the Rel River watershed, Gujarat using coupled earth observations, multi criteria decision making and Google Earth Engine. Results in Engineering, 24, Article 102836. https://doi.org/10.1016/j.rineng.2024.102836
Karamouz, M., & Farzaneh, H. (2020). Margin of safety based flood reliability evaluation of wastewater treatment plants: Part 2–Quantification of reliability attributes. Water Resources Management, 34(6), 2043–2059. https://doi.org/10.1007/s11269-020-02543-2
Karamouz, M., Farzaneh, H., & Dolatshahi, M. (2020). Margin of safety based flood reliability evaluation of wastewater treatment plants: Part 1–Basic concepts and statistical settings. Water Resources Management, 34(2), 579–594. https://doi.org/10.1007/s11269-019-02465-8
Karamouz, M., & Hojjat-Ansari, A. (2020). Uncertainty based budget allocation of wastewater infrastructures’ flood resiliency considering interdependencies. Journal of Hydroinformatics, 22(4), 768–792. https://doi.org/10.2166/hydro.2020.145
Karamouz, M., Movahhed, M., & Elyasi, A. H. (2023). Financial allocation and network recovery for interdependent wastewater treatment infrastructure: Development of resilience metrics. Sustainable and Resilient Infrastructure, 8(S1), 262–288. https://doi.org/10.1080/23789689.2022.2148447
Karamouz, M., Rasoulnia, E., Olyaei, M. A., & Zahmatkesh, Z. (2018). Prioritizing investments in improving flood resilience and reliability of wastewater treatment infrastructure. Journal of Infrastructure Systems, 24(4), Article 04018021. https://doi.org/https://doi.org/10.1061/(ASCE)IS.1943-555X.0000434
Khan, S. A., Chaabane, A., & Dweiri, F. (2019). A knowledge-based system for overall supply chain performance evaluation: A multi-criteria decision making approach. Supply Chain Management, 24(3), 377–396. https://doi.org/10.1108/SCM-06-2017-0197
Khiavi, A. N., Vafakhah, M., & Sadeghi, H. (2023a). Application of participatory approach in identifying critical sub-watersheds based on flood generation potential in the Cheshmeh-Kileh Watershed, Mazandaran Province. Water and Soil Management and Modeling, 3(3), 90–107. https://doi.org/10.22098/mmws.2022.11570.1142
Khiavi, A. N., Vafakhah, M., & Sadeghi, S. H. (2023b). Flood-based critical sub-watershed mapping: Comparative application of multi-criteria decision making methods and hydrological modeling approach. Stochastic Environmental Research and Risk Assessment, 37(7), 2757–2775. https://doi.org/10.1007/s00477-023-02417-0
Khosravi, K., Shahabi, H., Pham, B. T., Adamowski, J., Shirzadi, A., Pradhan, B., Dou, J., Ly, H.-B., Grof, G., Ho, H. L., Hong, H., Chapi, K., & Prakash, I. (2019). A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311–323. https://doi.org/10.1016/j.jhydrol.2019.03.073
Lella, L., Oses-Eraso, N., & Stamos, I. (2024). Pioneering a sustainable development goals monitoring framework for European regions. Ecological Indicators, 166, Article 112248. https://doi.org/10.1016/J.ECOLIND.2024.112248
Leta, B. M., & Adugna, D. (2023). Identification and mapping of flood-prone areas using GIS-based multi-criteria decision-making and analytical hierarchy process: The case of Adama City’s watershed, Ethiopia. Applied Geomatics, 15(4), 933–955. https://doi.org/10.1007/s12518-023-00532-9
LiangYan, M. A., Ali, M. H., & Said, R. M. (2024). A bibliometric analysis of balanced scorecard research with higher education by Vosviewer. Pakistan Journal of Life and Social Sciences, 22(2), 100930–100940. https://doi.org/10.57239/PJLSS-2024-22.2.00825
Ligon, E., & Schechter, L. (2003). Measuring vulnerability. Economic Journal, 113(486), C95–C102. https://doi.org/10.1111/1468-0297.00117
Liu, J., Fu, J., Qin, J., Su, B., & Hong, Y. (2024). Effects of climate variability and urbanization on spatiotemporal patterns of vegetation in the middle and lower Yangtze River Basin, China. Frontiers in Plant Science, 15, Article 1459058. https://doi.org/10.3389/FPLS.2024.1459058
Lu, S., Huang, J., & Wu, J. (2023). Multi-dimensional urban flooding impact assessment leveraging social media data: A case study of the 2020 Guangzhou rainstorm. Water, 15(24), Article 4296. https://doi.org/10.3390/w15244296
Lyu, H.-M., & Yin, Z.-Y. (2023). An improved MCDM combined with GIS for risk assessment of multi-hazards in Hong Kong. Sustainable Cities and Society, 91, Article 104427. https://doi.org/10.1016/j.scs.2023.104427
Ma, M., Gao, Q., Xiao, Z., Hou, X., Hu, B., Jia, L., & Song, W. (2023). Analysis of public emotion on flood disasters in southern China in 2020 based on social media data. Natural Hazards, 118(2), 1013–1033. https://doi.org/10.1007/s11069-023-06033-7
Mahmoodi, E., Azari, M., & Dastorani, M. T. (2023). Comparison of different objective weighting methods in a multi-criteria model for watershed prioritization for flood risk assessment using morphometric analysis. Journal of Flood Risk Management, 16(2), Article e12894. https://doi.org/10.1111/jfr3.12894
Mahmoodi, E., Azari, M., Dastorani, M. T., & Salvati, A. (2024). Comparison of hydrological modeling, artificial neural networks and multi-criteria decision making approaches for determining flood source areas. Water Resources Management, 38(13), 5343–5363. https://doi.org/10.1007/s11269-024-03917-6
Mandal, K. K., Dharanirajan, K., Meena, M. L., Jaman, T., & Rana, S. (2024). Application of geospatial tools in the assessment of flood hazard impact on social vulnerability of Malda district, West Bengal, India. Natural Hazards Research, 4(3), 470–485. https://doi.org/10.1016/j.nhres.2023.11.008
Mani, M., Bozorg-Haddad, O., & Loaiciga, H. (2019). A new framework for the optimal management of urban runoff with low-impact development stormwater control measures considering service-performance reduction. Journal of Hydroinformatics, 21(5), 727–744. https://doi.org/10.2166/hydro.2019.126
Mariane, I., Albani, A., Saputra, A. M. A., Firdaus, W., Widjaja, W., & Rahim, R. (2024). Prioritizing smart city technologies using ELECTRE multi-criteria decision analysis. Informatics and Service Science, 11(4), 126–139. https://doi.org/10.33168/JLISS.2024.0408
Meijering, J. V., Tobi, H., & Kern, K. (2018). Defining and measuring urban sustainability in Europe: A Delphi study on identifying its most relevant components. Ecological Indicators, 90, 38–46. https://doi.org/10.1016/j.ecolind.2018.02.055
Mitra, R., & Das, J. (2023). A comparative assessment of flood susceptibility modelling of GIS-based TOPSIS, VIKOR, and EDAS techniques in the Sub-Himalayan foothills region of Eastern India. Environmental Science and Pollution Research, 30(6), 16036–16067. https://doi.org/10.1007/s11356-022-23168-5
Mladineo, N., Mladineo, M., Benvenuti, E., Kekez, T., & Nikolić, Ž. (2022). Methodology for the assessment of multi-hazard risk in urban homogenous zones. Applied Sciences, 12(24), Article 12843. https://doi.org/10.3390/app122412843
Moghadas, M., Asadzadeh, A., Vafeidis, A., Fekete, A., & Kötter, T. (2019). A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. International Journal of Disaster Risk Reduction, 35, Article 101069. https://doi.org/10.1016/j.ijdrr.2019.101069
Mooselu, M. G., Nikoo, M. R., Rayani, N. B., & Izady, A. (2019). Fuzzy multi-objective simulation-optimization of stepped spillways considering flood uncertainty. Water Resources Management, 33(7), 2261–2275. https://doi.org/10.1007/s11269-019-02263-2
Moradian, S., Coleman, L., Kazmierczak, B., & Olbert, A. I. (2024). How to choose the most proper representative climate model over a study region? A case study of precipitation simulations in Ireland with NEX-GDDP-CMIP6 data. Water Resources Management, 38(1), 215–234. https://doi.org/10.1007/s11269-023-03665-z
Mudashiru, R. B., Sabtu, N., Abdullah, R., Saleh, A., & Abustan, I. (2022). Optimality of flood influencing factors for flood hazard mapping: An evaluation of two multi-criteria decision-making methods. Journal of Hydrology, 612(A), Article 128055. https://doi.org/10.1016/j.jhydrol.2022.128055
Mutambik, I. (2024). The sustainability of smart cities: Improving evaluation by combining MCDA and PROMETHEE. Land, 13(9), Article 1471. https://doi.org/10.3390/land13091471
Nasiri Khiavi, A., Vafakhah, M., & Sadeghi, S. H. (2023). Flood-based critical sub-watershed mapping: Comparative application of multi-criteria decision making methods and hydrological modeling approach. Stochastic Environmental Research and Risk Assessment, 37(7), 2757–2775. https://doi.org/10.1007/s00477-023-02417-0
Naubi, I., Zardari, N. H., Shirazi, S. M., Roslan, N. A., Yusop, Z., & Haniffah, M. R. B. M. (2017). Ranking of Skudai river sub-watersheds from sustainability indices – Application of PROMETHEE method. International Journal of Geomate, 12(29), 124–131. https://doi.org/10.21660/2017.29.24734
Nazari, A., Roozbahani, A., & Shahdany, S. M. H. (2023). Integrated SUSTAIN-SWMM-MCDM approach for optimal selection of LID practices in urban stormwater systems. Water Resources Management, 37(9), 3769–3793. https://doi.org/10.1007/s11269-023-03526-9
Negese, A., Worku, D., Shitaye, A., & Getnet, H. (2022). Potential flood-prone area identification and mapping using GIS-based multi-criteria decision-making and analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Applied Water Science, 12(12), Article 255. https://doi.org/10.1007/s13201-022-01772-7
Nematollahi, B., Nikoo, M. R., Gandomi, A. H., Talebbeydokhti, N., & Rakhshandehroo, G. R. (2022). A multi-criteria decision-making optimization model for flood management in reservoirs. Water Resources Management, 36(13), 4933–4949. https://doi.org/10.1007/s11269-022-03284-0
Nungula, E. Z., Massawe, B. J., Chappa, L. R., Nhunda, D. M., Seleiman, M. F., Ali, N., & Gitari, H. I. (2024). Multicriteria land suitability assessment for cassava and bean production using integration of GIS and AHP. Cogent Food & Agriculture, 10(1), Article 2333316. https://doi.org/10.1080/23311932.2024.2333316
Nyarko, I. K. (2024). Exploring the likely impacts of April 2024 Dubai floods on Ghana’s trade and economic outlook: Addressing the challenges and forging new directions: A literature review. Journal of Economics, Management and Trade, 30(6), 107–117. https://doi.org/10.9734/JEMT/2024/V30I61217
Padli, J., Habibullah, M. S., & Baharom, A. H. (2010). Economic impact of natural disasters’ fatalities. International Journal of Social Economics, 37(6), 429–441. https://doi.org/10.1108/03068291011042319
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372, Article 71. https://doi.org/10.1136/bmj.n71
Qin, J., Li, M., Wang, X., & Pedrycz, W. (2024). Collaborative emergency decision-making: A framework for deep learning with social media data. International Journal of Production Economics, 267, Article 109072. https://doi.org/10.1016/j.ijpe.2023.109072
Rahat, R., Pradhananga, P., Muller, C. C., & Elzomor, M. (2023). Multi-criteria evaluation of Safe-to-Fail flood solution alternatives for developing resilient coastal cities. Sustainable and Resilient Infrastructure, 8(6), 610–625. https://doi.org/10.1080/23789689.2023.2257503
Rane, N. L., Achari, A., Choudhary, S. P., Mallick, S. K., Pande, C. B., Srivastava, A., & Moharir, K. N. (2023). A decision framework for potential dam site selection using GIS, MIF and TOPSIS in Ulhas River basin, India. Journal of Cleaner Production, 423, Article 138890. https://doi.org/10.1016/j.jclepro.2023.138890
Romano, G., Bernardini, G., Quagliarini, E., & D’Orazio, M. (2024). Flood risk in historic built environments: How do safe human behaviours matter? In Reuso 2024: Documentazione, restauro e rigenerazione sostenibile del patrimonio costruito (pp. 975–983). PUBLICA. https://iris.univpm.it/handle/11566/336974
Roushan, A., Das, A., Dutta, A., Senapati, T., & Bera, U. K. (2024). Multi-objective supply chain model with multiple levels of transit and vulnerable zone detection implementing hexagonal defuzzification: A case study of 2022 Assam flood. Engineering Applications of Artificial Intelligence, 133, Article 108183. https://doi.org/10.1016/j.engappai.2024.108183
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15(3), 234–281. https://doi.org/10.1016/0022-2496(77)90033-5
Sahraei, R., Kanani-Sadat, Y., Homayouni, S., Safari, A., Oubennaceur, K., & Chokmani, K. (2023). A novel hybrid GIS-based multi-criteria decision-making approach for flood susceptibility analysis in large ungauged watersheds. Journal of Flood Risk Management, 16(2), Article e12879. https://doi.org/10.1111/jfr3.12879
Samadi, S. (2022). The convergence of AI, IoT, and big data for advancing flood analytics research. Frontiers in Water, 4, Article 786040. https://doi.org/10.3389/frwa.2022.786040
Shahiri Tabarestani, E., & Afzalimehr, H. (2021). Artificial neural network and multi-criteria decision-making models for flood simulation in GIS: Mazandaran Province, Iran. Stochastic Environmental Research and Risk Assessment, 35(12), 2439–2457. https://doi.org/10.1007/s00477-021-01997-z
Shahiri Tabarestani, E. S., Hadian, S., Pham, Q. B., Ali, S. A., & Phung, D. T. (2023). Flood potential mapping by integrating the bivariate statistics, multi-criteria decision-making, and machine learning techniques. Stochastic Environmental Research and Risk Assessment, 37(4), 1415–1430. https://doi.org/10.1007/s00477-022-02342-8
Sheehan, J., & Brown, J. (2021). Flood risk management: Property rights-focussed instruments in Australia. Environmental Science & Policy, 119, 12–17. https://doi.org/10.1016/J.ENVSCI.2020.11.008
Shaikh, M. P., Yadav, S. M., & Manekar, V. L. (2024). Flood hazards mapping by linking CF, AHP, and Fuzzy Logic techniques in urban areas. Natural Hazards Review, 25(1), Article 04023048. https://doi.org/10.1061/NHREFO.NHENG-1716
Soebroto, A. A., Limantara, L. M., Suhartanto, E., & Sholichin, M. (2024). Modelling of flood hazard early warning group decision support system. Civil Engineering Journal-Tehran, 10(2), 614–627. https://doi.org/10.28991/CEJ-2024-010-02-018
Song, J. Y., & Chung, E.-S. (2016). Robustness, uncertainty and sensitivity analyses of the TOPSIS method for quantitative climate change vulnerability: A case study of flood damage. Water Resources Management, 30(13), 4751–4771. https://doi.org/10.1007/s11269-016-1451-2
Statista. (n.d.-a). Economic damage due to river flooding in the European Union in 2020 and 2100, by adaptation and warming scenario. Retrieved January 7, 2025, from https://www.statista.com/statistics/1340392/economic-damage-due-to-river-floods-by-scenario-eu/
Statista. (n.d.-b). Number of flood disasters worldwide from 1990 to 2023. Retrieved November 23, 2024, from https://www.statista.com/statistics/1339730/number-of-flood-disasters-worldwide/
Sun, R., Gong, Z., Gao, G., & Shah, A. A. (2020). Comparative analysis of multi-criteria decision-making methods for flood disaster risk in the Yangtze River delta. International Journal of Disaster Risk Reduction, 51, Article 101768. https://doi.org/10.1016/j.ijdrr.2020.101768
Sutradhar, H. (2023). Flood vulnerability assessment of Siddheswari River basin, Eastern India: A GIS-based multi-criteria decision-making approach. GeoJournal, 88(6), 5907–5929. https://doi.org/10.1007/s10708-023-10948-w
Tabatabaee, S., Mahdiyar, A., Mohandes, S. R., & Ismail, S. (2022). Towards the development of a comprehensive lifecycle risk assessment model for green roof implementation. Sustainable Cities and Society, 76, Article 103404. https://doi.org/10.1016/j.scs.2021.103404
Tanguay, G. A., Rajaonson, J., Lefebvre, J. F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological Indicators, 10(2), 407–418. https://doi.org/10.1016/j.ecolind.2009.07.013
ten Bosch, S., Ravera, E., & Laloui, L. (2024). Performance of energy piles foundation in hot-dominated climate: A case study in Dubai. Renewable Energy, 220, Article 119632. https://doi.org/10.1016/j.renene.2023.119632
Thammaboribal, P., Triapthti, N. K., & Lipiloet, S. (2025). Using of analytical hierarchy process (AHP) in disaster management: A review of flooding and landslide susceptibility mapping. International Journal of Geoinformatics, 21(4), 177–196. https://doi.org/10.52939/ijg.v21i4.4091
Tian, W., Cai, R., Fang, Z., Xie, Q., Hu, Z., & Wang, X. (2024). Research funding in different SCI disciplines: A comparison analysis based on Web of Science. Quantitative Science Studies, 5(3), 757–777. https://doi.org/10.1162/QSS_A_00315
Ullah, N., Tariq, A., Qasim, S., Panezai, S., Uddin, Md. G., Abdullah-Al-Wadud, M., & Ullah, S. (2024). Geospatial analysis and AHP for flood risk mapping in Quetta, Pakistan: A tool for disaster management and mitigation. Applied Water Science, 14, Article 236. https://doi.org/10.1007/S13201-024-02293-1
United Nations Office for Disaster Risk Reduction. (n.d.). Vulnerability. Retrieved November 23, 2024, from https://www.undrr.org/terminology/vulnerability
Upadhyay, P., & Patel, J. N. (2022). Delineation of flood risk zones in Jodhpur District, Rajasthan, India using remote sensing, GIS and multi-criteria decision making techniques. International Journal of Hydrology Science and Technology, 14(4), 406–420. https://doi.org/10.1504/IJHST.2022.126429
Velasquez, M., & Hester, P. T. (2013). An analysis of multi-criteria decision making methods. International Journal of Operations Research, 10(2), 56–66.
Visser, M., van Eck, N. J., & Waltman, L. (2021). Large-scale comparison of bibliographic data sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft academic. Quantitative Science Studies, 2(1), 20–41. https://doi.org/10.1162/qss_a_00112
Voogd, J. H. (1982). Multicriteria evaluation for urban and regional planning [Phd thesis 1 (Research TU/e / Graduation TU/e), Built Environment]. Delftse Uitgeversmaatschappij. https://pure.tue.nl/ws/files/3744610/102252.pdf
Wang, W., Zhu, X., Lu, P., Zhao, Y., Chen, Y., & Zhang, S. (2024). Spatio-temporal evolution of public opinion on urban flooding: Case study of the 7.20 Henan extreme flood event. International Journal of Disaster Risk Reduction, 100, Article 104175. https://doi.org/10.1016/j.ijdrr.2023.104175
Wang, Y., Hong, H., Chen, W., Li, S., Pamucar, D., Gigovic, L., Drobnjak, S., Bui, D. T., & Duan, H. (2019). A hybrid GIS multi-criteria decision-making method for flood susceptibility mapping at Shangyou, China. Remote Sensing, 11(1), Article 62. https://doi.org/10.3390/rs11010062
Webber, J. L., Chen, A. S., Stevens, J., Henderson, R., Djordjević, S., & Evans, B. (2021). Targeting property flood resilience in flood risk management. Journal of Flood Risk Management, 14(3), Article e12723. https://doi.org/10.1111/jfr3.12723
Webber, M. K., & Samaras, C. (2022). A review of decision making under deep uncertainty applications using green infrastructure for flood management. Earth’s Future, 10(7), Article e2021EF002322. https://doi.org/10.1029/2021EF002322
Wei, W., Huang, S., Qin, H., Yu, L., & Mu, L. (2024). Storm surge risk assessment and sensitivity analysis based on multiple criteria decision-making methods: A case study of Huizhou City. Frontiers in Marine Science, 11, Article 1364929. https://doi.org/10.3389/fmars.2024.1364929
Xu, C., Zhong, P., Zhu, F., Li, L., Lu, Q., & Yang, L. (2023). Stochastic multi-criteria decision making framework based on SMAA-VIKOR for reservoir flood control operation. Hydrological Sciences Journal, 68(6), 886–901. https://doi.org/10.1080/02626667.2022.2154161
Yan, H.-B., Huynh, V.-N., & Nakamori, Y. (2011). A probabilistic model for linguistic multi-expert decision making involving semantic overlapping. Expert Systems with Applications, 38(7), 8901–8912. https://doi.org/10.1016/j.eswa.2011.01.105
Yang, W., & Zhang, J. (2021). Assessing the performance of gray and green strategies for sustainable urban drainage system development: A multi-criteria decision-making analysis. Journal of Cleaner Production, 293, Article 126191. https://doi.org/10.1016/j.jclepro.2021.126191
Yang, Z., Yang, K., Wang, Y., Su, L., & Hu, H. (2019). The improved multi-criteria decision-making model for multi-objective operation in a complex reservoir system. Journal of Hydroinformatics, 21(5), 851–874. https://doi.org/10.2166/hydro.2019.150
Yoon, D. K. (2012). Assessment of social vulnerability to natural disasters: A comparative study. Natural Hazards, 63(2), 823–843. https://doi.org/10.1007/s11069-012-0189-2
You, C., Awang, S. R., & Wu, Y. (2024). Bibliometric analysis of global research trends on higher education leadership development using Scopus database from 2013–2023. Discover Sustainability, 5(1), 1–20. https://doi.org/10.1007/S43621-024-00432-x
Yu, D., & Ye, T. (2025). Uncovering the academic evolution of VIKOR method: A comprehensive main path analysis. Journal of the Operational Research Society, 76(2), 393–409. https://doi.org/10.1080/01605682.2024.2359726
Zagonari, F., & Rossi, C. (2013). A heterogeneous multi-criteria multi-expert decision-support system for scoring combinations of flood mitigation and recovery options. Environmental Modelling and Software, 49, 152–165. https://doi.org/10.1016/j.envsoft.2013.08.004
Zander, K. K., Nguyen, D., Mirbabaie, M., & Garnett, S. T. (2023). Aware but not prepared: Understanding situational awareness during the century flood in Germany in 2021. International Journal of Disaster Risk Reduction, 96, Article 103936. https://doi.org/10.1016/j.ijdrr.2023.103936
Zewdu, D., Krishnan, C. M., Raj, P. P. N., Makadi, Y. C., & Arlikatti, S. (2024). Assessing climate change risks using multi-criteria decision-making (MCDM) techniques in Raichur Taluk, Karnataka, India. Stochastic Environmental Research and Risk Assessment, 38(11), 4501–4526. https://doi.org/10.1007/s00477-024-02816-x
Zhu, F., Zhong, P., & Sun, Y. (2018). Multi-criteria group decision making under uncertainty: Application in reservoir flood control operation. Environmental Modelling & Software, 100, 236–251. https://doi.org/10.1016/j.envsoft.2017.11.032
Zhu, F., Zhong, P., Sun, Y., & Xu, B. (2017a). Selection of criteria for multi-criteria decision making of reservoir flood control operation. Journal of Hydroinformatics, 19(4), 558–571. https://doi.org/10.2166/hydro.2017.059
Zhu, F., Zhong, P., Wu, Y., Sun, Y., Chen, J., & Jia, B. (2017b). SMAA-based stochastic multi-criteria decision making for reservoir flood control operation. Stochastic Environmental Research and Risk Assessment, 31(6), 1485–1497. https://doi.org/10.1007/s00477-016-1253-3
Zhu, F., Zhong, P., Xu, B., Wu, Y., & Zhang, Y. (2016). A multi-criteria decision-making model dealing with correlation among criteria for reservoir flood control operation. Journal of Hydroinformatics, 18(3), 531–543. https://doi.org/10.2166/hydro.2015.055
Zhu, H., & Liu, F. (2021). A group-decision-making framework for evaluating urban flood resilience: A case study in Yangtze River. Sustainability, 13(2), Article 665. https://doi.org/10.3390/su13020665
Ziarh, G. F., Asaduzzaman, M., Dewan, A., Nashwan, M. S., & Shahid, S. (2021). Integration of catastrophe and entropy theories for flood risk mapping in peninsular Malaysia. Journal of Flood Risk Management, 14(1), Article e12686. https://doi.org/10.1111/jfr3.12686
Zorn, M. (2018). Natural disasters and less developed countries. Perspectives on Geographical Marginality, 3, 59–78. https://doi.org/10.1007/978-3-319-59002-8_4
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.