Forecasting pandemic-induced changes in real estate market values through machine learning approaches

DOI: https://doi.org/10.3846/ijspm.2025.24063

Abstract

In this study, a new temporal segmentation method is used to forecasting the real estate market based on the structural and spatial attributes of 676 houses in Niğde, Türkiye, from the years 2019 to 2022. Artificial Neural Networks (ANN), Random Forest (RF), Decision Tree (DT), and K-Nearest Neighbours (KNN) were employed for model development and comparative performance analysis. According to the results, the ANN model that used temporal variables showed the most successful performance by achieving the highest R2 for 2019 (1. period: 0.979, 2. period: 0.990, 3. period: 0.914, 4. period: 0.831) and 2022 (1. period: 0.971, 2. period: 0.975, 3. period: 0.586, 4. period: 0.896) scores. Additionally, the COD values (5%–10%) and PRD values (0.98 to 1.03) remained within the acceptable range, further validating the model’s reliability. RF model showed more effective performance than other models by achieving the highest R2: 0.510 for 2019 and R2: 0.509 for 2022 when temporal variables were excluded. These findings highlight the importance of integrating time-sensitive parameters into valuation models to improve forecast accuracy and robustness. The study offers a replicable, flexible methodology for crisis-responsive valuation, providing valuable insights for policymakers, investors, and urban planners aiming to mitigate risks and enhance resilience in real estate market decision-making.

Keywords:

real estate valuation, pandemic, valuation criteria, time modelling, geographic information system, machine learning techniques

How to Cite

Ulucan, A. G., Bozdağ, A., Karakoyun, M., & Alkan, T. (2025). Forecasting pandemic-induced changes in real estate market values through machine learning approaches. International Journal of Strategic Property Management, 29(3), 196–214. https://doi.org/10.3846/ijspm.2025.24063

Share

Published in Issue
July 14, 2025
Abstract Views
25

References

Akçetin, E., & Çelik, U. (2014). İstenmeyen elektronik posta (spam) tespitinde karar ağacı algoritmalarının performans kıyaslaması [The performance benchmark of decision tree algorithms for spam e-mail detection]. Internet Uygulamaları ve Yönetimi Dergisi, 5(2), 43–56. https://doi.org/10.5505/iuyd.2014.43531

Alkan, T., & Durduran, S. S. (2020). Konut seçimi sürecinin AHP temelli TOPSIS yöntemi ile analizi [Analysis of house selection process with AHP based TOPSIS method]. Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 2(2), 12–21. https://doi.org/10.47112/neufmbd.2020.2

Alkan, T., Dokuz, Y., Ecemiş, A., Bozdağ, A., & Durduran, S. S. (2023). Using machine learning algorithms for predicting real estate values in tourism centers. Soft Computing, 27(5), 2601–2613. https://doi.org/10.1007/s00500-022-07579-7

Aydınoğlu, A. Ç., Bovkır, R., & Çölkesen, İ. (2023). Toplu taşınmaz değerlemede makine öğrenme algoritmalarının kullanımı ve konumsal/konumsal olmayan özniteliklerin tahmin doğruluğuna etkilerinin karşılaştırılması [Using machine learning algorithms in mass valuation and comparing the effects of geographical/nongeographical features on prediction accuracy]. Jeodezi ve Jeoinformasyon Dergisi, 10(1), 63–83. https://doi.org/10.9733/JGG.2023R0005.T

Baldominos, A., Blanco, I., Moreno, A. J., Iturrarte, R., Bernárdez, Ó., & Afonso, C. (2018). Identifying real estate opportunities using machine learning. Applied Sciences, 8(11), Article 2321. https://doi.org/10.3390/app8112321

Barut, Z., & Bilgin, T. T. (2023). Konut fiyatlarının tahmini için polinomsal regresyon ve yapay sinir ağları yöntemlerinin uygulamalı karşılaştırılması [Applied comparison of polynomial regression and artificial neural networks methods for prediction of house prices]. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, 27(1), 152–159. https://doi.org/10.19113/sdufenbed.1190150

Başer, V., Bıyık, C., Uzun, B., Yıldırım, V., & Nişancı, R. (2016). A recommendation of decision-support model based on geographical information systems for generating real estate evaluation maps: Kaşüstü/Trabzon example. Sigma Journal of Engineering and Natural Sciences, 34(3), 349–363.

Baur, K., Rosenfelder, M., & Lutz, B. (2023). Automated real estate valuation with machine learning models using property descriptions. Expert Systems with Applications, 213, Article 119147. https://doi.org/10.1016/j.eswa.2022.119147

Bilgilioğlu, S. S. (2018). Makine öğrenmesi teknikleri ile mekansal karar destek sistemlerinin geliştirilmesi: Aksaray ili örneği [Development of spatial decision support systems with machine learning techniques: Case of Aksaray province] [Doctoral dissertation, Aksaray University]. Aksaray, Turkey.

Boğar, E., & Özsüt Boğar, Z. (2017). Türkiye’nin sektörel CO2 gazı salınımlarının yapay sinir ağları ile tahmini [Forecasting of Turkey’s sectoral CO2 gas emissions by artificial neural networks]. Akademia Disiplinlerarası Bilimsel Araştırmalar Dergisi, 3(2), 15–27.

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. CRC Press.

Calainho, F. D., van de Minne, A. M., & Francke, M. K. (2024). A machine learning approach to price indices: Applications in commercial real estate. Journal of Real Estate Finance and Economics, 68(4), 624–653. https://doi.org/10.1007/s11146-022-09893-1

Chen, J., Li, K., Tang, Z., Bilal, K., Yu, S., Weng, C., & Li, K. (2016). A parallel random forest algorithm for big data in a spark cloud computing environment. IEEE Transactions on Parallel and Distributed Systems, 28(4), 919–933. https://doi.org/10.1109/TPDS.2016.2603511

Chou, J. S., Fleshman, D. B., & Truong, D. N. (2022). Comparison of machine learning models to provide preliminary forecasts of real estate prices. Journal of Housing and the Built Environment, 37(4), 2079–2114. https://doi.org/10.1007/s10901-022-09937-1

Cover, T. M., & Thomas, J. A. (1991). Network information theory. In Elements of information theory (pp. 374–458). John Wiley & Sons, Inc.

Demirel, B., Yelek, A., Alağaş, H. M., & Eren, T. (2018). Taşınmaz değerleme kriterlerinin belirlenmesi ve kriterlerin önem derecelerinin çok ölçütlü karar verme yöntemi ile hesaplanması [Determination of criteria for immovable valuation and calculation weights of criteria with multicriteria decision making method]. Kırıkkale University Journal of Social Sciences, 8(2), 665–682.

Demirel, Ş. (2019). Karar ağacı algoritmaları ve çocuk işçiliği üzerine bir uygulama [Decision tree algorithms and an application on child labor] [Master’s dissertation, Marmara University]. İstanbul, Turkey.

Dilki, G., & Başar, Ö. D. (2020). İşletmelerin iflas tahmininde k-en yakın komşu algoritması üzerinden uzaklık ölçütlerinin karşılaştırılması [Comparison study of distance measures using k-nearest neighbor algorithm on bankruptcy prediction]. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 19(38), 224–233.

Dimopoulos, T., & Bakas, N. (2019). Sensitivity analysis of machine learning models for the mass appraisal of real estate. Case study of residential units in Nicosia, Cyprus. Remote Sensing, 11(24), Article 3047. https://doi.org/10.3390/rs11243047

Erdem, N. (2018). Türkiye taşınmaz değerleme sisteminin yeniden yapılandırılmasına yönelik bilimsel çalışma ve öneriler üzerine bir değerlendirme [An evaluation on scientific study and recommendations for restructuring the Turkish immovable valuation system]. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 7(1), 159–170. https://doi.org/10.28948/ngumuh.386408

Fırat, M., & Güngör, M. (2004). Askı madde konsantrasyonu ve miktarının yapay sinir ağları ile belirlenmesi [Determination of carried suspended sediment concentration and amount by artificial neural networks]. İMO Teknik Dergi, 15(3), 3267–3282.

Foody, G. M. (1995). Using prior knowledge in artificial neural network classification with a minimal training set. Remote Sensing, 16(2), 301–312. https://doi.org/10.1080/01431169508954396

Gao, Q., Shi, V., Pettit, C., & Han, H. (2022). Property valuation using machine learning algorithms on statistical areas in Greater Sydney, Australia. Land Use Policy, 123, Article 106409. https://doi.org/10.1016/j.landusepol.2022.106409

Genc, N., Colak, H. E., & Ozbilgin, F. (2025). Spatial performance approach to machine learning algorithms: A GIS‐based comparison analysis for real estate valuation. Transactions in GIS, 29, Article e13303. https://doi.org/10.1111/tgis.13303

Grybauskas, A., Pilinkienė, V., & Stundžienė, A. (2021). Predictive analytics using Big Data for the real estate market during the COVID-19 pandemic. Journal of Big Data, 8, Article 105. https://doi.org/10.1186/s40537-021-00476-0

Güvenç, E., Çetin, G., & Koçak, H. (2021). Comparison of KNN and DNN classifiers performance in predicting mobile phone price Ranges. Advances in Artificial Intelligence Research, 1(1), 19–28.

Hernes, M., Tutak, P., Nadolny, M., & Mazurek, A. (2024). Real estate valuation using machine learning. Procedia Computer Science, 246, 4592–4599. https://doi.org/10.1016/j.procs.2024.09.323

Hoesli, M., & Malle, R. (2022). Commercial real estate prices and COVID-19. Journal of European Real Estate Research, 15(2), 295–306. https://doi.org/10.1108/JERER-04-2021-0024

Hoxha, V. (2025). Comparative analysis of machine learning models in predicting housing prices: A case study of Prishtina’s real estate market. International Journal of Housing Markets and Analysis, 18(3), 694–711. https://doi.org/10.1108/IJHMA-09-2023-0120

Hu, L. Y., Huang, M. W., Ke, S. W., & Tsai, C. F. (2016). The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus, 5, Article 1304. https://doi.org/10.1186/s40064-016-2941-7

Iban, M. C. (2023). The use of explainable artificial intelligence (XAI) techniques in mass appraisal of properties. In 3rd International Conference on Real Estate Development and Management (pp. 1–17). Ankara, Turkey. https://doi.org/10.1109/DTPI59677.2023.10365455

International Association of Assessing Officers. (2013). Standard on ratio studies. https://www.iaao.org/wp-content/uploads/Standard_on_Ratio_Studies.pdf

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial neural networks: A tutorial. Computer, 29(3), 31–44. https://doi.org/10.1109/2.485891

Kaklauskas, A., Zavadskas, E. K., Lepkova, N., Raslanas, S., Dauksys, K., Vetloviene, I., & Ubarte, I. (2021). Sustainable construction investment, real estate development, and COVID-19: A review of literature in the field. Sustainability, 13(13), Article 7420. https://doi.org/10.3390/su13137420

Karthika, K., Balasubramanie, P., Dharshini, K., Shanmugapriya, P., & Ramya, T. E. (2024, June). Harnessing artificial neural network model to anticipate housing market rates. In 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (pp. 1–8). IEEE. https://doi.org/10.1109/ICCCNT61001.2024.10723986

Kavzoğlu, T., & Çölkesen, İ. (2010). Destek vektör makineleri ile uydu görüntülerinin sınıflandırılmasında kernel fonksiyonlarının etkilerinin incelenmesi [Investigation of the effects of kernel functions in satellite image classification using support vector machines]. Harita dergisi, 144(7), 73–82.

Kucklick, J.-P., Müller, J., Beverungen, D., & Mueller, O. (2021). Quantifying the impact of location data for real estate appraisal – A GIS-based deep learning approach. In Twenty-Ninth European Conference on Information Systems (ECIS) (pp. 1–12). https://aisel.aisnet.org/ecis2021_rip/23

Kunt, F. (2014). Bulanık mantık ve yapay sinir ağları yöntemleri kullanılarak Konya il merkezi hava kirliliği modellenmesi [Modelling of Konya city centre air pollution using artificial neural networks and fuzzy logic methods] [Doctoral dissertation, Selçuk University]. Konya, Turkey.

Kütük, Y. (2024). Multidimensional house price prediction with SOTA RNNs. International Journal of Strategic Property Management, 28(6), 411–423. https://doi.org/10.3846/ijspm.2024.22661

Lee, C. (2022). Forecasting spatially correlated targets: Simultaneous prediction of housing market activity across multiple areas. International Journal of Strategic Property Management, 26(2), 119–126. https://doi.org/10.3846/ijspm.2022.16786

Louati, A., Lahyani, R., Aldaej, A., Aldumaykhi, A., & Otai, S. (2022). Price forecasting for real estate using machine learning: A case study on Riyadh city. Concurrency and Computation: Practice and Experience, 34(6), Article e6748. https://doi.org/10.1002/cpe.6748

Mingers, J. (1989). An empirical comparison of pruning methods for decision tree Induction. Machine Learning, 4, 227–243. https://doi.org/10.1023/A:1022604100933

Moosavi, V. (2017). Urban data streams and machine learning: A case of Swiss real estate market. ArXiv Preprint ArXiv:1704.04979.

Mora-Garcia, R. T., Cespedes-Lopez, M. F., & Perez-Sanchez, V. R. (2022). Housing price prediction using machine learning algorithms in COVID-19 times. Land, 11(11), Article 2100. https://doi.org/10.3390/land11112100

Mursalin, M., Zhang, Y., Chen, Y., & Chawla, N. V. (2017). Automated epileptic seizure detection using improved correlation-based feature selection with random forest classifier. Neurocomputing, 241, 204–214. https://doi.org/10.1016/j.neucom.2017.02.053

Ngoc, N. M., Tien, N. H., & Anh, D. B. H. (2020). Opportunities and challenges for real estate brokers in post Covid-19 period. International Journal of Multidisciplinary Research and Growth Evaluation, 1(5), 81–87.

Özgüven, M., & Erenoğlu, R. C. (2020). Taşınmaz değer haritalarının coğrafi bilgi sistemleri ile üretilmesi: Çanakkale örneği [Production of real estate value maps with geographical information systems: The case of Çanakkale]. Jeodezi ve Jeoinformasyon Dergisi, 7(1), 29–46. https://doi.org/10.9733/JGG.2020R0003.T

Öztemel, E. (2003). Yapay sinir ağları [Artificial neural networks]. Papatya Yayıncılık.

Pai, P. F., & Wang, W. C. (2020). Using machine learning models and actual transaction data for predicting real estate prices. Applied Sciences, 10(17), Article 5832. https://doi.org/10.3390/app10175832

Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Systems with Applications, 42(6), 2928–2934. https://doi.org/10.1016/j.eswa.2014.11.040

Pekel, E. (2018). Farklı makine öğrenmesi algoritmalarının karşılaştırılması [Comparison of different machine learning algorithms] [Master’s dissertation, Ondokuz Mayıs University]. Samsun, Turkey.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. Morgan Kaufmann Publisher, Inc.

Rodriguez-Serrano, J. A. (2025). Prototype-based learning for real estate valuation: A machine learning model that explains prices. Annals of Operations Research, 344, 287–311. https://doi.org/10.1007/s10479-024-06273-1

Salman, O. K. M., & Aksoy, B. (2022). Rasgele orman ve ikili parçacık sürü zekâsı yöntemiyle kalp yetmezliği hastalığındaki ölüm riskinin tahminlenmesi [Forecasting the risk of death in heart failure disease by using random forest and binary particle swarm intelligence]. International Journal of 3D Printing Technologies and Digital Industry, 6(3), 416–428. https://doi.org/10.46519/ij3dptdi.982670

Savaş, B. (2019). Makine öğrenme algoritmalarının konut değer tahmininde kullanımı: Ankara Gölbaşı uygulaması [Usage of machine learning algorithms in housing value estimation: Ankara, Gölbaşı application] [Master’s dissertation, Konya Technical University]. Konya, Turkey.

Sesli, F. A. (2015). Creating real estate maps by using GIS: A case study of Atakum-Samsun/Turkey. Acta Montanistica Slovaca, 20(4), 260–270.

Sharma, H., Harsora, H., & Ogunleye, B. (2024). An optimal house price prediction algorithm: XGBoost. Analytics, 3(1), 30–45. https://doi.org/10.3390/analytics3010003

Tabar, M. E., Başara, A. C., & Şişman, Y. (2021). Çoklu regresyon ve yapay sinir ağları ile Tokat ilinde konut değerleme çalışması [Housing valuation study in Tokat province with multiple regression and artificial neural networks]. Türkiye Arazi Yönetimi Dergisi, 3(1), 1–7. https://doi.org/10.51765/tayod.832227

Tang, Y., Chang, Y., & Li, K. (2023). Applications of K-nearest neighbor algorithm in intelligent diagnosis of wind turbine blades damage. Renewable Energy, 212, 855–864. https://doi.org/10.1016/j.renene.2023.05.087

Tapia, J., Chavez-Garzon, N., Pezoa, R., Suarez-Aldunate, P., & Pilleux, M. (2025). Comparing automated valuation models for real estate assessment in the Santiago Metropolitan Region: A study on machine learning algorithms and hedonic pricing with spatial adjustments. PLoS ONE, 20(3), Article e0318701. https://doi.org/10.1371/journal.pone.0318701

Taşcı, E., & Onan, A. (2016). K-en yakın komşu algoritması parametrelerinin sınıflandırma performansı üzerine etkisinin incelenmesi [The investigation of performance effects of k-nearest neighbor algorithm parameters on classification]. Akademik Bilişim, 1(1), 4–18.

Tchuente, D., & Nyawa, S. (2022). Real estate price estimation in French cities using geocoding and machine learning. Annals of Operations Research, 308, 571–608. https://doi.org/10.1007/s10479-021-03932-5

Tekouabou, S. C., Gherghina, Ş. C., Kameni, E. D., Filali, Y., & Idrissi Gartoumi, K. (2024). AI-based on machine learning methods for urban real estate prediction: A systematic survey. Archives of Computational Methods in Engineering, 31, 1079–1095. https://doi.org/10.1007/s11831-023-10010-5

Türkan, M., Bozdağ, A., Karkınlı, A. E., & Ulucan, A. G. (2023). Kent ölçeğinde konutlara ilişkin toplu değer değişiminin makine öğrenim algoritmaları ile analizi [Analysis of the mass value change for housing at the urban scale using machine learning algorithms]. Türkiye Arazi Yönetimi Dergisi, 5(2), 66–77. https://doi.org/10.51765/tayod.1275671

Uşak, B. (2019). Konya otogar civarında emlak vergisine esas zemin değerinin tespiti [Determination of ground value based on real estate tax around Konya Bus Station] [Master’s dissertation, Konya Technical University]. Konya, Turkey.

Xu, X., & Zhang, Y. (2022). Second-hand house price index forecasting with neural networks. Journal of Property Research, 39(3), 215–236. https://doi.org/10.1080/09599916.2021.1996446

Yağmahan, G. (2019). Puanlama yöntemiyle taşınmaz değerlerinin belirlenmesi ve yaşam kalitesiyle ilişkisinin araştırılması [Estimation of the real-estate appraisal using scoring method and investigation of its relation with quality of life] [Master’s dissertation, Yıldız Teknik University]. İstanbul, Turkey.

Yao, Z., & Ruzzo, W. L. (2006). A regression-based K nearest neighbor algorithm for gene function prediction from heterogenous data. BMC Bioinformatics, 7(Suppl. 1), Article S11. https://doi.org/10.1186/1471-2105-7-S1-S11

Yilmazer, S., & Kocaman, S. (2020). A mass appraisal assessment study using machine learning based on multiple regression and random forest. Land Use Policy, 99, Article 104889. https://doi.org/10.1016/j.landusepol.2020.104889

Yomralıoğlu, B., Koçali, D., Şişman, S., & Aydınoğlu, A. Ç. (2022). Toplu taşınmaz değerlemesi otomasyonu için coğrafi analitik araçlarının geliştirilmesi: Pendik örneği [Development of geospatial analytic tools for mass real estate valuation automation: The case of Pendik] [Paper presentation]. IV. Uluslararası Türk Dünyası Fen Bilimleri ve Mühendislik Kongresi, Niğde, Turkey.

Zamri, N., Pairan, M. A., Azman, W. N. A. W., Abas, S. S., Abdullah, L., Naim, S., Tarmudi, Z., & Gao, M. (2022). River quality classification using different distances in k-nearest neighbors algorithm. Procedia Computer Science, 204, 180–186. https://doi.org/10.1016/j.procs.2022.08.022

Zhao, S. (2024). Applying machine learning and time series to predict real estate valuations. In Proceedings of the 2024 3rd International Conference on Artificial Intelligence, Internet and Digital Economy (ICAID 2024) (pp. 479–486). Springer Nature. https://doi.org/10.2991/978-94-6463-490-7_52

View article in other formats

CrossMark check

CrossMark logo

Published

2025-07-14

Issue

Section

Articles

How to Cite

Ulucan, A. G., Bozdağ, A., Karakoyun, M., & Alkan, T. (2025). Forecasting pandemic-induced changes in real estate market values through machine learning approaches. International Journal of Strategic Property Management, 29(3), 196–214. https://doi.org/10.3846/ijspm.2025.24063

Share