A house price valuation based on the random forest approach: the mass appraisal of residential property in South Korea

    Jengei Hong   Affiliation
    ; Heeyoul Choi   Affiliation
    ; Woo-sung Kim   Affiliation


Mass appraisal is the standardized procedure of valuing a large number of properties at the same time and is commonly used to compute real estate tax. While a hedonic pricing model based on the ordinary least squares (OLS) linear regression has been employed as the traditional method in this process, the stability and accuracy of the model remain questionable. This paper investigates the features of a house price predictor based on the Random Forest (RF) method by comparing it with that of a conventional hedonic pricing model. We used apartment transaction data from the period of 2006 to 2017 in the district of Gangnam, one of the most developed areas in South Korea. Using a data set covering 40% of all transactions in the sample area, we demonstrate that the accuracy of a machine learning-based predictor can be surprisingly high. The average of percentage deviations between the predicted and the actual market price was found to be only around 5.5% in the RF predictor, whereas it was almost 20% in the OLS-based predictor. With the RF predictor, the probability of the predicted price being within 5% of its actual market price was 72%, while only about 17.5% of the regression-based predictions fell within the same range. These results show that, in the practice of mass appraisal, the RF method may be a useful complement to the hedonic models, as it more adequately captures the complexity or non-linearity of actual housing markets.

First published online 03 February 2020

Keyword : housing price forecasting, hedonic pricing model, random forest approach, mass appraisal, apartment, machine learning technique

How to Cite
Hong, J., Choi, H., & Kim, W.- sung. (2020). A house price valuation based on the random forest approach: the mass appraisal of residential property in South Korea. International Journal of Strategic Property Management, 24(3), 140-152.
Published in Issue
Mar 17, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Adair, A., McGreal, S., Smyth, A., Cooper, J., & Ryley, T. (2000). House prices and accessibility: the testing of relationships within the Belfast urban area. Housing Studies, 15(5), 699-716.

Antipov, E. A., & Pokryshevskaya, E. B. (2012). Mass appraisal of residential apartments: an application of Random forest for valuation and a CART-based approach for model diagnostics. Expert Systems with Applications, 39(2), 1772-1778.

Benson, E. D., Hansen, J. L., Schwartz, A. L., & Smersh, G. T. (1998). Pricing residential amenities: the value of a view. Journal of Real Estate Finance and Economics, 16(1), 55-73.

Cannon, S. E., & Cole, R. A. (2011). How accurate are commercial real estate appraisals? Evidence from 25 years of NCREIF sales data. Journal of Portfolio Management, 37(5), 68-88.

Case, K. E., Quigley, J. M., & Shiller, R. J. (2005). Comparing wealth effects: the stock market versus the housing market. Advances in Macroeconomics, 5(1).

Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the performance of random forest versus multiple regression for predicting prices of the apartments. ISPRS International Journal of Geo-Information, 7(5), 168.

Chau, K. W., & Chin, T. L. (2003). A critical review of literature on the hedonic price model. International Journal for Housing Science and its Applications, 27(2), 145-165.

Chen, J. H., Ong, C. F., Zheng, L., & Hsu, S. C. (2017). Forecasting spatial dynamics of the housing market using Support Vector Machine. International Journal of Strategic Property Management, 21(3), 273-283.

Clauretie, T. M., & Neill, H. R. (2000). Year-round school schedules and residential property values. Journal of Real Estate Finance and Economics, 20(3), 311-322.

Darling, A. H. (1973). Measuring benefits generated by urban water parks. Land Economics, 49(1), 22-34.

Debrezion, G., Pels, E., & Rietveld, P. (2007). The impact of railway stations on residential and commercial property value: a meta-analysis. Journal of Real Estate Finance and Economics, 35(2), 161-180.

Downes, T. A., & Zabel, J. E. (2002). The impact of school characteristics on house prices: Chicago 1987–1991. Journal of Urban Economics, 52(1), 1-25.

Dubin, R. A., & Sung, C. H. (1990). Specification of hedonic regressions: non-nested tests on measures of neighborhood quality. Journal of Urban Economics, 27(1), 97-110.

Espey, M., & Lopez, H. (2000). The impact of airport noise and proximity on residential property values. Growth and Change, 31(3), 408-419.

Fan, G. Z., Ong, S. E., & Koh, H. C. (2006). Determinants of house price: a decision tree approach. Urban Studies, 43(12), 2301-2315.

Fletcher, M., Gallimore, P., & Mangan, J. (2000). Heteroscedasticity in hedonic house price models. Journal of Property Research, 17(2), 93-108.

Garrod, G. D., & Willis, K. G. (1992). Valuing goods’ characteristics: an application of the hedonic price method to environmental attributes. Journal of Environmental Management, 34(1), 59-76.

Gillard, Q. (1981). The effect of environmental amenities on house values: the example of a view lot. The Professional Geographer, 33(2), 216-220.

Goodman, A. C. (1989). Topics in empirical urban housing research. In R. Muth, & A. Goodman (Eds.), The economics of housing markets (pp. 49-146). Chur, Switzerland: Harwood Academic.

Gu, J., Zhu, M., & Jiang, L. (2011). Housing price forecasting based on genetic algorithm and support vector machine. Expert Systems with Applications, 38(4), 3383-3386.

Hanson, S. (2004). The context of urban travel: concepts and recent trends. In S. Hanson, & G. Giuliano (Eds.), The geography of urban transportation (pp. 3-29). New York: The Guilford Press.

Harrison Jr, D., & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand for clean air. Journal of Environmental Economics and Management, 5(1), 81-102.

Hayes, K. J., & Taylor, L. L. (1996). Neighborhood school characteristics: what signals quality to homebuyers? Economic Review-Federal Reserve Bank of Dallas, 2-9.

Huh, S., & Kwak, S. J. (1997). The choice of functional form and variables in the hedonic price model in Seoul. Urban Studies, 34(7), 989-998.

Jud, G. D., & Watts, J. M. (1981). Schools and housing values. Land Economics, 57(3), 459-470.

Kain, J. F., & Quigley, J. M. (1970). Measuring the value of housing quality. Journal of the American Statistical Association, 65(330), 532-548.

Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political Economy, 74(2), 132-157.

Li, M. M., & Brown, H. J. (1980). Micro-neighborhood externalities and hedonic housing prices. Land Economics, 56(2), 125-141.

Limsombunchai, V. (2004, June). House price prediction: hedonic price model vs. artificial neural network. In New Zealand Agricultural and Resource Economics Society Conference (pp. 25-26), New Zealand.

Malpezzi, S. (2002). Hedonic pricing models: a selective and applied review. Housing Economics and Public Policy, 67-89.

McCluskey, W., & Anand, S. (1999). The application of intelligent hybrid techniques for the mass appraisal of residential properties. Journal of Property Investment & Finance, 17(3), 218-239.

McMillan, D., Jarmin, R., & Thorsnes, P. (1992). Selection bias and land development in the monocentric model. Journal of Urban Economics, 31, 273-284.

McMillan, M. L., Reid, B. G., & Gillen, D. W. (1980). An extension of the hedonic approach for estimating the value of quiet. Land Economics, 56(3), 315-328.

Miller, N., Peng, L., & Sklarz, M. (2011). House prices and economic growth. Journal of Real Estate Finance and Economics, 42(4), 522-541.

Mu, J., Wu, F., & Zhang, A. (2014). Housing value forecasting based on machine learning methods. Abstract and Applied Analysis, 2014, Article ID 648047.

Palmquist, R. B. (1992). Valuing localized externalities. Journal of Urban Economics, 31, 59-68.

Park, B., & Bae, J. K. (2015). Using machine learning algorithms for housing price prediction: the case of Fairfax County, Virginia housing data. Expert Systems with Applications, 42(6), 2928-2934.

Richardson, H. W., Vipond, J., & Furbey, R. A. (1974). Determinants of urban house prices. Urban Studies, 11(2), 189-199.

Ridker, R. G., & Henning, J. A. (1967). The determinants of residential property values with special reference to air pollution. Review of Economics and Statistics, 49(2), 246-257.

Rodriguez, M., & Sirmans, C. F. (1994). Quantifying the value of a view in single-family housing markets. Appraisal Journal, 62, 600-603.

Rosen, S. (1974). Hedonic prices and implicit markets: product differentiation in pure competition. Journal of Political Economy, 82(1), 34-55.

Selim, H. (2009). Determinants of house prices in Turkey: hedonic regression versus artificial neural network. Expert Systems with Applications, 36(2), 2843-2852.

Sheppard, S. (1999). Hedonic analysis of housing markets. Handbook of Regional and Urban Economics, 3, 1595-1635.

So, H. M., Tse, R. Y., & Ganesan, S. (1997). Estimating the influence of transport on house prices: evidence from Hong Kong. Journal of Property Valuation and Investment, 15(1), 40-47.

Song, Y., & Sohn, J. (2007). Valuing spatial accessibility to retailing: a case study of the single family housing market in Hillsboro, Oregon. Journal of Retailing and Consumer Services, 14(4), 279-288.

Thaler, R. (1978). A note on the value of crime control: evidence from the property market. Journal of Urban Economics, 5(1), 137-145.

Verikas, A., Lipnickas, A., & Malmqvist, K. (2002). Selecting neural networks for a committee decision. International Journal of Neural Systems, 12(05), 351-361.

Wilhelmsson, M. (2000). The impact of traffic noise on the values of single-family houses. Journal of Environmental Planning and Management, 43(6), 799-815.

Williams, A. W. (1991). A guide to valuing transport externalities by hedonic means. Transport Reviews, 11(4), 311-324.

Zhou, G., Ji, Y., Chen, X., & Zhang, F. (2018). Artificial neural networks and the mass appraisal of real estate. International Journal of Online Engineering, 14(3), 180-187.

Zurada, J., Levitan, A., & Guan, J. (2011). A comparison of regression and artificial intelligence methods in a mass appraisal context. Journal of Real Estate Research, 33(3), 349-387.