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ABSTRACT. This paper analyses spatio-temporal variation of land prices in two single localities by means
of structural time series modelling formalism that combines the flexibility of a time series model with that
of the interpretation of a regression analysis. The extension of conventional hedonic models by introducing
unobserved components for trend and cycle resulted to significant improvements in their post-sample predictive
accuracy. In predictive testing, for most model formulations the unobserved component approach generated
only a marginal average prediction error when compared to the orthodox hedonic models, which, in contrast,
yielded to a considerable amount of systematic prediction error. It therefore seems that the structural time-
series modelling paradigm offers a more viable alternative to the hedonic analysis of land prices than the
conventional approach based on least squares estimates. The effect of slope component in the trend speci-
fication was found to be statistically insignificant, which implies that the elementary local level model would
be the most adequate description of the long-term land price movements.
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1. INTRODUCTION

As a factor of production land is a central tenet for all businesses. The variation of observed
land prices is a combination of cross-sectional and time-series variations (Schulz, 2003, p. 58).
Besides the spatial characteristics, the selling date is an important attribute in explaining the
evolution of market prices through the flux of time which itself is directly an unobservable quan-
tity, i.e. time is a latent variable. What we can observe are different states that occur in a pre-
defined sub-market and changes that they cause in prices in that market area. The cross-sec-
tional or spatial variation stems from the differentiated nature of a land depending on certain
characteristics such as location, lot size, intended use and planning status of a land parcel. This
cross-sectional variation is usually divided into the concepts of spatial heterogeneity and spatial
dependence. Spatial heterogeneity implies that functional forms and parameters vary with loca-
tion and are not homogeneous throughout the data set, whereas spatial dependence implies that
the variation is a function of distance (Francke & Vos, 2004).

The time-series or temporal variation, by contrast, is a result of changing market conditions,
which are driven by, among others, changes in consumers’ preferences, investors’ expectations
and technological advantages. The temporal variation can be understood as representing that
part of price variation that is more or less common to all parcels of land in the same submarket
(Schulz & Werwatz, 2004). An empirical model of land prices has to recognize these two different,
yet closely related sources of variations.
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This paper emphasises the time-varying aspects of land prices in single localities that, in cur-
rent practice, are seldom captured by some dynamic model, nor is the time evolution of land
prices allowed to depend on the relevant attribute variables. According to Schulz & Werwatz
(2004): “the treatment of the over-time variation of the common price component is usually rather
unsophisticated in hedonic regression; time dummies are used to capture the law of the motion of
the general price trend”.

The conventional or static hedonic regression approach that is based on ordinary least squares
(e.g. Hiltunen, 2003) is an appropriate modelling context if the interest solely focuses on the
cross-sectional variation of the hedonic prices and if the problem due to spatial heterogeneity can
adequately be addressed. When temporal aspects are analysed with these methods, several prob-
lems are encountered. According to Scwann (1998) the core problem in local markets is the lack
of sufficient degrees of freedom, since estimation involves an extensive set of time-indexed dummy
variables along with other regressors, at least one for each time period. Even if the locality of the
markets imposes no dilemma, the major weakness of these methods remains: parameters values
in one period do not affect the values of parameters in other periods (Francke & Vos, 2004).

A (univariate) time series is a set of observations p,, ..., p, ordered in time (Durbin & Koopman,
2002, p. 9); time interval need not be equispaced. In the land market observable time series on
price and its attributes rarely constitutes any stationary process, which is a fundamental assump-
tion in the traditional approach (the Box-Jenkins ARIMA methodology) to time series modelling.
Instead, they are nonstationary or transient meaning that the distributions of random variables
depend on timel. Furthermore, if multiple submarkets are analysed simultaneously, observations
on price information through the passage of time are multivariate, which imposes further restric-
tions to the methodology to be applied.

Given the special characteristics of land markets one natural solution to the dual problem of
hedonic modelling caused by spatio-temporal variation is to combine the flexibility of a time series
model with that of the interpretation of a regression. This is the underlying rationale in the
structural time series approach: the observations are directly made up of interpretable compo-
nents of trend, cycle, seasonal, and regression term plus error. They provide more information
for the analyst about different stochastic features underlying the series than the traditional re-
gression analysis. In essence, structural time series models can be thought of as a certain type of
generalized regression models in which explanatory variables are functions of time and the pa-
rameters are time-varying (Harvey, 1997).

When considering the determination of hedonic prices in land markets and, specifically the
temporal dimension, there are several benefits in using the structural time series approach and
the associated state space form as compared to the Box-Jenkins ARIMA methodology. These in-
clude (Harvey & Shephard, 1993; Harvey, 1997; Durbin & Koopman, 2002, p. 51-53):

m  Structural analysis of the problem. Different components that make up the series, includ-
ing the regression elements, are modelled explicitly when, in contrast, the Box-Jenkins
approach is a sort of “black box”. A structural model provides not only the forecasts of
the series but also presents a set of stylised facts. Also a structural model can be handled
within a unified statistical framework that produces optimal estimates with well-defined
properties.

m  Management of nonstationarity. In a structural model nonstationarity (transitory parts of

1 More precisely, nonstationarity denotes the general sense of processes whose first two moments (conditional
expectation and the variance of its error distribution) are not constant over time. The dynamic nature of data-
generating processes is attributable to changes in economic environments, technological progress, political shifts,
cultural movements, etc. A more detailed account of the fundamental sources of change in economics can be
found, e.g. (Day, 1992).



An Analysis of Land Prices: A Structural Time-Series Approach 147

the model specification) can be handled conveniently by unobserved components without
the need of differencing any variables. By comparison, in the Box-Jenkins approach the
stationary is assumed, and nonstationary components of the series are usually eliminated
by differencing the variables, which results to a potential loss of valuable long-term
information. Furthermore, the standard unobserved component models are simple, yet
effective, leading to parsimonious representations for the systems.

m  Generality. Multivariate observations can easily be handled with structural models, which
cover as special cases a wide range of econometric models (including all ARIMA models).
Explanatory variables can be introduced into the model structure and the associated
regression coefficients (hedonic prices) can be permitted to vary stochastically over time
if needed. Different kinds of intervention variables, e.g. impulse and level interventions,
can be specified and lagged values of dependent as well as explanatory variables can be
incorporated to a model. Missing observations and varying dimensionality of observations
are issues that are straightforward to deal with structural models.

Research Problem

The land market is one of the most important sectors of the whole economy; in particular, land
itself forms a necessary factor of production for all human activities (housing, industry, business,
etc.). However, systematic research about spatio-temporal movements in these markets has typi-
cally been scarce, inflexible and insufficient. In this paper, structural time series methodology
due to (Harvey, 1989; Harvey and Shephard, 1993; inter alia), i.e. the unobserved component
approach, is used for simultaneous modelling of spatial and temporal variation of land prices.
Unobserved component models can be understood as semiparametric estimators that combine
many of the benefits of parametric and nonparametric estimators; temporal variability of land
prices is estimated in a nonparametric fashion, which permits the effect of time to be linear,
convex and concave in different regions, whereas the hedonic prices of attribute variables are
estimated in a parametric manner. The practical significance of this paper may be found in its
flexible management of trend and cyclical behaviour of land prices that would help, with more
accurate land price information, governments to make better policies and property investors to
create more effective property management strategies. For any valuation method to have a suffi-
cient degree of validity it must produce an accurate prediction of the most probable market price
of property?2. The adequacy of estimated unobserved component models is, therefore, evaluated by
post-sample predictive assessment, where forecasts of those models are compared to predictions
of some traditional static econometric models.

Previous Related Research

The importance of structural time series modelling and the associated state space form is only
recently understood in the real estate markets. Franke & Vos (2004) applied structural time
series models to estimation of selling prices of individual houses and for constructing general and
sub-market level price indices. They introduced a specific structural model, the so-called Hierar-
chical Trend Model, in which parameters vary over time, location and house type. General and

2 Most probable transaction price is the market value of a property, which is defined as (IVSC, 2001): “the estimated
amount for which an asset should exchange on the date of valuation between a willing buyer and willing seller in
an arm’s length transaction after proper marketing wherein the parties each acted knowledgeably, prudently and
without compulsion”.
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cluster-level trends were modelled as stochastic trends using a random walk scheme for sub-
market trends and a random walk with a drift scheme for the general trend. However, the regres-
sion coefficients that were not related to attributes on house type and location were kept constant
over the study period.

The approach due to (Franke & Vos, 2004) can be described as a dynamic hedonic price model-
ling, which is an extension of the usual, the so-called covariance analysis methodology, that per-
mits time varying coefficients for any attribute if needed. The unobserved component model was
put into the state space form and the Kalman filtering and smoothing techniques were used to
estimate the hedonic prices. Franke & Vos (2004) conclude that their Hierarchical Trend Model
“provides more up-to-date, detailed and reliable results than using standard hedonic methods and
the simple-weighted [median] method”. The Hierarchical Trend model is currently operational in
Amsterdam and several other Dutch cities for the determination of local real estate taxes.

Chen et al. (2004) examined the time-series properties of house prices in four Asian Markets
(Hong Kong, Singapore, Tokyo and Taipei) using structural time-series methodology. Two types of
trend models, a stochastic trend model and a deterministic trend model, were applied to study the
long-run behaviour of house prices. The trend description was most accurate when a smooth
trend was used, which also indicated that Taipei and Singapore had the most pressure for house
prices to increase over time. The markets were also found to have three stochastic cycles: around
one year, two to four years and seven to ten years. The stochastic nature of trend and cycle
components implied that the markets are not in steady state but are still changing.

Schulz (2003) and Schulz & Werwatz (2004) investigated hedonic prices of single-family houses
for some local areas of Berlin with an explicit statistical model for common component of prices.
A specific two equations system based on the present value model of asset prices was studied,
which was subsequently put in the state space form and the Kalman filtering and smoothing
recursions were applied. The estimated coefficients were plausible in sign and magnitude and
consistent with the assessment of professional appraisers and provided interpretable figures of
the premiums of different house characteristics.

Schwann (1998) investigated a time series based method for estimating real estate price in-
dexes in the thin (local) markets. Schwann argues that the core of the estimation problem in local
market level is the lack of degrees of freedom, since the conventional hedonic methods involve
the use of an extensive set of time dummy variables along with the regressors. Schwann proposed
a hedonic model, in which an autoregressive formulation is used in linking current observations
to preceding observations with a stochastic structure for the parameter evolution. The log-likeli-
hood function was derived via prediction error decomposition and the diffuse Kalman filter due to
(de Jong, 1989 & 1991) was applied. Schwann concluded that his price index construction exhibits
superior performance as compared to the standard hedonic indices.

2. UNOBSERVED COMPONENT MODELS OF THE STUDY

The classical time series analysis, i.e. the Box-Jenkins ARIMA (autoregressive integrated mov-
ing average), assumes that stochastic processes are stationary or can be transformed to station-
ary series by the process of differencing them (possible multiple times). In the structural analysis
of the series neither the concept of stationary process nor the process of differencing plays any
fundamental role (Harvey & Shephard, 1993).

Structural time series models can effectively separate trend, cyclical, seasonal and irregular
components from exogenous or predetermined variables. It is thus expected that the parameters
for exogenous variables can be estimated more accurately using these models. In a regression
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context, the principal structural time series models are extended hedonic models in which ex-
planatory variables are functions of time and the parameters are time-varying (Harvey 1989, p. 10;
Harvey & Shephard, 1993; Harvey, 1997).

Trend Models

The term trend can be understood as that part of the series when extrapolated gives the
clearest indication of the future long-term movements. The simplest choice of a trend would be a
deterministic linear time trend, but this usually is too restrictive, unless the time period is very
short (Harvey, 1997). In a structural model an explicit stochastic trend is assumed in which the
level and slope coefficients are allowed to evolve over time.

Local Level Model

The local level model or the random walk plus noise is an elementary, yet effective, structural
trend model, which regards an observation on price p, at time t as being made up of an under-
lying level u, and an irregular disturbance ¢, (Koopman et al., 1999; Durbin & Koopman, 2002,
p. 44-45)3:

=i +¢& . 1&g f~NID(0,02),

e =M+ 1, {Th}~ NID( 010-5)- (@h)

The underlying level pu, is not directly observable. It is generated by a random walk, i.e. the
level term in the current period is equal to the level term in the previous period plus a level
disturbance term 7, . The effect of 77, is to allow the level of the trend to shift up and down. It is
generally assumed that the level and irregular disturbances are mutually independent and inde-
pendent of u,. ,

The signal-to-noise ratio q = 0%; plays a vital role in determining how observations should
be weighted for prediction and smoofhing. Basically the higher q is, the greater is the discount-
ing of past observations. The reduced form of local level model is ARIMA(0,1,1) with certain
restrictions on the parameter space.

Local Linear Trend Model

Local linear trend model is a generalisation of the local level model encompassing a stochastic
slope v, (which itself follows a random walk) allowing the slope coefficients to change. The local
linear trend model can be specified as:

Ppe=u + & , {et }"NlD( 0, 0-52)
Hy=Ui g+ Vit 10, {nt}”‘NlD(O,O';)

Vi=viat+ & {ét }”‘ NID(O, 0-52) ) @

where different disturbance terms are mutually independent. If o ; =0, the trend reduces to a

3 In this study, observations of different time series are modelled as distinct ones, which simplifies the analysis.
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random walk with a drift, whereas for G,f =0, the trend reduces to an integrated random walk or
a smooth trend model.

The use of a smooth trend is sometimes suitable since a stochastic slope might be too sensitive
to changes in the series. In particular, combining a smooth trend with a cycle component tends to
lead to a more attractive decomposition of the series (Koopman et al., 1999). The reduced form of
local linear trend model is ARIMA(0,2,2) with certain restrictions on the parameter space.

Cycle Models

Cycles are characteristic to many economic time series as economy goes from boom to reces-
sion and back again. These can be modelled in different ways, but usually cycles can be effectively
presented as a mixture of sine and cosine waves with two parameters 6, and 6,. If y, is a
cyclical function of time with frequency A, that is measured in radians, then (Harvey & Shephard,
1993):

v, =6,cosAt + 0,sinAt, €]

. . . . (0 .
where the period of the cycle is Z%C , |02 +67 is the amplitude and t@n 1( %91) is the phase.
A stochastic cycle can be constructed recursively:

Vi cosA. sinA, Yy, K
’ = p - ’ + ’ (4)
/4 —sn /lc Cos /lc Via Ky ’

where k,and k; are mutually uncorrelated with a common variance ¢?. pe [0,1] is a damping
factor. Stationary models corresponds to situations where p is strictly less than one. A first-
order autoregressive process is an important limiting case of a stochastic cycle when a frequency
A, is equal to O or p.

These different trend and cycle formulations are estimated and tested in the empirical section
of the study. They are combined with the two different common hedonic representations (linear
and double-log models) for regression effects, which are subsequently put into state-space form
and the Kalman filtering and smoothing algorithms (of the section 3) are applied for estimation of
trends, cycles and hedonic prices. Only the results of the most data-congruent specification are
documented in depth.

3. STATE SPACE FORM

Many dynamic hedonic models could usefully be represented in a state-space form, which pre-
sents a convenient summary of the system’s dynamics. In particular, the state space form allows
a unified statistical treatment of structural time series models and thus provides an appropriate
calculation method for estimating the hedonic prices and unobserved components.

A state-space form describes the relation between the observations and the unobservable com-
ponents. The state vector evolves through a stochastic difference equation (a first-order auto-
regressive process) depending on unknown parameters?. The main objective of the state space

4 State-space models were originally developed in control engineering by Kalman (1960) for describing dynamic
systems that involve unobserved state variables, but they are also highly important in describing various economic
activities such as consumption behaviour, indices of economic activity and financial markets (Kim & Nelson, 1999,
p- 29). Recently there has been a growing interest in the real estate economics in these methods to be used in
hedonic modelling (see Schulz 2003; Schulz & Werwatz, 2004; Chen et al., 2004; Francke & Vos, 2004).
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analysis is to infer the relevant properties of the unobserved components over time from the
knowledge of the observations. The estimation of unobservable states as each new observation
becomes available can be carried out with the Kalman filter, which plays the same role for struc-
tural time series models in a state-space form as the ordinary least squares for common hedonic
models. The Kalman smoother is used for obtaining the best estimate of the state at any point
within the sample (Harvey, 1989, p. 100-167; Harvey, 1993, p. 82-98; Harvey & Shephard, 1993;
Durbin & Koopman, 2002, p. 1 & 11).

Measurement Equation

The state space form consists of a measurement or observation equation and a transition or
state equation.® The measurement equation, which describes the relation between observed vari-
ables and unobserved state variables, with regression effects, can be represented by (Harvey &
Shephard, 1993; Kim & Nelson, 1999, p. 29; Durbin & Koopman, 2002, p. 121-122):

p.= 2 + XnB+ g , t=1,....,T, o

which relates Nx1 vector of observed prices p, at time t to an mx1 state vector ¢, and to an
(p+k)x1 vector of unknown regression coefficients B that are assumed to be constant®. Z, is a
nonstochastic Nxm matrix of cycle and trend components, X, is a nonstochastic Nx(p + k)
matrix of observations on explanatory variables and ¢, is an Nx1 vector of serially uncorrelated
measurement errors with zero mean and covariance matrix H,,i.e. E(¢,)=0 and Var(g,)=H,.

Transition Equation

The transition equation describes the dynamics of the state vector; the unobservable compo-
nents ¢, are generated by a first-order Markov process (Harvey & Shephard, 1993; Hamilton,
1994a):

o=Ila_,+WB+ Rn , t=1,...,T . (6)

Now II, is a mxm state transfer matrix, W, is a mx(p + k) matrix, R, is a mx g matrix and
1, is a gx1 vector of serially uncorrelated error terms with mean zero and covariance matrix

Q., i.e. E(n)=0 and Var(n,)=Q,.

The following further assumptions complete the state space system specification:

1. The initial conditions are given by: E(a,)=a, and Var(e,)=S,;

2. The system and measurement disturbances are uncorrelated, i.e. E(g,n.)=0 for all
s;t=1,...,T and E(g, a;)=0, E(na;)=0 for t=1,....T.

Matrices Z,, X, , H, , II,, W, , R, , Q, are called system matrices and assumed to be non-
stochastic. Specifically, Z, and II, are state system matrices, X, and W, are regression system
matrices and others can be regarded as error system matrices. If the system matrices do not

5 Here is described a typical linear state space representation. There are different representations for state-space
form depending, e.g. treatments of (diffuse) initial conditions, regression effects and error process assumptions.

6 Regression coefficients can be time-varying, but this the representation used in the empirical section of the study.
Here p and k denote the number quantitative and qualitative explanatory variables, respectively.
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depend on time, the model is said to be time invariant or time homogenous.”

Kalman Filter

Filtering is aimed at updating our knowledge of the system as each new observation p, be-
comes available. Unlike smoothing (signal extraction) it is based solely on the previous observa-
tions. The Kalman filter primarily consists of a set of vector and matrix recursions that are
optimal, in a sense of a minimum mean square, for calculating the moments of normal distribu-
tion of the state vector a,,, conditional on the currently available information set
Q= 1{py P XX ] i @y =E (el @ )and s, = Cov(a,lQ,), for t=1,..,T.
(Harvey, 1989, p. 104-106).

The importance of the Kalman filter is based on (Koopman et al., 1999):

=  Computation of one-step ahead predictions for observations and state vectors with the
associated mean square errors;

= Diagnostics via one-step ahead prediction errors;

=  Computation of likelihood function by means of prediction error decomposition;

=  Smoothing that uses the outcome of the Kalman filter.

There are a variety of forms to the basic Kalman filter, but if we start at time zero with a
knowledge @, ~ N(a,, S,) , the filter can be described by four prediction equations and two updat-
ing equations (Harvey, 1993, p. 85-86; Harvey & Shephard, 1993; Kim & Nelson, 1999, p. 29-37).

Prediction

The prediction equations in the contemporaneous filtering form are given by (Harvey, 1993, p.
85-86; Harvey & Shephard, 1993; Durbin & Koopman, 2002, p.67-68)8:

e, =Ia_ +WaB ()
ST I1,S_II; + R.Q.RY, )
Ve=p,—Z8, ~ X.B, )
F=2S8,,Zi+H, (10)

with an estimator of p, being:

7 As an illustrative example, consider a univariate time series model (local linear trend model) with two explanatory
variables and an intervention (and without a cycle term). Its state space formulation is given by:

Py :(1 O)al +(X11 Xat O)ﬂx + (Gs 0 0)u1

My 11 00 W, 0 ()',7 0
= = + + u
% [BI] (o 1]”” (o 0o 0)"lo o o "

where U, =(g, 1, ét)’. Different hedonic models lead to different state space formulations, which are omitted
here, as they are not the main focus in the paper.

The derivation of the Kalman filter is straightforward relying on the standard results of multivariate normal
theory, see e.g. (Hamilton, 1994a)
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pt‘t—l = Z‘dt‘t—l + Wtﬂ . (11)

v, are one-step ahead prediction errors called innovations, which represents that part of the p,
that cannot be predicted from the past. F, is the conditional variance of the prediction error.

Updating
The updating equations in the contemporaneous filtering form are given by:
a, = dth—l + St\t—lz:':‘il( P = tht\t—l - Wtﬂ) ) 12
S =St|t—1 - St\t—lz;Ft_lztSt\t—l . (13
Augmented Kalman Filter

The basic Kalman filter is usually supplemented (as in this research) by a set of complemen-
tary vector and matrix recursions. In particular, when non-stationary components and/or fixed
regression effects are present an augmented Kalman filter is usually applied (Koopman et al.,
1999; Durbin & Koopman, 2002, p. 115-120):

Vi=-ZA,  -X.B (14)
AH]J[ :HlAt\t—1+ WB + K.V, (15)
(mv Mt)= (mt—l’ M t—l) + Vt’Ftil(Vth) (16)

with Ay =W,B and B=(B,,B,) is a square selection matrix of zeros and ones and the sub-
scripts X, I are related to regression and initial effects, respectively. The number of columns of
V, and A,y is the same as in matrix g. K, = H[Sth_lZ:F{l is the so-called Kalman gain.

Now the one-step ahead prediction of the state vector and the associated mean square error
matrix are given by

a* — A 71
at\t—l - ath—l + A;|HM Mg (17)

*

S

-1

S, . +A

-1 7’
t\t—lM t—lAt\t—l : (18)

tt—1

The one-step ahead prediction errors and the associated mean square error matrix are given
by

V: =V, +VM ;}1mt—1 19

F =F + VMV, . (20)

The matrix inversions for M, can be evaluated in a manner similar to recursive regressions
(de Jong, 1991).
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Prediction Error Decomposition

When the disturbances and known initial &, and S, are normally distributed, the Kalman
filter can be used to compute the exact Gaussian log-likelihood function via the prediction error
decomposition (Harvey 1993, p. 91; Kim & Nelson, 1999, p. 11&19):

NT 1¢ A
logL(y) = —7I0927r -~ EZ(IOQ‘ F|+ ViR 1vt) 1)
t=1

where ¥ is a set of unknown parameters for a specific statistical model. Typically a modification
of the exact Gaussian log-likelihood function is applied. For univariate unobserved component
models concentrated diffuse likelihood function can be constructed via prediction error decomposi-
tion where the component to be concentrated out of the likelihood function is the one possessing
the largest standard deviation. In the case of multivariate structural time series models predic-
tion error decomposition can be used to obtain a diffuse likelihood function.

Initialisation of Kalman Filter

For stationary processes, the initial conditions are obtained by unconditional mean and vari-
ance of the Kalman filter (see Kim & Nelson, 1999, p. 29; Durbin & Koopman, 2002, p. 99-120).
When the transition equation is non-stationary, the diffuse Kalman filter due to de Jong (1989,
1991) can be applied. Using diffuse initial conditions lead to starting values being formed from the
observations.

Kalman Smoother

Estimating o with the complete set of observations using a backward recursion is known as
smoothing, which enables the inferences to be based on the entire sample. The importance of
smoothing is based on (Koopman et al., 1999):

=  Signal extraction, detrending and seasonal adjustment;

= Diagnostics for separating the pieces of information between outlying observations and
structural changes via auxiliary residuals;

=  EM-algorithm for initial estimation of parameters;

= Calculation of the score vector.

There are several smoothing algorithms; the most basic one with socio-economical data is the
classical fixed-interval smoothing algorithm, which is an off-line technique. The fixed-interval
smoothing algorithm consists of a set of backward recursions starting with the final estimates @,
and S;, i.e. (Harvey, 1993, p. 87; Hamilton, 1994b, p. 394-397):

d [+]JT - Ht+l&I - Wlﬂ) ’ (22)

T

S t+1t )gl’ ) (23)

r =

where S, = S[H{HS:ﬂt and @;; =@ with S;; = S;. More efficient versions of this algorithm are
typically applied (e.g. Durbin & Koopman, 2002, p. 70-73).
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Functional Representation of Structural Time Series Models

A structural time series model generalises the hedonic model structure in variety of ways. For
example, a single equation structural time series model can incorporate exogenous explanatory
variables, lagged values of dependent and explanatory variables, and intervention variables, as
well as unobserved components such as trend and cycle. Therefore a single equation structural
time series model can be expressed as:

p q k h
P =M TV +U + Z¢r P + ZZﬁri Xz +lewt,j T & (24
T=1 j=1

7=0i=1

where X; is an exogenous variable, W;; is an intervention variable, v, is a first-order autoregressive
component for the irregular disturbance term ¢,, u, is the trend, vy, is the cycle and ¢,, B, and
A; are unknown parameters. As can explicitly be seen, an unobserved component model opens up
a wide range of possibilities for dynamic modelling. A classical ordinary least squares regression
emerges as a special case in which there exist no stochastic components apart from the irregular
disturbance term.

In this study, the following functional representation for the hedonic model is used:

k h
pt=‘ut+l//t+vt+2BiXt,i+zljvvt,j+gt (25)
-1 iz1

where u, and y, are stochastic and defined in the section 2; v, is, in fact, a special case of vy, (see
section 2). g, is irregular term, which is assumed to be white noise. ; denotes the conventional
unknown hedonic price of a land parcel and X, ; is the i th attribute at time t. 2 ; represents the
separate influence of an outlying observation, which is captured by the impulse intervention vari-
able W, ;. In the classical linear model structure for regression effects p,= p, and X ;= X,
whereas for the common double-log model p, = In(p,) and X, ; = In(x ;) . These are subsequently
put in the state-space form and the Kalman filtering and smoothing algorithms of (7)-(23) are used
to derive the unknown coefficients.

4. STRUCTURAL ESTIMATION OF LAND PRICES

Economic theory and past experience usually provide useful a priori information of what vari-
ables should enter the model structure that substantially reduce the threat of omitted variable
bias. Phenomena in real estate markets are, however, strongly dependent on the particular sub-
market, time period and property type and, as a consequence, the selection of proper set of
dependent and conditioning variables is partially an empirical question, too. For example, in the
modelling of land prices, there exists a significant amount of uncertainty concerning the choice of
a proper response variable. Should the modeller use the original, total sales prices or the unit
prices of a land parcel as the proper response vector and should these be analysed in a logarith-
mic or untransformed scale??

9 In this section only square or unit prices are analysed in both logarithmic and untransformed scales. This choice
is based on previous empirical experimentation of the behaviour of land prices in the chosen submarkets. Further-
more, the use of unit prices is helpful in the model evaluation phase, which allows the calculation of some
important weighted measures of goodness-of-fit statistics.
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In modelling the time dimension of land prices there is always the vexed question of whether
we should work with observations in levels or differences. Differenced values, albeit susceptible to
losing important long-term price information, might sometimes be as such of direct interest, e.g.
the rate of land prices could, in some cases, be defined as the first difference of the logarithm of
prevailing price level. In certain situations it may be useful to consider lagged values of depen-
dent price variable and even lagged values of explanatory variables, and if so differenced observa-
tions typically lead to greater numerical stability in estimation process since they tend to suffer
less from multicollinearity problem. In this study, however, these kind of dynamic responses are
not considered.

To improve theory-dependency of analysis, this empirical section considers estimation of two
common econometric models of land prices - (i) classical linear model and (ii) multiplicative form of
double-log model, see e.g. (Hannonen, 2005) - in the context of structural time-series modelling
formalism. These econometric models are combined with the unobserved component models pre-
sented in the section 2; their hedonic prices are calculated and the associated statistical significance
tested as usual applying the common Neyman-Pearson methodology. The goal is to conclude with a
parsimonious model, which has orthogonal regressors and satisfies the necessary conditions for
both congruence and encompassing. Furthermore, post-sample predictive accuracy of those models
is analysed in section 6 and these results are compared to the predictions of their static analogues.

Sample Data

Empirical studies of land prices tend to exhibit significant sensitivity to changes in data. Major-
ity of that variation is explained by spatio-temporal movements: functional forms and parameters
tend to vary with location and are not homogeneous throughout the data set, whereas temporally
changing market conditions cause data-generating processes to evolve over time. To reduce the
sample dependency, i.e. to improve the invariance of empirical study, the paper examines two
data sets that are located in different submarkets and associated with partially non-overlapping
time frames. The land type (land use) is, in contrast, fixed in order to reduce unnecessary hetero-
geneity of land prices. It represents undeveloped land not yet reached its highest and best use:
vacant sites without a local detailed plan that are reserved for residential housing purposes.

The first sample data involve observations on land prices and the associated characteristics in
the municipality of Espoo, a highly polycentric city, which lies inside the Helsinki metropolitan
area with circa 225 000 habitants; its population is the second largest of the cities in Finland,
which has experienced a rapid growth in its late history. The study period is from January, 1990
to December, 2001 with total number of observations of 400 that constitute a judgement sample
and cover phases of upward and rapid downward movements of land prices. In that period Finnish
economy has experienced a great depression, which has had a major influence of land prices also.
The observations from the last year (total of 39) are held back for post-sample predictive testing;
a choice which is a somewhat arbitrary and mainly dictated by practical valuation concerns. In
terms of quality, this data set is preferable over the second sample, since it has been pre-checked
and screened by National Land Survey of Finland to ensure the sample data only include genuine
arm’s length transactions.

In Table 1 are documented some standard sample statistics for the study variables in the case
of Espoo. The choice of relevant attribute variables is based on previous empirical knowledge of
the phenomenon and could be termed here as, more or less, a fixed set covering only the most
important ones in order to enchain model parsimony; some local distance measures, not to men-
tion different metrics or inverse measures of proximity, complex interactions, many qualitative
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Table 1. Some common sample statistics for the municipality of Espoo

Variable (unit) Arithmetic mean Minimum Maximum Std. Deviation
Total price (€) 59126.40 3027.00 756846.00 61976.88
Square price (€/m?) (unit price) 22.99 0.24 127.55 19.09

Parcel size (m?) , 4207.49 1000.00 ©28400.00 4613.75
Distance to CBD of Helsinki, L,-metric (km)  17.22 7.61 27.29 434

Quarterly price index of single-family houses  154.06 116.80 187.30 22.35

Parcel type (=0 if whole site; 1 otherwise) -~ - 0 1 -

features, neighbourhood attributes etc. are ignored as they are not the main focus here. The
square price represents the unit price of a land parcel in euros per square meter, which is a
variable derived from total sales price of a land parcel, and which is subsequently used as a proper
regressand in the empirical study. Parcel size denotes the lot area measured in square metres.
Distance to the CBD of Helsinki represents the straight-line distance (in Ly-metric) from the
central business district of Helsinki. Quarterly price index of single-family houses is a relative
measure of quarterly price changes that is constructed from the sale prices of single-family houses
in the Helsinki metropolitan area only. Parcel type is an indicator variable that receives a value
of one, if the land parcel is sold as a whole and independent unit, and a value null otherwise.

The second sample contains observations of land prices and the associated attributes on 793
unbuilt land parcels without a local detailed plan sold in the period spanning from January, 1985
to March, 2004 in the municipality of Nurmijirvi, which lies just outside the Helsinki metropoli-
tan area with approximately 36 000 habitants and three distinctive population centres (the parish
village, Klaukkala and Rajaméiki). Nurmijiarvi has also recently witnessed several years of rapid
expansion. The last 50 observations were left aside for evaluating the predictive accuracy of esti-
mated local models outside the estimation sample, which corresponds approximately to a one-
year period from the late February 2003 to the early March 2004. In terms of quantity, this data
set offers more opportunities to flexible trend modelling and analysis of cyclical variation of land
prices than the Espoo case. However, it is more pronounced to any errors (e.g. recording errors),
since it has not been screened for specific hedonic modelling purposes. In Table 2 are documented
some standard sample statistics for the study variables in the Nurmijéarvi case. The study vari-
ables are otherwise the same as in the Espoo case, but there are also three additional local
distance measures relating to the distances, respectively, from the population centres of parish
village, Klaukkala and Rajaméki.

Table 2. Some common sample statistics for the municipality of Nurmijarvi

Variable (unit) Arithmetic Minimum © Maximum Std. Deviation
v mean

Total price (€) 22019.03 673.00 479 336.00 21262.25

Square price (€/m?) (unit price) 3.80 0.34 : 22.83 3.27

Parcel size (m?) 7387.36 1 000.00 30 000.00 4 651.66

Distance to CBD of Helsinki (km) 33.11 22.28 4491 5.22

Distance to parish village of Nurmijarvi (km) 8.55 0.32 16.06 3.37

Distance to population center of Klaukkala (km)  9.33 0.50 21.44 5.00

Distance to population center of Rajamiki (km) 11.86 0.43 20.92 4.58

Quarterly price index of single-family houses 154.30 100.00 226.00 32.00

Parcel type (=0 if whole site; 1 otherwise) - 0 1 -
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5. RESULTS OF HEDONIC MODEL ESTIMATION

Case Espoo
Linear Model

In this subsection estimation results for the classical linear model of regression effects are
presented, which are simultaneously combined with different unobserved component models of
the section 2 (local level model, local linear trend model and different cycle models). Kalman filter
and smoother algorithms of the section 3 are then applied to estimate an appropriate structural
time series model, which is a mixture of time series and regression. Only the results for the best-
fitting model structure are documented.

After some empirical experimentation, a simple special case of local level model yielded the
most adequate description for the trend component of the series; the slope coefficient is statisti-
cally insignificant. This local level model possesses an easily interpretable fixed trend around the
value of 18.25 €/m?, which appears plausible constituting about 80% of the arithmetic average of
the series (see Figure 1). Fixed trend means that there exist no price fluctuations in the trend
component as time evolves, and that the slope coefficient is zero producing a deterministic line
around the value of 18.25 €/m?2. Three different sub-cycles are needed for reliably capturing the
salient features of the temporal variation in conjunction with a first-order autoregressive process
for irregular disturbances. This autoregressive process has the largest estimated variance (q-ratio
is circa 0.38), whereas cycle components have estimated variances around 0.01-0.03. Three differ-
ent impulse interventions are estimated and included to the final model, which represent the
influence of discrepant data points. The results are highly sensitive to the effect of these outlying
points, e.g. using only two of the most three significant intervention variables leads to a model
structure with a small downward trend.

Table 3 documents the estimated hedonic prices and unobserved components. In essence, the
effect of fixed trend is statistically relative small (t-value of 3.62), when compared to the statistical
significance of the parcel size (t-value of -10.22), distance to the Helsinki CBD (t-value of -12.41)

20.0 - Trend unit price
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Figure 1. Estimated trend for the linear model
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Table 3. Estimated unobserved components and hedonic prices

Variable Coefficient r.ms.e t-value p-value
Level 18.28 5.06 3.62 0.0003
AR(1) -2.46 4.60 NA NA
Cycle 1 (comp. #1) -1.88 2.83 NA NA
Cycle 1 (comp. #2) 0.86 2.90 NA NA
Cycle 2 (comp. #1) -4.78 2.65 NA NA
Cycle 2 (comp. #2) -0.97 2.75 NA NA
Cycle 3 (comp. #1) -0.041 3.00 NA NA
Cycle 3 (comp. #2) 1.63 344 NA NA
Parcel size -0.0014 0.00013 -10.22 0.0000
Distance -1.90 0.15 -12.41 0.0000
House price index 0.28 0.032 8.58 0.0000
Intervention #1 68.93 11.00 6.27 0.0000
Intervention #2 51.34 11.00 4.67 0.0000
Intervention #3 46.40 10.97 4.23 0.0000

and the house price index (t-value of 8.58). All the estimated hedonic coefficients appear plausible
in sign and magnitude. The relatively small effect of level component is, at least partly, explained
by the inclusion of house price index variable, which effectively captures much of the same tem-
poral variation as the estimated trend component. The house price index variable, however, ap-
pears to be a genuine explanatory variable in this model structure as without it the trend compo-
nent would oscillate at too high a level.

The effects of cycle components are even smaller, but they are needed for the estimation of a
proper model structure. Cycles 1 & 2 represent high-frequency components of temporal variation,
and as such are not very informative, whereas cycle 3 captures a lower frequency variation (indi-
cating larger oscillations in the beginning of the series, which sounds reasonable). The influence
of parcel type is statistically insignificant at conventional risk levels and thus is not included to
the final model.

Goodness-of-fit Statistics

Table 4 presents some fundamental information of the relevant goodness-of-fit statistics. PEV
is the prediction error variance, which corresponds to the variance of standardised one-step ahead
prediction errors, or generalised least squares residuals if regression effects are present, in steady
state, or if steady state is not obtained a finite PEV is reported. PEMD is the prediction error
mean deviation. R2 and Rﬁ are, respectively, the classical coefficient of determination statistic

Table 4. Goodness-of-fit statistics for the linear model

Goodness-of-fit statistic Value
R? 0.61
R§ 0.77
AIC 491
BIC 5.12
PEV 123.13

PEMD 91.87
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and the modified coefficient of determination statistic; the latter measure compares the fit with a
simple random walk plus drift model. In essence, the R? does not reach the usual critical value of
0.70 applied in Finnish land valuation studies and, furthermore, the scaled square root of PEV is
circa 0.48, which exceeds the commonly used target value of 0.30.

CUSUM and CUSUMSQ statistics indicate that there is no change in the mean process, but
significant fluctuations in the variance of the process. Correlogram along with Box-Ljung statistic
indicate that the estimated model is not plagued with any serious autocorrelation. QQ-plot and
the histogram indicate, moreover, that residuals are closely normally distributed, which, how-
ever, confounds the information given by the formal tests of normality (normal-BS and normal-
DH indicators) that indicate departures from normality.

Double-log Model

Table 5 documents the estimated hedonic prices and unobserved components that are obtained
using Kalman filtering and smoothing algorithms of the section 3. The multiplicative form of
double-log model is used to capture the regression effects and, at the same time, a local level
model is chosen by empirical experimentation for the trend component. Two different cycles and
a first-order autoregressive process of error terms are also included into the final hedonic model
in order to accurately represent the joint spatio-temporal variation of land prices.

The effect of level is now much more pronounced (t-value circa 28), albeit the slope is still
statistically insignificant (and thus not incorporated into the model of Table 5). This means that
the most adequate description of the salient features of the trend variable is still the simplest
unobserved component model: the local level model. This time the local level model produces a
highly curvelinear trend, which shows a clear downward and upward movements over time. This
is illustrated in the Figure 2. It is noteworthy that now the trend fluctuates at much lower level,
approximate in the range of [11.75; 13.25], which represents only 50-60% of the arithmetic aver-
age of the series. This is unusually low, albeit it is a well-known phenomenon that arithmetic
average tends to exaggerate the price level due to problem of outlying observations that typically
causes price distribution to be highly skewed to the right. There is a pronounced dip in the series,
which corresponds to the first quarter of 1995 after which series has grown upward for circa five
years. The dominant peak occurs at the beginning of the series: in the second half of the year
1990.

Cycles tend to be an integral part of the temporal structure; two different cycle components
are needed, which both, more or less, represent high-frequency part of cyclical variability. The

Table 5. Estimated unobserved components and hedonic prices

Variable Coefficient r.mse t-value p-value
Level 12.64 0.45 27.97 0.0000
AR(D) -1.77 0.20 NA NA
Cycle 1 (comp. #1) 0.032 0.033 NA NA
Cycle 1 (comp. #2) 0.084 0.033 NA 0.0216
Cycle 2 (comp. #1) -0.20 0.12 NA NA
Cycle 2 (comp. #2) -0.069 0.13 NA NA
Parcel size -0.76 0.039 -19.60 0.0000
Distance -1.31 0.14 -9.59 0.0000
Parcel type -0.31 0.061 -5.15 0.0000

Intervention #1 -2.70 0.54 -4.95 0.0000
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other cycle is deterministic with a corresponding p-value of circa 0.02. AR(1) is also important
element of the temporal dimension, which now has the highest estimated variance among all
unobserved components (qg-ratio is 1.00). The effect of parcel size is concave and statistically much
higher (t-value of -19.60) than in the case of linear model (almost twice as much). The estimation
of the aggregate price index variable failed in a sense that it produced an implausible description
for the unobserved components, and was therefore removed from the final model structure. The
influence of parcel type (t-value of -5.15) is statistically highly significant and the effect, as ex-
pected on the grounds of urban economic theory, of straight-line distance to the Helsinki CBD is
convex (with t-value of -9.59). The estimated signs and magnitudes of all hedonic coefficient seem
intuitively plausible.

—— Trend unit price
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Figure 2. Estimated trend for the double-log model

Goodness-of-fit Statistics

Table 6 collects some fundamental information of the relevant goodness-of-fit statistics. Over-
all they show relatively good fit; both coefficient of determination statistics exceed the usual cut-
off rate of 0.70 applied in the Finnish land valuation, albeit the devitation-based measures clearly
exceed the typical target value of 0.30.

Table 6. Goodness-of-fit statistics for the linear model

Goodness-of-fit statistic Value
R? 0.70
Rs 0.83
AIC -1.12
BIC -0.97
PEV 0.29

PEMD 0.22
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CUSUM and CUSUMSQ statistics indicate that there is no change in the mean and the vari-
ance of land price process. This is as it should be. Correlogram along with Box-Ljung statistic
indicate that the estimated model is not plagued with autocorrelation. QQ-plot and the histogram
indicate minor departures of the normality assumption, which is further evidenced by the formal
tests of normality (normal-BS and normal-DH indicators).

Case Nurmijarvi
Linear Model

Estimated hedonic prices and unobserved components are documented in the Table 7 for the
classical linear model structure, i.e. for the untransformed land price and attribute values. Differ-
ent unobserved components models (local level model, local linear trend model and different cycle
models of the section 2) with regression effects are put into the state-space form and then esti-
mated by Kalman filtering and smoothing algorithms of the section 3.

Some empirical experimentation reveals that the local level model captures most adequately
the salient features of the trend component, in which a stochastic level term is subsumed. The
estimated trend, whose statistical significance is relatively low with the associated t-value of 3.26,
is depicted in the Figure 3. There is an evident peak in the middle of the series, which corre-
sponds to the second half of the year 1990, after which the whole Finnish economy slid into the
great depression; the figure shows circa eight years of solid and rapid downward movement. The
new upturn occurred in the last quarter of 1998. The price level in the figure is surprisingly high,
about 120-150% of the arithmetic average value of the series in that period. It should be stressed
again that the estimated p-value for that level component is quite high (0.0012), which increases
uncertainty related to the inferences. This is explained partly by the inclusion of price index
variable, which effectively reflects different temporal movements.

One relatively low-frequency cycle component is included into the estimated model, which
shows expanding and contracting oscillations of prices over time. Also a first-order autoregressive
component is included, which has the largest estimated variance (g-ratio of 1.00). The most im-
portant explanatory variable, statistically speaking, is the parcel size variable with the t-value of

Table 7. Estimated unobserved components and hedonic prices

Variable Coefficient r.ms.e t-value p-value
Level 5.18 1.59 3.26 0.0012
AR(1) -1.96 1.01 NA NA
Cycle 1 (comp. #1) -0.31 0.53 NA NA
Cycle 1 (comp. #2) 0.13 0.55 NA NA
Parcel size -0.00028 1.86e-005 -14.97 0.0000
Distance 1 -0.12 0.016 -7.53 0.0000
Distance 2 -0.096 0.025 -3.83 0.0001
Parcel type -0.75 0.18 -4.18 0.0000
Price index 0.038 0.0072 5.30 0.0000
Intervention #1 13.37 2.27 5.88 0.0000
Intervention #2 13.74 227 6.03 0.0000
Intervention #3 11.68 227 5.13 0.0000
Intervention #4 13.03 2.27 5.73 0.0000

Intervention #5 11.84 2.27 5.20 0.0000
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Figure 3. Estimated trend for the linear model

-14.97. Two distance measures are included into the final hedonic model, where distance 1 de-
notes a straight-line distance to the CBD of Helsinki and distance 2 represents a straight-line
distance to the centre of parish village of Nurmijarvi (This seems be the only relevant local
distance measure here; if other local distance measures are added to the model, the multicollineary
problem prevents much of the meaningful subsequent analysis). Both distance measures seem
plausible in sign and magnitudes with the associated p-values of -7.53 and -3.83, respectively. In
contrast to the results of the Table 3, the classical linear model for the Espoo case, now the parcel
type is statistically highly significant variable with the t-value of -4.18. Five outlying observations

were detected and their influences were captured using impulse intervention variables; in sum,
their total effect on land prices is very high.

Goodness-of-fit Statistics

Table 8 collects some fundamental information of the relevant goodness-of-fit statistics. Overall
they show relatively poor fit; the standard coefficient of determination measure R? is clearly
below usual cut-off rate of 0.70 applied in many land valuation assignments and the devitation-
based measures clearly exceed the typical target value of 0.30.

Table 8. Goodness-of-fit statistics for the linear model

Goodness-of-fit statistic Value
R? 0.46
Ri 0.70
AlIC 1.68
BIC 1.79
PEV 5.16

PEMD 3.54
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CUSUM and CUSUMSQ statistics indicate that there is no change in the mean process, but
oscillations in the variance of land price process. Correlogram along with Box-Ljung statistic
indicate that the estimated model is not plagued with autocorrelation. QQ-plot and the histogram
indicate departures from the normality assumption, which is further evidenced by the formal
tests of normality (normal-BS and normal-DH indicators).

Double-log Model

Table 9 documents the estimation results of common hedonic prices and unobserved compo-
nents for the multiplicative form of double-log model, i.e. for the conventional power function
approach. These regression effects are simultaneously included with different unobserved compo-
nent models of the section 2 and then estimated using Kalman filter and smoothing recursions of
the section 3. Some empirical investigation indicates that the effect of trend component is most
accurately encapsulated by the local level model (as in all the previous cases).

The estimated trend is depicted in the Figure 4; the estimated trend now fluctuates at a
notoriously high level when compared to the average value of the series in that period (circa 2.5
higher that the arithmetic average). There is the same peak discernible as in the Figure 3, which
corresponds to the second half of the year 1990; otherwise the behaviour of these trends is some-
what different. The dominant dip of the series takes place about the turn of the years 1995 and
1996, after which the series has moved upward about seven years reaching the high price level of
1990. This seems to be, however, the most valid model structure here among the contenders. If
the house price variable (that is excluded from the model) would be included as a proper explana-
tory variable, the estimated trend would be much more coherent with respect to average value of
the series. However, in that case all the slope coefficients would also be statistically insignificant,
which is undesirable.

Two cycle components were included to the model, of which the other captures high-frequency
component and the other picks up lower-frequency element of price movements over time. All the
estimated hedonic prices of attribute variables are concave. Parcel size and level component are
clearly statistically the most important determinants of land price fluctuations with t-values of -
18.92 and -18.87, respectively. Other explanatory variables have significantly (almost three times)
lower t-values. Distance 1 is a straight-line distance to the Helsinki CBD and distance 2 denotes

Table 9. Estimated unobserved components and hedonic prices

Variable Coefficient r.mse t-value p-value
Level 10.78 0.57 18.87 0.0000
Cycle 1 (comp. #1) 0.014 0.087 NA NA
Cycle 1 (comp. #2) 0.026 0.087 NA NA
Cycle 2 (comp. #1) -0.0051 0.054 NA NA
Cycle 2 (comp. #2) 0.018 0.054 NA NA
Parcel size -0.62 0.032 -18.92 0.0000
Distance 1 -0.93 0.12 -7.29 0.0000
Distance 2 -0.22 0.042 -5.12 0.0000
Parcel type -0.21 0.043 -5.02 0.0000
Intervention #1 -2.34 0.54 -4.28 0.0000

Intervention #2 -2.81 0.54 -5.11 0.0000
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Figure 4. Estimated trend for the double-log model

a straight-line distance to the centre of the parish village of Nurmijirvi. The separate effects of
two outlying observations were estimated by impulse intervention variables.

Goodness-of-fit Statistics

Table 10 reports some fundamental information of the relevant goodness-of-fit statistics. Over-
all they show relatively poor or moderate fit that mimics quite closely the performance of the
corresponding linear model for the Nurmijarvi case; the standard coefficient of determination
measure R? is clearly below usual cut-off rate of 0.70 applied in land valuation and the devitation-
based measures clearly exceed the typical target value of 0.30. AIC and BIC statistics are, how-
ever, lower indicating a better fit.

CUSUM and CUSUMSQ statistics indicate that there is no change in the mean process and
only minor oscillations in the variance of land price process, which is an improvement over the
model of the Table 8. Correlogram along with Box-Ljung statistic indicate that the estimated
model is not plagued with autocorrelation. QQ-plot and the histogram indicate departures from
the normality assumption, which is further evidenced by the formal tests of normality (normal-BS
and normal-DH indicators).

Table 10. Goodness-of-fit statistics for the linear model

Goodness-of-fit statistic Value
R? 0.46
Rﬁ 0.68
AIC -1.15
BIC -1.06
PEV 0.30

PEMD 0.23
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6. PREDICTIVE ASSESSMENT OF THE HEDONIC MODELS
Measures of Predictive Accuracy

Forecasting accuracy is a critical factor in the evaluation of empirical validity of the chosen
hedonic model. There are numerous different indicators for post-sample predictive assessment of
hedonic models (e.g. Case et al., 2004) and the relative ranking of the performance of various
models varies according to the applied accuracy measure. However, not all measures can be
considered equally informative in the context of hedonic modelling of land prices: of paramount
importance are those criteria underlying the mean prediction error and the strength of association
between model’s predictions and observed land prices. Variance-based indicators, albeit commonly
utilised in studies, are secondary for most practical land valuation purposes.

Mean prediction error is evaluated in this study by (1) arithmetic average prediction error, (2)
median prediction error, (3) error centre of gravity and (4) by arithmetic average and median
percentage errors. If unit land prices are analysed (as in this paper), the necessary weights are
directly obtained by using parcel size to give the total mass of errors, which obviates the need of
estimating the unknown density function. The use of average prediction errors is often, in land
value studies, a more plausible alternative than median-based indicators of central tendency of
prediction errors, since latter measures down-weight too heavily the influence of unusual predic-
tion errors as compared to typical prediction errors since they ignore relevant information about
distances between errors. Also median-based mean error indicators tend to produce, in many
cases, highly similar and indecisive results between different model candidates. The major prob-
lem of using arithmetic average prediction error or median prediction error, and their common
weighted analogues, is that these are absolute measures, which depend on the unit of measure-
ment. Therefore, the relative versions of the basic indicators, i.e. arithmetic average and median
percentage errors, are also documented for comparing mean prediction errors between models,
where responses are measured on a different scale.

Three measures of strength of the association between predictions and observed out-of-sample
land prices are reported. First, the usual correlation coefficient is calculated, which is a useful
measure of statistical relation in the case of normally distributed error terms and when the focus
is on the co-variation of errors. The major problem of using the classical correlation measure in
land valuation studies lies in its strong dependency on the normality assumption, which is typi-
cally violated by the influence of aberrant error terms, whose effect is squared it the denomina-
tor, which, in turn, tend to lead to highly similar standard deviations between different model
alternatives. Consequently, calculated correlation coefficients tend to produce not only invalid but
also indecisive results. The use of scaled conventional inner product (or some weighted version of
it, but this seems to add very little new information) is preferable, which measures the strength
of prediction in the direction of actual out-of-sample land prices scaled by the total uncentered
variation of land prices. It generates more valid and decisive results that are not strongly depen-
dent on any particular distributional assumptions. Also the gravity (see McMillen, 2001) is re-
ported, which seems to be a viable measure of strength of association; it usually produces results
that parallel the use of scaled inner product.

Root mean squared error is the most commonly used measure of success of numeric predic-
tion, which mainly controls the reliability or variability of predictions, not the actual predictive
validity or predictive unbiassness. This statistic is also overly sensitive to outlying observations
tending to exaggerate the variance of prediction errors of model choices in which the prediction
error is larger than the others (which is typical in land valuation studies). This sensitivity or lack
of robustness to extreme errors can cause root mean square error to produce results that are
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indecisive. Mean absolute error is generally a more appropriate indicator of predictive variability,
and is especially suitable in cases of outlying prediction errors. Another useful measure of predic-
tive variability is simply the predictive range expressed in terms of minimum and maximum
predictions; shorter the interval, less variability is expected in predictions. Widely used measure
of predictive variability is mean absolute percentage error (see e.g. Makridakis and Hibon, 2000),
which is reported here with the associated robust version of it: median absolute percentage error.
They have also been criticized for the problems of asymmetry and instability, when the data is
small.

Case Espoo

Table 11 documents the forecasting performance of conventional (ordinary least squares) and
structural modelling approaches for the classical linear model structure, i.e. for the untransformed
land prices. Estimated structural time-series model encompasses the conventional hedonic model
in most measurable aspects; thirteen (out of fifteen) different measures of predictive accuracy are
superior in the structural case. All mean prediction error measures are lower with the estimated
unobserved components model and, in particular, three of the most important ones, average
prediction error, error centre of gravity and average percentage indicators, are, respectively,
circa 48%, 28% and 49% lower than in case of the ordinary least squares’ estimate. This implies
that structural approach produces results of higher predictive validity. Common variance-based
measures of predictive accuracy: mean absolute error, mean absolute percentage error and root
mean squared error, are also about 5-18% lower with the structural modelling approach, depend-
ing on the measure used. Measures relating to the strength of association between forecasts and
actual outcomes - namely the scaled inner product and gravity - are slightly better (5% and 0.6%,
respectively) when conventional least squares are applied, but these minor improvements cannot
offset an otherwise relatively low performance.

In the Table 12 are presented the corresponding measures of the Table 11 for the multiplica-

Table 11. Prediction results for the classical linear models

M easur e of predictive accuracy M odelling Approach

Conventional Structural
Average prediction error -4.66 -2.44
M edian prediction error -10.44 -8.07
Error centreof gravity -5.45 -3.95
Aver age percentage error 17.41 9.11
M edian percentage error 64.78 50.04
Predictive range [min, max] [-32.96; 79.13] [-30.31; 80.61]
M ean absolute error 15.02 13.80
M edian absolute error 13.20 10.97
M ean absolute percentage error 256.56 211.50
M edian absolute per centage error 63.59 69.35
Root mean squared error 19.72 18.82
Root median squared error 13.20 10.97
Correélation (Pear son) 0.75 0.78
Scaled inner product 0.78 0.74

Gravity 3.62*10° 3.60*10°
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Table 12. Prediction results for the double-log models

M easur e of predictive accuracy M odelling Approach

Conventional Structural
Average prediction error -0.37 0.15
M edian prediction error -0.14 0.29
Error centre of gravity -0.37 0.14
Average percentage error 13.84 5.45
M edian percentage error 0.14 10.60
Predictive range [min, max] [-2.45; 0.88] [-2.00; 1.41]
M ean absolute error 0.51 0.58
M edian absolute error 0.25 0.51
M ean absolute percentage error 66.16 56.99
M edian absolute per centage error 9.23 17.69
Root mean squared error 0.78 0.72
Root median squared error 0.25 0.51
Correlation (Pearson) 0.85 0.84
Scaled inner product 1.04 0.89
Gravity 4583.33 4210.65

tive form of double-log model, i.e. for the transformed land prices. Now the model assessment is
slightly more difficult. The most important mean prediction error statistics - error centre of grav-
ity, average percent error and average prediction error - are significantly lower; all about 60%.
The use of median-based mean prediction error indicators gives contrary information, but they
are secondary. Variance-based indicators give somewhat indecisive information: mean absolute
error is somewhat higher in the unorthodox case of unobserved components, but commonly ap-
plied measures of mean absolute percentage error and of root mean squared error are, on the
other hand, slightly lower. Moreover, gravity and scaled inner product are slightly better in the
case of ordinary least squares (9% and 17%, respectively), which is explained partly, I believe, by
use of price index variable in the conventional approach (the variable which was left aside from
the final model in the structural case of double-log model). This increases the strength of statisti-
cal association in the static model, but only at the expense of biasing the mean prediction errors
further. In essence, the structural model seems to be the most adequate description of land prices
in the Table 12, albeit it encompasses the conventional model in only a few measurable respects.
Specifically, the necessary property of predictive unbiassness could be improved significantly if
unobserved components are used.

Case Nurmijarvi

Table 13 reports the results of post-sample predictive competition for the classical linear struc-
ture. The conventional methodology yields to superior results; the ordinary least squares estima-
tor encompasses the unobserved component method by thirteen (out of fifteen) different out-of-
sample measures of predictive accuracy. The three most important mean prediction error statis-
tics - error centre of gravity, average percent error and average prediction error - are significantly
lower; about 24-57% depending on the measure. All variance-based measures are also slightly
better in the conventional case. Only two statistics of the strength of association are slightly
higher when structural modelling paradigm is applied.
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Table 13. Prediction results for the classical linear models
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M easur e of predictive accuracy

M odelling Approach

Conventional Structural
Average prediction error -0.16 -0.37
M edian prediction error -0.81 -1.11
Error centreof gravity -0.87 -1.14
Aver age percentage error 2.83 6.59
M edian percentage error 19.65 27.16
Predictive range [min, max] [-5.51; 13.47] [-5.61; 13.44]
M ean absoluteerror 2.26 240
M edian absolute error 1.85 2.05
M ean absolute percentage error 96.60 107.06
M edian absolute per centage error 35.88 41.89
Root mean squared error 324 3.32
Root median squared error 1.85 2.05
Correélation (Pear son) 0.70 0.69
Scaled inner product 0.76 0.78
Gravity 3.04*10° 3.11*10°

Table 14 documents the relative performance of the conventional and structural formalisms for
the multiplicative form of double-log model. In essence, the structural model improves signifi-
cantly the mean prediction error measures; average prediction and average percentage error
indicators are both 99.9% (!) lower in the structural case. Moreover, error centre of gravity is
about 85% lower in the structural case. Variance-based indicators are almost the same producing
indecisive information. Furthermore, there are only minor departures between different strength
of association indicators so that a strict preference cannot be made. It seems quite clear that
significant benefits results from using unobserved component model.

Table 14. Prediction results for the double-log models

M easur e of predictive accuracy

M odelling Approach

Conventional Structural
Average prediction error -0.052 0.000077
M edian prediction error 0.041 0.080
Error centreof gravity -0.061 -0.0093
Aver age per centage error 3.57 0.0053
M edian percentage error 2.92 5.64
Predictive range [min, max] [-2.30; 1.05] [-2.28; 1.16]
M ean absolute error 0.43 0.44
M edian absolute error 0.26 0.30
M ean absolute percentage error 382.65 379.14
M edian absolute per centage error 18.47 19.42
Root mean squared error 0.64 0.64
Root median squared error 0.26 0.30
Correlation (Pearson) 0.67 0.67
Scaled inner product 0.86 0.83
Gravity 1919.50 1850.68
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7. CONCLUSIONS

This study has analysed the spatio-temporal variation of land prices in two single localities by
means of structural time series modelling formalism that combines the flexibility of a time series
model with that of the interpretation of a regression analysis. Empirical investigation evidenced
that such trend and cycle specifications could be identified in most model formulations, which
resulted significant improvements in their post-sample predictive validity. The clear exception
was the case of classical linear model structure for regression effects in the municipality of
Nurmijarvi, in which the conventional modelling approach outperformed the structural one. Overall,
these improvements in the post-sample predictive accuracy were more pronounced and coherent
in the municipality of Espoo, whose data were screened and pre-checked for any errors prior to
the analysis.

The local level model seemed to be the most appropriate description of the trend component in
all model formulations. The effect of slope component in the trend specification was found to be
statistically insignificant. The behaviour of estimated trends was more plausible in the Espoo
case, where the price level component oscillated approximately in the range of (12 €, 18 €) in the
study period. In the submarket of Nurmijéarvi, the estimated models tended to overshoot the
influence of trend component; the estimated level fluctuated around (4.5 €, 11 €), which is signifi-
cantly higher than the average value of the series in that period. One to three different cycle
components were identified in all model formulations. These all seemed to capture, more or less,
a high-frequency component of land price movements, and as such, may not be very informative.
However, some resonance was discernible in some cycle models. The effects of estimated trends
and cycles were in most cases highly curvelinear and quite volatile. AR(1) process for irregular
disturbances was found to be an integral part of the overall model in three different case.

The data analysed contained many outlying observations in terms of an unusual high value of
standardised residual, which distorted the analysis - especially in the case of Nurmijarvi. Instead
of removing the outlier its effect was statistically measured by an impulse intervention variable
and the influence was subsequently included as part of the overall model specification resulting to
no loss of price information. The price index variable confounded the analysis of unobserved
component models, when transformed land prices were analysed. Goodness-of-fit statistics indi-
cated that the conventional double-log model yielded to a more data-congruent specification than
the classical linear model. In that model structure, beyond any reasonable doubt, the two most
important determinants of land prices were the estimated level term and parcel size variable.

The main implication of this study is that the structural time-series modelling paradigm offers
a more viable alternative to the hedonic analysis of land prices than the conventional approach
based on ordinary least squares. It provides more accurate estimates of hedonic prices along with
the additional information about unobserved components than the orthodox approach. In particu-
lar, the use of unobserved component models can broaden our general understanding of the na-
ture of long-term land price movements and short-run land price fluctuations. The occurrence of
stochastic trends and/or cycles in the analysed cases suggests that these markets are not in the
steady state but continuously evolving, which would seriously undermine the applicability and
performance of conventional modelling approaches in the land market.
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SANTRAUKA

ZEMES KAINOS ANALIZE: STRUKTURINIS LAIKO EILUCIY METODAS
Marko HANNONEN

Siame darbe analizuojami erdviniai ir laiko zemés kainy poky¢iai dviejose skirtingose vietovése, taikant struktiirinj
laiko eiluciy modeli, derinantj ir Sio modelio lankstuma, ir regresinés analizés interpretavima. [prastiniy hedoniniy
modeliy praplétimas nestebimais trendo ir ciklo komponentais reikSmingai pagerino prognozavimo tiksluma
poatrankinio tyrimo metu. Nestebimy komponenty naudojimas daugelyje modeliy, atlickant prognostinius bandymus,
dave tik nedidele¢ viduting prognozavimo paklaida, o tradiciniai hedoniniai modeliai pateikdavo daug sisteminiy
prognozavimo paklaidy. PanaSu, kad struktiiriniy laiko eilu¢iy modelio paradigma yra pranasesné uz hedoning
zemes kainy metodika, pagrista jprastine maziausiyjy kvadraty analize. Nustatyta, kad nuolydzio komponento
efektas trendo specifikacijoje yra statistiSkai nereikSmingas, o tai reiskia, kad elementaraus lokalinio lygmens modelis
adekvaciausiai apraSyty ilgalaikius Zemés kainos pokycius.



